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A novel immunoassay technique using principal
component analysis for enhanced detection of
emerging viral variants†

Josselyn Mata Calidonio,a Arianna I. Maddoxb and Kimberly Hamad-Schifferli *ac

Rapid diagnostics are critical infectious disease tools that are designed to detect a known biomarker using

antibodies specific to that biomarker. However, a way to detect unknown disease variants has not yet been

achieved in a paper test format. We describe here a route to make an adaptable paper immunoassay that

can detect an unknown biomarker, demonstrating it on SARS-CoV-2 variants. The immunoassay

repurposes cross reactive antibodies raised against the alpha variant. Gold nanoparticles of two different

colors conjugated to two different antibodies create a colorimetric signal, and machine learning of the

resulting colorimetric pattern is used to train the assay to discriminate between variants of alpha and

Omicron BA.5. By using principal component analysis, the colorimetric test patterns can pick up and

discriminate an unknown variant that it has not encountered before, Omicron BA.1. The test has an

accuracy of 100% and a potential calculated discriminatory power of 900. We show that it can be used

adaptively and that it can be used to pick up emerging variants without the need to raise new antibodies.

Introduction

Infectious diseases are a global health threat that impacts
the entire world. Diagnostics are important tools that are at
the front line of defense for infectious diseases, enabling
decision making for patient treatment and disease
surveillance. They are especially critical when a disease is
newly emerging, as this is when tools for identification and
treatment are not yet in place and stopping the spread is
essential. As soon as point of care (POC) tests were widely
available for the COVID-19 pandemic, they proved to be vital
in disease control because they allowed end users to
determine if they were infected. One of the most useful
formats for POC diagnostics has been rapid paper tests,
such as lateral flow assays (LFAs) and dipstick assays. These
are paper strips embedded with gold nanoparticles and
antibodies specific to the target. The tests can go from
sample to answer within minutes, do not require external
instrumentation or power, and can be easily read out by eye
or mobile phone cameras. Because of their low cost, they
can be manufactured in large numbers and be widely
distributed, enabling users to test themselves in a variety of
environments.

As the infectious disease landscape is constantly evolving,
it is urgent that we be ready for the next global pandemic.
However, one challenge that has always remained is that we
have never come up with a broadly accessible way to
diagnose newly emerging infectious diseases.1 Viruses
undergo continual mutations across various species, and
zoonotic spillovers events, involving the transmission from
animals to human, exert a substantial influence on the
emergence of new outbreaks. An estimated 60–75% of all
emerging human infectious diseases are thought to be
zoonotic in origin.2 The heightened frequency of zoonotic
spillover events is attributed to increasing levels of
globalization, travel, urbanization, and shipping; these
occurrences are further exacerbated by climate change,
posing a persistent threat.3,4 Any given unknown pathogen
might become the next big global pandemic if left
unchecked, so the ability to rapidly identify unknowns
circulating in the human population is of extreme
importance. While complete identification in real time is
impossible, information on what virus class it is, vector type
(i.e., tick vs. mosquito borne), or what it is most similar to
would be valuable in mounting a public health response to
contain transmission, treat patients, and allocate resources.

Conventional LFAs require highly specific antibodies, but
in order to produce them, the antigen target must first be
identified before antibodies can be raised against it, thus
preventing the ability to raise antibodies for an unknown.
The only tool that can identify pathogens without prior
knowledge of the target identity is DNA sequencing. However,
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sequencing is expensive, as it requires sophisticated
equipment, reagents, and personnel, and is performed after
PCR registers a positive. As a consequence, sequencing is
commonly conducted in a centralized lab, with turnaround
times spanning weeks or more. The COVID-19 pandemic
spurred the opening of distributed sequencing centers that
greatly enhanced the identification of new variants. However,
these facilities were disproportionately concentrated in high-
income countries, creating a significant disparity in genomic
surveillance capabilities between high-income and low- to
middle-income countries, primarily attributable to
socioeconomic inequalities.5 Eventually, governments
ultimately shuttered them because of high associated costs.6

