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Towards real-time myocardial infarction diagnosis:
a convergence of machine learning and ion-
exchange membrane technologies leveraging
miRNA signatures†
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Carl J. Pepine, d Hsueh-Chia Chang, c Fang Liub and Pinar Zorlutuna *a

Rapid diagnosis of acute myocardial infarction (AMI) is crucial for optimal patient management. Accurate

diagnosis and time of onset of an acute event can influence treatment plans, such as percutaneous

coronary intervention (PCI). PCI is most beneficial within 3 hours of AMI onset. MicroRNAs (miRNAs) are

promising biomarkers, with potential of early AMI diagnosis, since they are released before cell death and

subsequent release of larger molecules [e.g., cardiac troponins (cTn)], and have greater sensitivity and

stability in plasma versus cTn regardless of timing of AMI onset. However, miRNA-based AMI diagnosis can

result in false positives due to miRNA content overlap between AMI and stable coronary artery disease

(CAD). Accordingly, we explored the possibility of using a miRNA profile, rather than a single miRNA, to

distinguish between CAD and AMI, as well as different stages following AMI onset. First we screened a

library of 800 miRNA using plasma samples from 4 patient cohorts; no known CAD, CAD, ST-segment

elevation myocardial infarction (STEMI) and STEMI followed by PCI, using Nanostring miRNA profiling

technology. From this screening, based on machine learning SCAD and Lasso algorithms, we identified 9

biomarkers (miR-200b, miR-543, miR-331, miR-3605, miR-301a, miR-18a, miR-423, miR-142, and miR-

132) that were differentially expressed in CAD, STEMI and STEMI-PCI and explored them to identify a

miRNA profile for rapid and accurate AMI diagnosis. These 9 miRNAs were selected as the most frequently

identified targets by SCAD and Lasso, as indicated in the “drum-plot” model in the machine learning

approach. We used age-matched patient samples to validate selected 9 miRNA biomarkers using a

multiplexed ion-exchange membrane-based miRNA sensor platform, which measures specific miRNAs,

and cTn as a control, simultaneously as a point-of-care device. Findings from this study will inform timely

and accurate diagnosis of AMI and its stages, which are essential for effective management and optimal

patient outcomes.

Introduction

Coronary artery disease (CAD) is the leading cause of death in
the US. A common presenting symptom is chest pain, often
resulting in acute myocardial infarction (AMI)1 that requires
timely percutaneous coronary intervention (PCI) as the
preferred clinical treatment.2–5 In its chronic form, on the
other hand, CAD may contribute to heart muscle dysfunction
over time and can lead to serious complications, including
heart failure.6 Therefore, the diagnosis of CAD and the
assessment of potential for an acute event are critical in
clinical management. Currently the diagnoses of CAD and
AMI are primarily based on the clinical presentation (i.e.,
chest pain), the electrocardiogram (ECG),7,8 contrast-
enhanced coronary computed tomography (CCTA),9 and
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laboratory measurement of circulating biomarkers (i.e.,
cardiac troponins (cTn) and creatine kinase-MB (CKMB)) from
plasma samples.10–12 These biomarkers for AMI have low
positive predictive reliability and are not entirely specific for
coronary events, as there are non-cardiac pathologies that
cause elevated troponin levels such as chronic kidney injury
and/or sepsis.13–16 Furthermore, cTns are inherently late
markers of AMI since they are released from cells upon
membrane rapture. In addition, while the ECG can be
obtained within minutes of presentation, cTn results typically
take several hours after blood sampling. This delay in
diagnosis can lead to more cardiac muscle loss, undue
interventions, and decrease the effectiveness of
treatment.17–20 Given these considerations, diagnosing AMI
and deciding on PCI treatment are a critical time-dependent
issue. There is a need for biomarkers of myocardial damage
with higher sensitivity and specificity, as well as rapid
presentation and detection, for timely management of AMI.

MicroRNAs (miRNAs) are small (17–22 nucleotides), non-
coding RNAs that regulate gene expression post-
transcriptionally21 found in various body fluids, including
whole blood and plasma. They have recently emerged as
promising tools involved in many pathophysiological
conditions including cardiovascular diseases as they are
produced by cells deliberately under pathophysiological
conditions as a first-response as opposed to cTns that emerge
because of cell death. Hence, miRNAs have been explored as
early detection biomarkers for various diseases. Studies have
reported that miRNAs are dysregulated in CAD and
circulating miRNA profiles can serve as potential biomarkers
for prognosis and rapid and accurate diagnosis of AMI and
CAD.22,23 As miRNA turnover is much faster than proteins,
information gathered from miRNAs can be used for early
detection and severity assessment of the acute phase without
need for additional testing. However, since the AMI often
times develops as a result of chronic CAD, miRNA-based AMI
diagnosis can result in false positives due to miRNA overlap
between AMI and CAD. As such, current miRNA-based
approaches have limitations in distinguishing between
chronic stable CAD and AMI and have been deemed so far as
clinically not reliable.

