

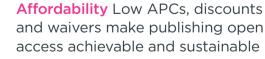
# RSC Advances

## At the heart of open access for the global chemistry community

#### **Editor-in-chief**

Russell J Cox Leibniz Universität Hannover, Germany

#### We stand for:

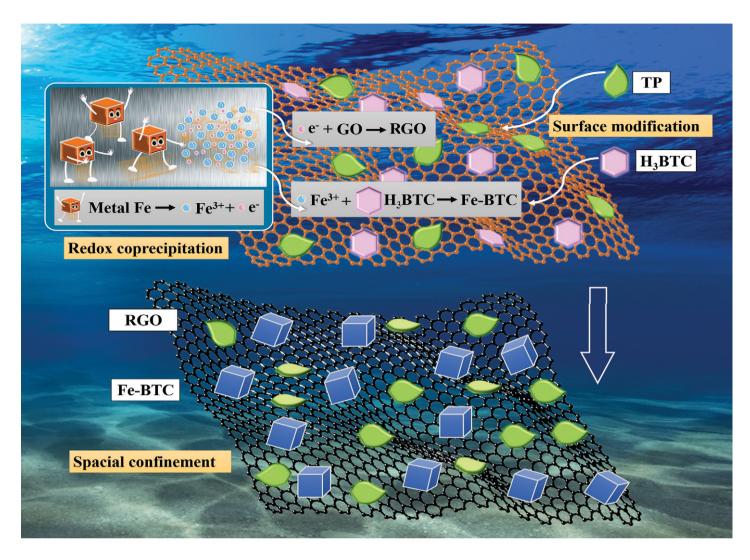



**Breadth** We publish work in all areas of chemistry and reach a global readership



**Quality** Research to advance the chemical sciences undergoes rigorous peer review for a trusted, society-run journal

### ŞĘĘ






**Community** Led by active researchers, we publish quality work from scientists at every career stage, and all countries

### Submit your work now

rsc.li/rsc-advances



#### Showcasing research from Professor Binghui Xu's laboratory, Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.

Synthesis of a MOF-derived magnetite quantum dots on surface modulated reduced graphene oxide composite for high-rate lithium-ion storage

Reactions between 1,3,5-benzenetricarboxylic acid ( $H_3BTC$ ), tea polyphenol (TP), graphene oxide (GO) and iron foils are triggered under mild aqueous conditions. Both  $H_3BTC$  and TP are decorated on the surface of GO sheets by  $\pi$ - $\pi$  conjugation while the redox reaction between Fe and GO takes place. The coordination between Fe<sup>3+</sup> and BTC<sup>3+</sup> leads to *in situ* crystallization of Fe-BTC metal-organic framework (MOF) on the surface of the TP-decorated reduced graphene oxide (TP-RGO), both the size of Fe-BTC MOF domains and the restacking of TP-RGO sheets are significantly controlled.

### As featured in:



See Binghui Xu *et al., RSC Appl. Interfaces*, 2024, **1**, 233.





Registered charity number: 207890