Moreover, sequencing can still miss detection of the target if
reference sequence or primers are not well suited to the
divergent sequence, or the virus is present at low abundance,
or the window in which the virus is present in the patient is
short. Many infections by unknowns go undiagnosed.
Therefore, we have a major flaw in our strategies to respond
to newly emerging infectious diseases, and we urgently need
to come up with a different tactic because the emergence of
new diseases, strains, variants, and subtypes are now
occurring with greater frequency. As it stands, diagnosing
unknowns remains a major unmet need in global health.

However, chemists have determined a way to detect
unknowns via olfactory arrays. To detect a range of previously
unencountered analytes, they have developed novel sensors
that act as a “chemical nose” or “chemical tongue”7,8 by
employing a selective array rather than a specific binary (yes/
no) sensor. In these cases, the signal is read out as a
multidimensional pattern, or fingerprint, via principal
component analysis (PCA).9 More importantly, chemical
olfaction can classify these analytes that have never been
encountered by the assay before.10 As selective arrays, they
are not constrained to the detection of a limited number of
target analytes, but instead can detect hundreds if not
thousands of different species in pure form or in complex
mixtures. Moreover, the format for olfaction sensors is highly
versatile, with many ways to achieve readouts (e.g.,
electrochemical, fluorescence, colorimetric, nanoplasmonic,
and others). It has been demonstrated to be powerful for a
variety of analytes, ranging from small molecules,
beverages,11 and disease cell types.12 Additionally, the sensor
itself does not need to be expensive or difficult to operate, as
they have been successfully implemented with colorimetric
readouts on paper that can be imaged by a desktop scanner.
The development of these sensors has given rise to
overarching principles for constructing an olfactory array,
where a salient feature is that it possesses some degree of
cross-reactivity.13

Recognizing the power of chemical olfaction, we created a
selective array in an immunoassay format to result in an
adaptive diagnostic that can detect a biomarker that it has
not encountered before. We chose to demonstrate it on
variants of SARS-CoV-2 because the virus is a compelling
model for a pathogen that evolves into new variants. COVID-

19 disease evolution has occurred on an exceedingly
accelerated timescale. In the last 4 years, we have been faced
with more than 35 variants, with intervals between some
variants spanning just a few weeks. (e.g., BA.1 and BA.5 in
2022).14,15 Each variant is effectively a new disease, where
immunization or vaccination against one does not fully
protect against future variants, and the nature of the disease
has inflicted grave public health consequences and led to
increasing disease burdens. The virus has mostly leveraged
mutations on the receptor binding domain (RBD) in the
spike protein (S) where it interacts with the angiotensin-
converting enzyme 2 (ACE2) receptor on cells. However,
nucleocapsid mutations have also been shown to be
significant, contributing to increased infectivity, heightened
transmission, and, notably, the ability to evade detection in
rapid tests.16,17 While there are many available rapid tests
that can diagnose SARS-CoV-2 infections, they cannot
discriminate between variants.

The selective array also allowed us to leverage antibody
cross-reactivity, as specificity is not required. By doing so,
antibodies for another target can be repurposed.18 We
utilized reagents that were available at a hypothetical time
point of 2021–2022 after the alpha variant had emerged, and
assumed we would have antibodies for alpha S RBD but not
for what was newly emerging, Omicron BA.1 and Omicron
BA.5 (timeline, Fig. 1). Starting with a pool of two antibodies
from the alpha variant, we constructed a multicolor array and
trained it with machine learning to detect the new variant
BA.5 based on its colorimetric pattern. Then, using PCA, we
show that the assay could pick up an unknown, BA.1, and
classify it as something different from the previous variants it
has encountered. We demonstrate that a limited set of just
two cross-reactive antibodies can be repurposed to identify a
newer variant if the array follows basic rules from chemical
olfactory arrays. These results illustrate that rethinking how
rapid paper tests are used can yield capabilities that go
beyond yes/no answers. Furthermore, they show that strategic
use of cross-reactive antibodies have the potential to pick up
newly emerging pathogenic threats in a point of care format,
ultimately aiding emergency preparedness.