Most studies exploring miRNA expression in CAD patients
use miRNAs isolated from cell-free plasma for convenience
and availability of the samples.24,25 A qualitative study of
human and rat serum and plasma samples highlights the
preference for using plasma, especially in translational
miRNA studies, due to higher aligned reads in plasma than
in serum.26 In contrast, another study comparing miRNA
content of plasma and whole blood samples reported that
only a few miRNAs were differentially expressed in both
sources, while most of the information was lost in plasma
samples.27 Therefore, it is important to consider the source
of miRNAs and the method used for the detection of the
miRNA, especially plasma-derived exosomal miRNA, as the
source and the methods can influence the results obtained.
Recently, the Nanostring nCounter platform® has been

introduced for the detection, quantification, and assessment
of miRNA expression. This platform offers the advantage of
direct screening of more than 800 miRNAs in patient samples
without potential biases that might arise from RNA
amplification, however, it is expensive and the sample
preparation process for Nanostring requires lysing the
exosome, which can cause miRNA loss due to additional
freeze–thaw cycles. Additionally, traditional data analysis
methods fall short to process the large datasets generated by
Nanostring, especially when screening more than 800
miRNAs, which translates into over 800 dimensions. While
both principal component analysis (PCA) and partial least-
squares discriminant analysis (PLS-DA) can reduce
dimensions in a limited space, they are not suitable for
analyzing over 800 parameters with a limited sample size (n =
6 for each category). Therefore, we implemented smoothly
clipped absolute deviation (SCAD) and least absolute
shrinkage and selection operator (Lasso) methods to analyze
bulky Nanostring miRNA expression data of the 4 different
cohorts (NCAD, CAD, STEMI-pre and STEMI-PCI) have here.

Mainly due to the low efficiency of extraction and increased
error margin from extensive sample preparation and processing
miRNAs are at low in concentration. In addition, miRNA
isolation from exosomes traditionally involves chemical lysing,
causing further potential miRNA degradation or loss. Moreover,
traditional protein (i.e., cTn) sensing methods use western blots
or enzyme linked immunosorbent assay (ELISA) and have high
uncertainties in sample preparations, antibody processing, and
testing protocols. We previously demonstrated that our
multiplexed ion-exchange membrane-based miRNA (MIX.miR)
sensor platform can accurately measure miRNA concentrations
at physiologically relevant picomolar (pM) levels.28 Increased
detection sensitivity enabled MIX.miR to overcome the main
limitation of current methods (i.e., RT-qPCR), and we identified
miRNAs in plasma that had been previously reported for only
whole blood samples from patients. Having used this membrane
for other proteins before,29 we adapted it for cTn detection as an
internal control. The MIX.miR has three main advantages over
traditional methods, increased detection sensitivity, integrated
chemical-free exosome lysing unit using surface acoustic waves
(SAW), and integrated ion-exchange membrane (IEM) at a
relatively low cost. While traditional biological methods of
testing miRNAs require extensive work with sample preparation
and miRNA duplication, resulting in miRNA loss and long assay
time detrimental to this application, the MIX.miR sensor
platform can accurately detect miRNAs with a concentration
level of 1 pM within one hour. Additionally, traditional lysing
involves mechanical or chemical interventions on the exosomes,
which often interfere with miRNAs and potentially cause miRNA
degradation or loss. With the SAW lysing unit relying on physical
forces, MIX.miR breaks the exosomes and extracellular vesicles
without introducing chemical impurities.28,30,31 Furthermore,
the sensor constructed with IEM can easily be functionalized
into protein sensors for untreated blood.29,32,33 The IEM-based
sensor can utilize the principle of ELISA at a much lower cost
with better detection sensitivity.29
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In the current study, we used the MIX.miR platform to
determine the differential expression of miRNAs in patients
with CAD, STEMI, and reference patients without CAD. We
then analyzed the data with SCAD and Lasso methods to
assess the predictive value of miRNAs for CAD and STEMI. We
hypothesized that miRNA profiles would represent the stage
of STEMI and evaluate the efficacy of PCI better than the
current reference standards. Point-of-care miRNA and high-
sensitivity cTn testing platforms have potential to be within
emergency medical services, such as ambulances, to facilitate
efficient and rapid diagnosis of AMI at the pre-hospital stage.

