Lab on a Chip

View Article Online

CORRECTION

Cite this: Lab Chip, 2024, 24, 2590

rsc.li/loc

Correction: Direct laser writing-enabled 3D printing strategies for microfluidic applications

Olivia M. Young,^a Xin Xu,^a Sunandita Sarker^{abcf} and Ryan D. Sochol^{*abcde}

DOI: 10.1039/d4lc90040e Correction for 'Direct laser writing-enabled 3D printing strategies for microfluidic applications' by Olivia M. Young et al., Lab Chip, 2024, DOI: https://doi.org/10.1039/D3LC00743J.

The authors regret that the published version of Table 1 contained incorrect descriptions in the final row. The correct descriptions are shown in the updated Table 1 here.

Table 1 Summary of key characteristics of primary DLW-based strategies for fabricating 3D microfluidic technologies. Green text = advantageous capabilities; red text = disadvantageous capabilities

	In situ DLW	<i>Ex situ</i> DLW		DLW of entire microfluidic components/systems		
	Oil-immersion	DiLL	Vat	Oil-immersion	DiLL	Vat
Practical maximum print height	≤100 μm	≤12 mm	≤40 mm	≤100 μm	≤12 mm	≤40 mm
Relative range of compatible photomaterials	High	Low	High	High	Low	High
Print height-associated dosage compensation requirements	Yes	No	No	Yes	No	No
Unique print substrate- associated requirements	Thin (<i>e.g.</i> , \leq 170 µm), optically transparent	No	No	Thin (<i>e.g.</i> , \leq 170 µm), optically transparent	No	No
Relative DLW-associated production time	Fast	Fast	Fast	Slow	Slow	Slow

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^a Department of Mechanical Engineering, University of Maryland, College Park, 2147 Glenn L. Martin Hall, College Park, MD, 20742, USA. E-mail: rsochol@umd.edu

^b Maryland Robotics Center, University of Maryland, College Park, MD, 20742, USA

^c Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA

^d Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA

^e Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA

^f Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, MA, 01003, USA