Experimental
Reagents

Gold chloride trihydrate (CAS: 16961-25-4), N-(2-hydroxyethyl)
piperazine-N′-(2-ethanesulfonic acid) (HEPES) (CAS: 7365-45-
9), bis(sulphatophenyl) phenylphosphine dehydrate (BPS)
(CAS: 308103-66-4), sodium citrate tribasic trihydrate (CAS:
6132-04-3), tween 20 (CAS: 9005-64-5), and sucrose (CAS: 57-
50-1) were all purchased from Sigma-Aldrich. Phosphate
buffer saline (PBS) was purchased from Fisher Scientific, and
tris-buffered saline (TBS) (10×, pH 7.4) from Boston
BioProducts. Thiolated mPEG (5 kDa) was purchased from
Nanocs. Casein hydrolysate was purchased from Sigma.

From the biological reagents used, the antibodies for the
spike receptor binding domain (RBD) were rabbit anti-spike
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IgG (Ab1) and human anti-spike IgG (Ab2), which were
purchased from Sino Biological. Anti-mouse and anti-rabbit
IgG antibodies (anti-Fc) for the control line were purchased
from Sino Biological. The S RBDs used in the test pertained
to the alpha, BA.1, and BA.5 variants, all from Sino
Biological.

Nanoparticle (NP) synthesis and conjugation

Blue-colored gold NPs were synthesized according to
established methods in the literature.20,21 Gold nanostars
(GNS), characterized by their star-shaped morphology and
blue color, were generated by combining 1100 μL of Milli-Q
(MQ) H2O, 900 μL of 140 mM HEPES (pH 7.4), and 32 μL of
25 mM gold chloride trihydrate. Antibody conjugation to GNS
was achieved through physisorption.22 The synthesized GNS
underwent centrifugation at 3381g for 12 min to form a
pellet, and the supernatant was subsequently removed. The
pellet was then resuspended in a solution comprising 140
mM HEPES (pH 7.48) and MQ H2O. Subsequently, Ab1 (10
μg) was added to the solution, and the mixture was incubated

for 60 min at room temperature. Following this incubation
period, thiolated polyethylene glycol (PEG-SH) (5 kDa) was
introduced (5 × 10−10 mol) and allowed to mix with the GNS–
Ab1 for 10 min. The PEGylated GNS–Ab1 complex was
separated by centrifugation at 2348g for 10 min, and the
supernatant containing free PEG-SH and Ab1 was discarded.
The remaining pellet was resuspended using approximately
100 μL of 0.01 M PBS buffer.

Red-colored gold NPs were synthesized according to
established methods in the literature. Preceding the
formation of the NP–Ab2 conjugate, 1 mL of red
nanoparticles (NPs) underwent centrifugation at 6014g for 10
min to eliminate excess reagents. Following the removal of
the supernatant, the NP pellet was reconstituted in a solution
containing 140 mM HEPES (pH 7.48) and Ab2 (4.55 μg) and
allowed to incubate on an orbital shaker for 60 min. A PEG
backfilling step ensued, involving the addition of PEG-SH (1
× 10−9 mol), followed by a 10 min incubation on an orbital
shaker. Subsequently, the NP–Ab2 complex underwent
centrifugation at 3381g for 10 min and was then resuspended
in 50 μL of 0.01 M PBS buffer.