Materials and methods
Clinical samples

Clinical samples were provided by UF Health in Gainesville.
The protocols are described in our previous work28 and
briefly described in the ESI.† The modeling groups for
Nanostring nCounter miRNA dataset are recorded as
“random samples”; while the testing groups with matched
ages, diabetes, and AMI onset hours are recorded as
“matched samples”.

Oligoprobes and calibration miRNAs

Oligoprobes and calibration miRNAs were purchased from
Integrated DNA Technologies, Inc. The well-known miRNA
biomarkers for MI diagnosis are miR-1, miR-208b, and miR-
499. New miRNA biomarkers studied in this work are miR-
200b, miR-543, miR-331, miR-3605, miR-301a, miR-18a, miR-
423, miR-142, and miR-132. The detailed information of the
oligoprobes is listed in the ESI.† All oligoprobes and calibration
miRNAs were aliquoted and stored at −20 °C. The human
cardiac troponin T antibody pair (ab270345, Abcam, Waltham,
MA) is aliquoted and stored at 4 °C until usage. The “detection”
antibody is for the silica beads, while the “capture” antibody is
for the functionalization of the AEM sensors.

miRNA selection by machine learning and regularized
statistical modeling

The Nanostring dataset comprise expression levels of 809
miRNAs from 4 groups of subjects: CAD patients (n = 6), pre-
treatment MI patients (n = 6), AMI patients after PCI treatment
(n = 6), and non-CAD healthy controls (n = 6). Regularized
logistic regression was employed to select biomarkers that
might relate to different patient groups. For the logistic
regression, we compare the following pairs of groups: (1) NCAD
vs. CAD, (2) NCAD vs. MI-pre, (3) NCAD vs. MI-PCI, (4) CAD vs.
MI-pre, (5) CAD vs. MI-PCI, (6) MI-pre vs. MI-PCI; in addition,
we compared (7) NCAD + CAD vs. MI-pre (8) NCAD + CAD vs.
MI-PCI (9) NCAD vs. MI-pre + MI-PCI, (10) CAD vs. MI-pre + MI-
PCI, (11) NCAD + CAD vs. MI-pre + MI-PCI, leading to a total of
11 logistic regression models. In each model, the first group is
used as a reference group, meaning the models model the odds
of being in the second group vs. in the first group. A positive
coefficient associated with a biomarker from a model means

that an increase in the biomarker is associated with a higher
odd of being in the second group.

We employed the LASSO (least absolute shrinkage and
selector operation)34 and the SCAD (smoothly clipped absolute
deviation),35 to regularize the variable selection (technical
details on LASSO and SCAD are provided on the ESI†). We
implemented the leave one out cross validation (LOOCV) to
tune the penalty parameter for LASSO and SCAD. In addition
to running the above logistic regression models with LASSO
and SCAD penalties on the full dataset with 809 miRNAs, we
also run the models on three subsets of the 809 biomarkers
after manual screening based on domain knowledge. The first
subset contains purely cardiac specific miRNAs (450); the
second subset contains cardiac specific and vasculature
miRNAs (565); the third group contains cardiac specific,
vasculature, cerebral vasculature, and rare cardiac disease
miRNAs (576). Among 11 logistic regression models, no
biomarker was selected in 3 regression models regardless of
the penalty term or the tuning parameters, which are NCAD
vs. MI-Pre, CAD vs. MI-PCI, and MI-Pre vs. MI-PCI. Taken
together, the mRNA selection results were obtained from 8
regression models with LASSO or SCAD penalty, respectively,
among the full set of biomarkers and 3 subsets, leading to a
total of 64 regressions models. Nine frequently selected
miRNAs biomarkers among the 64 regression models, taken
together with domain knowledge, were chosen to move onto
the next stage, which is validation in the lab.

The analysis was performed in R. For LASSO regression, R
package “glmnet v4.1.4” was used; for SCAD, R package
“ncvreg v3.13.0” was employed.

Technical details on LASSO and SCAD regularization

The loss function in logistic regression is the negative log-
likelihood function

l β0; βð Þ ¼ −
Xn
i¼1

yi ln πið Þ þ 1 − yi
� �

ln 1 − πið Þ� �

where

ln
πi

1 − πi

� �
¼ β0 þ

Xd
j¼1

xijβj

for i = 1, 2, …, n, xi is a p × 1 vector that contains the values

of p miRNA biomarkers in sample i and yi ∈ {0, 1} is a binary
group indicator. β0 is the intercept and β = (β1, β2, … βp) is a
p × 1 vector of regression coefficients. The loss function of
the penalized logistic regression, compared to the regular
logistic regression, has an additional penalty term,

lp β0; βð Þ ¼ −
Xn
i¼1

yi ln πið Þ þ 1 − yi
� �

ln 1 − πið Þ� �þ λP βð Þ

where the penalty term λP(β) consists of tuning parameter λ

and the penalty function P(β). Penalized regression is often
used for variable selection and regularizing parameter
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estimation and predictions when p is large, especially when n
is small, so as to improve the robustness and generalizability
of the learned model.

The LASSO (least absolute shrinkage and selector
operation) and the SCAD (smoothly clipped absolute
deviation) are popular choices of P(β). Specifically,

P βð Þ ¼

Xp
j¼1

βj

��� ��� for LASSO

Xp
j¼1

λ βj

��� ���I βj

��� ��� � λ
	 


−
βj

��� ���2 − 2aλ βj
��� ���þ λ2

2 a − 1ð Þ I λ < βj

��� ��� � aλ
	 


þ aþ 1ð Þλ2
2

I βj

��� ��� > λ
	 


for SCAD

8>>>>>><
>>>>>>:

LASSO is likely the most recognized and popular regularizer

among practitioners but known to yield biased estimate for
non-zero βj. SCAD penalty enjoys the advantage over LASSO
to give unbiased parameter estimates (oral estimates) when
the parameters are large and is one of the earliest and most
influential regularizer to achieve bias reduction compared
to LASSO. LASSO is convex regularizer whereas SCAD is
non-convex.

The tuning parameter λ controls the model complexity and
the tradeoff between bias and variance in parameter
estimation and prediction. When λ = 0, lp(β0, β; X, Y) reduces
to l(β0, β; X, Y), so are the parameter estimates. When λ → ∞,
all β estimates would be 0 (no variable is selected). When λ is
in between 0 and ∞, some β estimates will be 0 and some are
not (the larger λ, the more β estimates will be 0). The miRNAs
with non-zero β estimates are “selected” and deemed relevant
in the prediction of Y. In practice, the value of λ is commonly
chosen by a cross validation (CV) procedure – λ that yields the
minimum mean CV error or the CV error within one standard
error of the minimum. We implemented the leave one out CV
(LOOCV) procedure due to the small sample sizes.

Experimental

The discovery of novel biomarkers for CAD, STEMI and
following PCI were performed in two steps. First, we tested
the different categories by full genetic screening using
Nanostring. We picked the significant biomarkers by SCAD
and Lasso algorithms. Second, we validated the biomarkers
using additional patient plasma samples within specific
categories.

The functionalization of miRNAs on MIX.miR sensors is
described in our previous work.28 Briefly, the MIX.miR sensor
was fabricated using the standard replica molding of silicone
rubber and polyurethane (PU) molding. The ssDNA of
specific miRNA is added onto the AEM after 3,3′,4,4′-
benzophenonetetracarboxylic acid (BPDA) and EDAC
carboxylation procedures. The antibody for cTnT is added
onto the AEM after 0.4 M EDAC and 0.4 M sulfo-NHS (EDAC/
NHS) treatment. The silica beads are 50 nm in diameter with
detection antibody after EDAC/NHS treatment. To achieve
better attachment of the antibody, beads were centrifuged,

sonicated (Elmasonic S30h, Elma Schmidbauer GmbH,
Singen, Germany) and re-suspend multiple times.32

The current–voltage curve (CVC) of the sensors can reveal
the concentrations of the targeted biomarkers, either the
specific miRNA or the cTnT. Due to the ion-depleting action of
the membrane on the side of the functionalized

oligonucleotide, the conductivity near that surface membrane
is 3 orders of magnitude lower than the bulk or within the
charged membrane. The surface layer hence controls the
voltage drop and the additional surface charge of the
hybridized duplex can sensitively gate the ion current,
producing a voltage signal much larger than those from
electrochemical sensors. The CVC voltage shifts were correlated
with miRNA concentration through calibration curves.

The detection board can detect the miRNA and the cTnT
at the same time. The sample was introduced from the inlet
after SAW lysing.30 The exosomal miRNAs were released to
the plasma and flowed through the channel with the MIX.
miR sensor. The preconcentration unit was balanced with the
flow and miRNAs were kept around the MIX.miR sensing
area, enhancing the chance of specific miRNAs attaching to
the ssDNA. The remaining sample passed through the
channel and tubing toward the cTnT sensor on the secondary
device. The sample with cTnT was incubated in the cTnT
sensing device for 20 min, followed by another 20 min
incubation with silica beads with detection antibody. After
additional high (4× PBS) and low ionic (2× PBS) wash, the
CVC of miRNA and cTnT were obtained separately. We added
a microfluidic mixing unit, a customized Tesla valve, between
the miRNA sensing device and the cTnT sensing device, such
that it has one inlet of 4× PBS and another inlet of DI water
with the same flow rate. The 4× PBS was diluted into 2× PBS
at the outlet of the Tesla valve, as illustrated in the
COMSOL® simulation in Fig. 1. The cTnT in the plasma
sample was detected via the antibody bound to silica beads
in the protein sensing unit (Fig. 1(3)).30 Once measured, the
voltage shift was used to calculate the miRNA concentration
detected in the plasma sample.