Fig. 1 a) Demonstrating a proof-of-concept assay that can detect a variant of SARS-CoV-2 that is previously unencountered by the assay. The
assay uses only antibodies raised against alpha (Ab1 and Ab2), and is trained to detect BA.5 by its colorimetric fingerprint; b) the time window of
the hypothetical test development (pink) is during the BA.1. and BA.5 outbreaks, and antibodies used are those raised against the earlier variant of
alpha; c) phylogenetic tree of main SARS-CoV-2 variants. The scale bar indicates the genetic distance. From Wang et al.;19 d) sequence identity for
the variants studied, with overlap in blue, and e) computed sequence identity (orange) and similarity (green) from BLASTp.
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Utilizing cuvettes with a 1 cm path length, optical
absorption spectroscopy data were acquired on the
spectramax molecular devices plate reader. The nanoparticle
analyzer SZ-100 from HORIBA Scientific was employed to
determine the hydrodynamic diameter (DH) of both the NPs
and the NP conjugates.

Immunoassay construction and running

Dipstick immunoassays were crafted using laser-cut
nitrocellulose (Sartorius, Unistart CN140), with an affixed
absorbent pad wick (Sigma Aldrich, GB003 Gel Blot paper)
serving as a fluid sink, secured by an adhesive backing (DCN
Dx, MIBA-050).23 In the control spot (position 4 of the
nitrocellulose), 0.4 μg αIgG antibodies were spotted. Test
lines, represented by positions 3 and 2 on the nitrocellulose,
featured 0.22 μg of Ab1 and 0.176 μg of Ab2, respectively.
Each case was tested in triplicate. Given that the
immunoassay uses paper as an analytical platform, the cost
remains very low per unit, as the reagents and membranes
are low cost.24 Upon complete drying of the nitrocellulose
strips, a four-step procedure was employed to administer test
solutions, where each step took approximately ∼15–20 min
to run. Initially, the strips were immersed in individual tubes
containing 30 μL of human serum, 12 μL of running buffer
(composed of a 1 : 1 ratio of 50% sucrose and 1% Tween 20),
3 μL of the GNS–Ab1 conjugate, 5 μL of gold quencher, and
the target(s) (S RBD of alpha (0.34 μg), BA.5 (0.5 μg), BA.1
(0.5 μg)). Capillary forces facilitated fluid migration to the
absorbent pad. Subsequently, the strips underwent a washing
step in tubes containing 25 μL of a 1% casein solution. For
the third step, the strips were immersed in a solution
containing 30 μL of human serum, 12 μL of running buffer,
and 2 μL of the NP–Ab2 conjugate. Finally, a post-wash was
performed by placing the strips in 25 μL of the 1% casein
solution. The strips were allowed to thoroughly dry before
undergoing image analysis.

Image analysis

Upon completion of the drying process, all strips were affixed
onto a paper sheet and subsequently scanned using a
desktop scanner.24 The color analysis of the spots of interest
was conducted using the “RGB measure” plugin in ImageJ.25

The resulting RGB colors were in an 8-bit format. The final
spot color data for each spot were derived by subtracting the
RGB color of the spot of interest (spot 2 and 3) from the
background of the strips. The background color, primarily
near pure white for all strips, was obtained through spot 4.

Pseudocolor/stain deconvolution

To enhance the precision of the LDA model, color
deconvolution was applied, as outlined by Ruifrok in 2001.26

This process involved dissecting the color information from
the two test areas based on the color details of the
immunoprobes (stains). Initially, the red NP–Ab2 and blue
GNS–Ab1 conjugates were directly applied to the

nitrocellulose, allowing them to fully dry before initiating
image analysis. Utilizing the color deconvolution 2 plugin in
ImageJ, stain vectors S1, S2, and S3 were established. These
vectors were defined according to the optical density for each
RGB channel of the red NP–Ab2 (S1), the blue GNS–Ab1 spot
(S2), and the cross product of both (S3). Subsequently, the
three stain vectors were put together to construct the stain
vector matrix. The inverse of this matrix was then employed
to determine the quantities of the three stains present at the
test spots on the nitrocellulose. The obtained deconvoluted
values served as the new input data for the subsequent
application of machine learning in the analysis.