Results
miRNA screening of the random samples by Nanostring and
validation of the miRNAs with MIX.miR sensor

The Nanostring screening recognized 809 miRNAs from
the plasma samples. The miRNA data were analyzed by
SCAD and Lasso (Fig. 2). SCAD and Lasso are two of the
most commonly used methods for variable selection in
high-dimensional data analysis, known for their theoretical
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guarantees in variable selection and practical effectiveness.
A “drum plot” was designed to display the results of the
biomarker selection from the 64 regression models
(Fig. 2a). The selection heat map of the 809 miRNAs from
64 regularized logistic regression models (Fig. 2b), and the
selection frequency of the miRNAs that are selected at
least 6 times (Fig. 2c) were presented. After factoring in
domain knowledge, the miRNAs were finally selected for
the next laboratory validation stage as hsa-miR-200b-3p;
hsa-miR-543; hsa-miR-331-3p; hsa-miR-3605-5p; hsa-miR-
301a-3p; hsa-miR-18a-5p; hsa-miR-423-5p; hsa-miR-142-5p;
hsa-miR-132-3p. Note that most of these biomarkers, if
not all, are associated with positive coefficients from the
regression models.

The association between the selected miRNA and the
patient condition such as NCAD, CAD, STEMI-pre, and
STEMI-PCI, was further validated with the voltage shifts by
MIX.miR sensors (Fig. 2d–g). The studies in miRNA selection
by SCAD and Lasso suggested that multiple miRNAs are not
completely independent. Fig. 2h presented four different
selections of the miRNA combinations in differentiation
NCAD, CAD, STEMI-pre, and STEMI-PCI. Based on the scatter
plots, we generated the ROC of each combination. The ROC
indicated that the 9 miRNA combinations has promising
outcomes in differentiating the four groups, which almost
reaches 1 in ROC. Some of the ROCs have curves with AUC <

0.5 because not all of the miRNA markers are significant in
differentiating among the four groups. However, if consider
the 9 miRNA combinations as a spectrum, we are able to
differentiate a specific group from NCAD, CAD, STEMI-pre,
and STEMI-PCI. In order to validate the selected miRNAs and
the robustness, we selected the Matched Samples with age
between 60–70 years old, without diabetes, and AMI onset
hours below 5–6 hours (for STEMI patient samples) and
repeated the detection with MIX.miR sensors.

Investigation of the robustness of miRNA and cTn

We investigated three candidate miRNAs closely associated
with STEMI (miR-1, miR-208b, and miR-499) and the
biomarker protein in the clinical plasma samples using MIX.
miR, the combined miRNA and protein sensing platform
(Fig. 3a–e). The molecular concentration feature of MIX.miR
reduced the assay time to less than 30 minutes and increased
the detection sensitivity by bringing all targets close to the
sensors. Note that miRNA levels were comparable across the
STEMI patients regardless of the different onset times (<5 h,
∼24 h, and >4 days) from acute events to PCI (Fig. 3f). Both
STEMI-pre and STEMI-PCI samples showed high miR-1 levels
over two orders of magnitude above normal values, and
control patients (NCAD) showed low levels. miR-208b and
miR-499 also followed a similar trend to a lesser extent. The
miR-1, miR-208b, and miR-499 levels were independent of
the intervention status (STEMI vs. STEMI-PCI) and the STEMI
onset times. We observed that miRNA results were more
precise and reliable, as troponin levels were more spread out
and greatly affected by the onset times (Fig. 3g).

Investigation of the selected miRNAs in matched samples by
MIX.miR sensor

Here, we used the MIX.miR sensor functionalized with
specific single-stranded (ss)DNA to detect the specific
cardiac-associated miRNAs in the plasma samples. The 9
potential biomarkers were measured separately by 3 MIX.miR
sensors with 3 miRNAs on each.