Machine learning

Linear discriminant analysis (LDA), a supervised learning
technique within machine learning, was executed using
MATLAB (version R2023a). LDA aims to find the linear
combinations of features that best discriminate between
different classes in a dataset. The input data for the model
consisted of the RnGnBn data, with n = 2, 3 denoting the
location of the test spot. Consequently, the model
incorporated 6 training features. Each class (control, alpha,
and BA.5) was run in triplicates, giving rise to a total of 9
training examples. The machine learning analysis primarily
involved the use of confusion matrices and ROC curves.

Principal component analysis (PCA)

Principal component analysis (PCA) is a dimensionality
reduction technique that identifies the underlying patterns in
a dataset by transforming the original variables into a new
set of uncorrelated variables called principal components. In
the context of the RGB data from spots 2 and 3 of the test
strip, PCA was employed in MATLAB (version R2023a) to
extract two principal components that captured the
maximum variance in the data. In this analysis, the two
principal components were utilized to visualize and analyze
the clustering of each class. The clustering patterns revealed
by PCA show how the data points from different classes are
distributed and grouped based on the significant variations
within these principal components. This allows for a clear
and easy to interpret representation of the inherent
structures and relationships within the RGB data, aiding in
understanding the patterns that may be indicative of distinct
classes or groups.

Hierarchical clustering analysis (HCA)

Hierarchical clustering analysis (HCA) was employed to
generate dendrograms from RGB data in Origin 2023. HCA
allows the identification of inherent structures within
datasets by grouping similar data points into clusters, aiding
in the visualization of relationships and patterns. In this
analysis, the cluster method chosen was based on the group
average. This method calculates the average distances
between all pairs of data points in different clusters,
contributing to a balanced representation of similarities
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within and between clusters. For the distance metric, the
Euclidean distance was selected. The Euclidean distance is a
common choice when dealing with multidimensional data,
measuring the straight-line distance between two points in a
space defined by their RGB values. This metric works well for
capturing the geometric relationships between data points,
providing a reliable measure of dissimilarity in the RGB
space.

Results and discussion

Our overarching goal was to make a paper immunoassay that
could discriminate between SARS CoV-2 variants repurposing
S antibodies for an earlier variant (Fig. 1b). We chose alpha
as the earlier variant as it first appeared in the pandemic in
late 2020, and sought to demonstrate that alpha antibodies
could be reconfigured to detect a later variant. For the variant
that occurred later in time, we chose the Omicron variant
BA.5 as it was widespread in the pandemic in mid-2022.
Therefore, we trained an assay constructed out of alpha
antibodies to detect and distinguish S RBD of alpha and also
BA.5. Then, we wanted to challenge the assay with an
unknown variant that would be new to the assay, and for this
we chose Omicron BA.1, which was also circulating in 2022.

Measuring the affinity of the antibody pool for the targets

Looking at sequences for the spike protein among variants
(ESI† Fig. S1), S RBD of alpha and BA.5 have high similarity,
where sequence alignment (BLASTp) shows calculated
numbers of 95% identity or higher when considering the S
RBD only (Genbank access number YP_009724390.1).
Generally, selective arrays generally employ multiple binding
agents that possess a range of cross reactivities, where some
species are more specific to certain analytes, while others
bind more broadly.27 We applied this principle here to our
antibody choice so that they would have a range of cross
reactivities towards BA.5. One antibody, Ab1, was a rabbit
polyclonal antibody for alpha S RBD. The second, Ab2, was a
chimeric monoclonal antibody also raised against alpha S
RBD, which had a constant domain of the human IgG1
molecule with mouse variable regions.

We used microscale thermophoresis (MST) to
characterize binding of each of the antibodies for each of
the targets, alpha and BA.5 spike RBD proteins (Fig. 2a).28

The MST data was taken using the Monolith instrument
and capillaries from NanoTemper. For each reading, ∼10 μL
of our sample were added to the premium capillaries. The
MST time traces for Ab1 incubated with alpha at different
concentrations (Fig. 2b and inset, red) exhibited a
systematic change with alpha concentration. The resulting
dose response curve based on the MST traces exhibited an
upward trend indicative of binding (Fig. 2c, pink), and a fit
yielded a dissociation constant KD of 17.1 nM. When Ab1
was incubated with BA.5, the MST traces also exhibited a
systematic change (Fig. 2b and inset, blue) and a dose
response curve that suggested binding (Fig. 2c, blue) with a

KD of 292.3 nM. Thus, Ab1 bound to both targets with
reasonable affinity.

MST traces for Ab2 exhibited systematic concentration
dependences for alpha (Fig. 2d, red) but not for BA.5 (Fig. 2d, blue).
Ab2 dose response curves with alpha exhibited a concentration
dependence that yielded KD = 22.8 nM (Fig. 2e, pink), but did
not change significantly with BA.5 concentration, and yielded a
KD = 12.7 nM (Fig. 2e, blue). Thus, Ab2 bound with different
affinities for alpha vs. BA.5. We note that thermophoretic trends

Fig. 2 MST to characterize single antibody–antigen binding. a) The
two antibodies in the panel and known targets, S RBD from the alpha
and BA.5 variants; b) MST time traces for Ab1 with alpha (red) and BA.5
(blue), including zoomed in traces (insets). Increasing color intensity
corresponds to higher RBD concentration; c) dose response curves
from MST for Ab1 with alpha (pink) and BA.5 (blue). Lines are fit to
obtain KD values; d) MST time traces for Ab2 with alpha (red) and BA.5
(blue), including zoomed in traces (insets). Increasing color intensity
corresponds to higher RBD concentration; e) dose response curves for
Ab2 with alpha (pink) and BA.5 (blue). Lines are fit to obtain KD values.
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for Ab2 binding to the antigens were the opposite direction
from Ab1, which can occur in MST due to differences in the
thermophoretic properties of the bound complex relative to the
free species.29,30 Overall, the MST results showed that the two
anti-alpha antibodies exhibit differential binding for each of the
targets, and thus the set had potential to be used as a selective
array.

Screening pairs of alpha antibodies

For a visible signal to be generated in an immunoassay, a
pair of antibodies must be able to bind to the antigen
simultaneously to form a sandwich. Even though two given
antibodies can bind to a target individually, shared epitopes
may prevent sandwich formation for the pair. Therefore, we
quantified the immunoassay signals that the antibodies pairs
would generate by screening all possible combinations for
antibodies immobilized on the nitrocellulose and conjugated
to the nanoparticle (NP) (Fig. 3).

Gold NPs were synthesized using an aqueous approach
using citrate reduction which resulted in ∼30 nm diameter
spherical particles that were red in color.31 NPs were
conjugated to each of the antibodies by incubation in
solution, which allows them to bind to the NP surface by
physisorption. While there are conjugation strategies that
utilize covalent click chemistry, those tend to result in lower
reaction yield, and others have found that physisorption
does not compromise the ability of the antibody to bind to
a target.32

We then ran every possible antibody pair with each
antigen plus no antigen as the negative control (Fig. 3a). Each
antibody (Ab1, Ab2) was immobilized on a nitrocellulose strip
at the test area. The control antibody (anti-Fc) was
immobilized on the control line as a positive control to verify
flow. Then, the strip was run with a given NP–Ab conjugate
with each of the targets. Given two antibodies which could be
either immobilized antibodies or conjugated on the NPs as
immunoprobes, this resulted in 2 immobilized antibodies × 2
immunoprobes × 3 antigen cases (alpha, BA.5, negative
control) = 12 different strips. Fig. 3b shows test strip images
for the pair consisting of immobilized Ab1 and NP–Ab1. The
test area intensity varied depending on which antigen was
run, with a strong intensity for S RBD from alpha, and a
much lower intensity for BA.5. No signal was observed at the
test area when no antigen was present (control). RGB
intensities of the test areas were quantified by ImageJ25 and
plotted as a heat map for the different immobilized
antibodies (horizontal) vs. NP–antibody conjugates (vertical)
(Fig. 3c). A range of cross reactivities with the antibody pairs
was observed. For example, immobilized Ab1 run with NP–
Ab1 resulted in a finite signal for BA.5 (14.42 RGB intensity),
but when run with NP–Ab2 exhibited nearly no signal (0.55
RGB intensity). On the other hand, all pairs demonstrated
signal when run with alpha. Negative controls showed a
range of baseline signal below 10 RGB, which could be
attributed to non-specific adsorption. This shows that
depending on the antibody pair, the antigens produce
different signal intensities, illustrating that this set of
antibodies had the potential to discriminate between the
variants.