To exclude the effect of diabetes on STEMI and CAD
patients, the testing groups were selected as 55–70 years old
patients without diabetes. Additionally, as the best time
window of PCI is within 3–5 h of AMI onset, the STEMI
patients were selected with the onset time within 5 hours.
The MIX.miR sensor measurement results are presented in

Fig. 1 Illustration of the integrated measurement of miRNAs.
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Fig. 2 (a) Drum plot on miRNA biomarkers selected from penalized regression models. Each node at the bottom of the drum represents a model
and each node at the top of the drum represents a miRNA biomarker selected at least once by the models. A connected line between a top node
and a bottom represents the former is selected by the latter. An orange-colored line represents a positive coefficient, and a blue-colored line
represents a negative coefficient in the regression. The thicker the line is and the more intense its color is, the larger the magnitude of a coefficient
is. The solid nodes at the top of the drum with the red large-font biomarker names are the biomarkers validated subsequently in lab experiments.
These biomarkers are selected at least 10 times and most, if not all, are associated with positive coefficients. (b) miRNA biomarker selection
frequency heat-map by penalized regression. The mRNAs that moved onto the next stage of lab validation are annotated. (c) Selection frequency
of the miRNA biomarker was selected at least 6 times by penalized regression. The mRNAs that moved onto the next stage of lab validation are
annotated are those associated with the bar graphs. (d–g) The miRNA detection voltage shifts by MIX.miR sensors on random samples of NCAD
(blue), CAD (green), STEMI-pre (red), and STEMI-PCI (magenta), respectively. The inner colored line is the average value; while the outer colored
line is the max value; the light blue lines in the center labels the limit of detection (LOD). The LOD is calculated from the calibration curves of each
miRNA with linear fittings (Fig. 5). (h) The scatter plot of NCAD, CAD, STEMI-pre and STEMI-PCI random samples with different clustering
parameters and objectives; (i) the ROC of different clusters based on the scatter plots with different parameters in (h).
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Fig. 4 and 6. Fig. 5 illustrates the calibration curves of the 9
miRNA biomarkers. The red colored lines are the detection of
limit for each miRNA. The CVC voltage shifts were correlated
with miRNA concentration through calibration curves. The
correlations in the linear region of the Langmuir isotherm
are described by

V
RT=F

¼ A log10
C
Cr

� �

with A and reference concentration Cr being (4.1745, 0.0493),

(4.4899, 0.0702), (4.1706, 0.0614), (4.0927, 0.0326), (5.5452,
0.2778), (4.4159, 0.0922), (5.9386, 0.1390), (5.3700, 0.1403),
and (4.2641, 0.0836) for the miR-200b, miR-543, miR-331,
miR-3605, miR-301a, miR-18a, miR-423, miR-142, and miR-
132, respectively. The coefficient A is close to the theoretical
value of 2 ln(10). The constants are Faraday's constant F =
9.648 × 104 C mol−1; Boltzmann constant R = 8.314 J mol−1

K−1; and room temperature T ≈ 25 °C = 298 K.
Fig. 6 summarizes the 9 miRNA concentrations in both

random samples and matched samples. The dark read labels
the limit of detection (LOD) in each miRNA. The LOD
indicates the limit of the MIX.miR sensor in detecting
different specific sequences of the miRNA biomarkers. The
LODs are calculated from the calibration curves in Fig. 5.

According to the Langmuir isotherm above, the LOD of each
miRNA shows minor differences.

The MIX.miR sensor platform captured different
miRNA profiles of NCAD, CAD, STEMI-pre and STEMI-PCI
samples, supported by the current literature on the
selected miRNAs as biomarkers. The CAD patients had
high levels of miR-3605 and miR-301a (Fig. 4b), which is
in agreement with a previous study that reported
differentially expressed miR3605-3p and miR301a-3p in
whole blood samples of CAD patients with recurrent MI
events.27 STEMI-pre patients had high levels of miR-543,
301a and moderate levels of miR-331, 142, and 200b
(Fig. 4c). miR-543, miR-301a-3p and miR-200b have been
previously associated with CAD presentations including
AMI.36–38 Additionally, miR-331 was reported to be a
significant STEMI biomarker detected before myocardial
necrosis markers (i.e., cTnI, miR-208 and -499)39 and miR-
142-3p elevation was suggested as a potential biomarker
for detection and diagnosis of STEMI.40 The elevated miR-
543 and 301a in STEMI samples dropped after PCI, miR-
543 levels even reached the control NCAD levels (Fig. 4d).
miR-543 downregulation was reported to mitigate
inflammatory response and MI-induced cardiomyocyte
apoptosis via SIRT-1,41–43 reflecting beneficial effects of
PCI. The miR-142 and 200b levels in STEMI patients were

Fig. 3 (a–d) The CVC measurement voltage shift of miR-1, miR-208b, miR-499, and troponin T, respectively. (e) The calibration curve of troponin
T between voltage shift and concentration. (f) The miRNA concentrations of STEMI samples with different onset hours. The LOD is marked with a
dashed line. (g) The troponin I levels of STEMI samples with different onset hours.
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sustained in STEMI-PCI while miR-423, 18a, 331 and 132
levels increased moderately. miR-18a was previously
reported in AMI, where its downregulation promoted
autophagy of cardiac cells via inactivating Akt/mTOR
axis.44 Elevated miR-18a in STEMI-PCI samples might

indicate suppressed cell apoptosis and potentially
improved matrix remodeling, inflammation inhibition
and as previously reported in other model systems (i.e.,
osteoarthritis).45 It was reported that plasma levels of
miR-423-5p in AMI patients increased prior to PCI and

Fig. 4 The miRNA detection voltage shifts by MIX.miR sensors on age matched patient testing samples of (a) NCAD (blue), (b) CAD (green), (c)
STEMI-pre (red), and (d) STEMI-PCI (magenta), respectively. The inner colored line is the average value; while the outer colored line is the max
value; the light blue lines in the center labels the limit of detection. (e) The scatter plot of NCAD, CAD, STEMI-pre and STEMI-PCI testing groups
with different clustering parameters and objectives; (f) the ROC of different clusters based on the scatter plots with different parameters in (e).

Fig. 5 Calibration curves of new miRNA markers and the concentration results of random samples and matched samples of NCAD, CAD, STEMI-
pre, and STEMI-PCI. The red regions are the LOD for each miRNA biomarker and also indicated in the radar maps in Fig. 3d–g and 4a–d.
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then returned to normal within 6 h after PCI.46

Additionally, contrasting our STEMI-PCI results, miR-142-
3p was previously found to be decreased in plasma of
STEMI patients undergoing PCI with no-reflow.47 Such
differences in miRNA profile were expected due to the fast

miRNA turnover and varying sample timing. Overall, it is
clear that miRNA profile rather than a single miRNA level
is more informative and MIX.miR can rapidly and
accurately measure any miRNA combination
corresponding to the disease condition of interest.

Fig. 6 Voltage shifts (a (a-1) to (a-4) and b (b-1) to (b-4)) and converted concentration values (c (c-1) to (c-4) and d (d-1) to (d-4)) of the selected
9 miRNAs from random samples and matched samples of NCAD, CAD, STEMI-pre, and STEMI-PCI.
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Discussion

There has been growing interest in finding novel miRNA
biomarkers for diseases. Advances in large-scale genetic
screening technology and rapid growth of bioinformatics
studies have led to identification of a range of diagnostic
biomarkers including proteins, RNAs, long non-coding RNA
(lncRNA), circular RNA (cirRNA), and miRNA for certain
diseases. Despite the growing number of publications and
novel biomarkers in the past decade, the reliability,
repeatability, and significance of these novel biomarkers have
not reached the anticipated levels. Currently, the reference-
standard diagnosis relies on protein biomarker (cTn)
evaluation, but novel miRNA biomarkers haven't made it into
clinical practices yet. There are three main reasons for this
limitation. First, despite the ability of full genetic profiling
technologies to detect large quantities of RNA or miRNA, the
resulting data are not fully reliable due to the heterogeneity in
patient samples. Factors such as age, medical conditions (i.e.,
diabetes with insulin treatment or other medications), smoking
habits, and medication use affect the biomarker profiles.48,49

Second, screening technologies are not fully reliable. Despite
advances in genetic analysis equipment, issues with detection
accuracy persist, resulting in low specificity (high rate of false
positives, and false negatives), especially for miRNAs.50 The
main reason for this is that the majority of miRNAs of interest
are exosomal, and techniques used to extract them (i.e.,
exosome lysis and miRNA extraction) cause significant loss of
miRNA.51 Moreover, co-isolation of non-exosomal impurities,
low reproducibility, low yield, potential damage of extracellular
vesicle families and low throughput of the samples are causing
the detection uncertainties of miRNAs. Either the unexpected
error in duplication of RNA or incomplete lysis of exosomes
may cause measurement error in large-scale genetic screening.
In addition, the single-base mutation may cause unexpected
error in current RNA measurement technologies. Third, data
analysis methods are limited, which is a major problem in
bioinformatics. Currently, there is no universally accepted or
definitive machine learning or artificial intelligence algorithm
that can be applied to all bioinformatics analysis. Appropriate
machine learning methods and algorithms are required for
analyzing large genetic data to avoid over-defining, especially
when the patient sample data set is limited.