Multicolored multiplexed test for alpha and BA.5

Based on the behavior of each of the antibody pairs, we then
sought to design a multiplexed test that could be trained on
the different antigens. Previously we demonstrated the ability
to repurpose antibodies for immunoassays of off-targets for
the cases of flaviviruses and filoviruses, where dengue and
zika anti-NS1 antibodies could be used to detect yellow fever
NS1,18 and Marburg anti-glycoprotein (GP) antibodies to
detect Ebola GP.33 For this, we required NP–Ab conjugates of
visually distinct colors so they would result in different colors
at the test areas.

We designed the assay based on how the antibodies
paired with each of the antigens (Fig. 3). The multiplexed
assay had two test areas with Ab1 and Ab2 immobilized at
different locations, and was run with a mixture of blue GNS–
Ab1 and red NP–Ab2 so the test areas could yield a range of
colors (Fig. 4). Thus, a different colorimetric pattern resulted
based on the antigen that was run.

To complement the red NPs, we synthesized star-shaped gold
nanoparticles, or gold nanostars (GNS) which were blue in color
(Fig. 4c). GNS were synthesized using a reduction of a Goods
buffer21 so that their peak SPR was at 708 nm (Fig. 4a, blue line)
which was shifted considerably from the SPR of the spherical

Fig. 3 Screening Ab pairs in immunoassays. a) Dipstick immunoassay
used for screening Ab pairs; b) resulting strip images for combinations
of NP–Ab1 (upper) run with immobilized Ab1 (left) and run with
immobilized Ab2 (right) and NP–Ab2 (lower) run immobilized Ab1 (left)
and Ab2 (right). Antigens run were alpha, BA.5, and the negative
control; c) table of test line intensities resulting from each of the pairs.
Rows: immobilized antibodies, columns: Abs conjugated to the NPs.
Number representing the RGB intensity above the background, heat
map to indicate RGB intensity.
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red NPs (Fig. 4a, red line). DLS showed that the GNS had an
average DH of 215.4 ± 44.7 nm. When the NP and GNS antibody
conjugates were spotted down on nitrocellulose, the format of
the final assay (Fig. 4f), their colors were visually
distinguishable.34

Ab1 was conjugated to the blue GNS and Ab2 was
conjugated to the red NPs. DLS showed that the GNS
exhibited an increase in DH of from 215.4 nm to 246 nm for
the GNS–Ab1, and the NPs from 33.6 nm to 56.4 nm for the
NP–Ab2 (Fig. 4b), confirming successful conjugation. UV-vis
showed a slight peak shift but no major decrease in intensity,
thus exhibiting no significant aggregation
(Fig. 4a, dotted lines). This also confirmed conjugation to the
antibodies and that they were stable in solution.