Cardiac troponin (cTnT or cTnI) assays have been
recognized for improving diagnostic accuracy in early detection
of AMI. The normal ranges for cTnT is 0.02–0.13 μg L−1, and
>0.2 μg L−1 is considered an indication of MI. Elevated cTnT
levels can be detected as early as 2–4 h after onset of AMI
symptoms, and peaking at 12–48 h, and remaining elevated for
4–10 days.10 Dynamic changes of cTnT provide information
about the onset time and severity of MI, the effectiveness of
PCI, and the possibility of reperfusion injury. Despite these
benefits, early studies showed that the slow increase and late
peak of cTnT levels can lead to missed diagnoses of early-
evolving AMI.52,53 Therefore, cardiac troponin elevation without
a secondary diagnostic measure (CT imaging and ECG) is

insufficient for complete diagnosis.54 Here, we showed that
miRNA measurement together with cTnT provides a multi-
dimensional approach for MI diagnosis. The integration of
miRNA and troponin testing board provides an ability of rapid
“point-of-care” MI diagnosis.

Our measurement of cTnT utilizes the principle of ELISA.
The capture antibody is attached on the AEM, and the
detection antibody is attached on the silica beads.
Commercially available ELISA kits are build-in 48- or 96-well
plates with pre-coated antibody. However, our AEM sensor-
based cTnT measurement can tune the quantity of testing
ports with as many sensors as needed for the patient
samples. In addition, the turn-over time of our measurement
(t = 40 min) is much less than the time in ELISA (t = 3 h).

A major benefit of miRNA profiling is that cTnT are
released into plasma following cardiomyocyte injury, while
miRNAs are released into the plasma at earlier time points by
exosomes. Studies have showed that miRNA reached the peak
expression 3–12 h earlier than conventional biomarkers (i.e.,
cTnI, CKMB) in the early phases of AMI,55 thus being more
sensitive. Here we tested the 9 cardiac-associated miRNAs,
miR-200b, miR-543, miR-331, miR-3605, miR-301a, miR-18a,
miR-423, miR-142, and miR-132 for STEMI and CAD samples.
As demonstrated in the radar map and concentration results,
miR-301a is elevated in CAD and STEMI, where miR-301a in
STEMI might inherited from CAD conditions. miR-543 is
uniquely elevated in STEMI-pre, and miR-200b, miR-331,
miR-423, and miR-18a together with a gradual increase
indicate the reperfusion injury or STEMI-PCI. To identify
CAD from STEMI cases, the results indicate that miR-3605
and miR-301a are joint markers for CAD together when they
are co-expressed. From the radar map by patients from
Nanostring and MIX.miR sensor results, we are able to
identify the cases between NCAD, CAD, STEMI-pre, and
STEMI-PCI. Additional miRNA biomarkers can be applied on
MI diagnosis and PCI efficacy evaluation, if needed. The
problem we deal with has a small sample size (n = 24) and a
large number of predictor variables (p = 809) is a typical
small n and large p problem, SCAD and Lasso are well suited
for feature selection and initial screening for this type of
problem, compared to some other machine-learning methods
that may require large datasets to train a complex model with
good performance (e.g. deep-learning methods) and that are
not suitable for interpretable variable selection problems.
Based on SCAD and Lasso analyses of over 800 miRNAs,
additional miRNAs could be included, but due to the
workload, we only presented 9 miRNAs here. There are
chances that some other miRNAs are also useful in diagnosis
of STEMI status, such as the ∼20 additional miRNAs in by
SCAD and LASSO selections. The SCAD and Lasso are well-
regarded in the medical and biological literature for
identifying potential biomarkers and have become standard
tools in these fields.

The integrated board with miRNA and troponin
measurement abilities can be further miniaturized,
systemized, and commercialized as a POC device that can be
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applied in the ambulance for AMI emergency care as a rapid
pre-hospital, diagnostic tool. The results can be used to
evaluate the severity of AMI and the onset time for deciding
the need of PCI.

Conclusions

Our high sensitivity miRNA sensing with the ability of
troponin testing can be applied for emergency care of AMI
diagnosis in “future medicine”. Based on the miRNA
profiling results, we used SCAD and LASSO to select
significant miRNAs from the screening and validated the
miRNA results by our MIX.miR sensor platform. Our results
indicated that the selected 9 miRNAs are useful in
categorizing NCAD, CAD, STEMI-pre, and STEMI-PCI
samples. The ability to distinguish between CAD and STEMI
would be “a game changer” in patient diagnosis and effective
life-saving emergency response. The workflow presents an
efficient way to prioritize specific miRNA biomarkers for
emerging diseases diagnosis in a timely manner. The clinical
approaches for using troponin tests and imaging diagnosis
can be significantly improved by this type of integrated
board, with both miRNA and troponin rapid assays, which
has the potential of further integration and miniaturization
for emergency care usage.
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