Machine learning to optimize running conditions to
distinguish SARS-CoV-2 variants

We then optimized conditions to result in a test that could
successfully discriminate between the alpha and BA.5
variants using the repurposed antibodies for alpha. For this
we used supervised machine learning (ML) in an iterative

loop to optimize test conditions for improved accuracy, an
approach we and others have used before to optimize a
multicolor immunoassay (Fig. 4d).35,36 First, the test was
run and the R,G, and B intensities of each of the two test
areas was quantified by image analysis, resulting in 6
features. Instead of using the RGB values for machine
learning, we utilized an approach using stain vectors for the
components because the blue GNS are not pure blue, and
the red NPs are not pure red. Alternatively, stain vectors
that are linear combinations of RGB can better represent
the color of the GNS and NPs.26 Stain vectors were defined
for both the blue GNS–Ab1 (S2) and red NP–Ab2 (S1) from
the color each species spotted on paper individually
(Fig. 4f). A third vector S3 orthogonal to both S1 and S2 was
defined by the cross product of S1 and S2. Then, the color
information for each of the test spots was deconvolved to
obtain a value based on S1, S2, and S3.

The training model chosen for the training of the test was
linear discriminant analysis (LDA). LDA analyses were
performed based on the deconvoluted RGB values of the test
spots. LDA is advantageous when dealing with multivariate
data, such as deconvoluted RGB values of two spots, as it
maximizes the separation between class means while
minimizing within-class variability. For test optimization, a
5-fold cross-validation was performed, which involves the
partitioning of the dataset into subsets, training the model
on a subset, and validating its performance on the remaining
data. By validating the model on different subsets, cross-
validation provides a more robust evaluation of its
performance, enhancing the reliability of the LDA analysis on
the deconvoluted RGB values of the test spots.

A confusion matrix was used to evaluate the accuracy of
the resulting test based on the LDA model, where on-
diagonals in the confusion matrix indicated correctly
classified results (predicted class = true class) and off
diagonals indicated incorrectly classified ones (predicted
classes19 true class). Initial conditions resulted in an accuracy
of 22.22%. Changing running conditions (washes, buffers,
quenching agents) could improve accuracy to 55.56%,
66.67% (ESI† Fig. S2), and then ultimately 100% (Fig. 4h).
Using the finalized as the optimal running conditions, if
alpha was run, it resulted in signal at both test areas, where
the lower area was bluer and the upper one more purple. If
BA.5 was run, it resulted in only one spot on the upper test
location which was blue in color (Fig. 4e). This shows that
the resulting test pattern could discriminate between variants
and thus was successfully optimized.

LDA of the top two components showed data clusters
based on the variant run (Fig. 4g, ellipses indicating 95%
confidence). The cluster for alpha was well separated from
both BA.5 and the negative control, with no overlap. This
shows that the assay could successfully discriminate between
alpha and BA.5 variants using entirely repurposed alpha
antibodies without the need for specific antibodies against
BA.5. This shows the potential for discriminating SARS-CoV-2
variants in a rapid test format, which to date have not

Fig. 4 Training a strip assay to distinguish between SARS-CoV-2
variants using alpha antibodies. a) UV-vis spectra of GNS (blue) and NP
(red) and their respective Ab conjugates (dotted lines); b) DLS spectra
of GNS (blue) and NP (red) and their respective Ab conjugates (hashed);
c) images of vials of NPs and GNS; d) strip assay used to train the
system to distinguish alpha vs. BA.5 variants; e) images of strips run
with alpha and BA.5 and the negative control; f) colors of pure red NP–
Ab2 and pure blue GNS–Ab1 spotted onto nitrocellulose defining S1
and S2; g) LDA plot showing clustering; h) confusion matrix of the final
optimized test shows 100% accuracy when comparing true vs.
predicted classes for the assay.
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allowed variant identification, and that it can be achieved
without antibodies specific for that variant.

Limit of detection

We measured the limit of the detection (LOD) of each of
the symmetric antibody pairs (GNS–Ab1/Ab1 and NP–Ab2/
Ab2). Strips with immobilized Ab1 and run with GNS–Ab1
were run with varying concentrations of alpha and BA.5
(ESI,† Fig. S3a–d). The LOD calculations were performed by
fitting a modified Langmuir curve to the experimental data,
which best describes the relationship between signal and
concentration.37 The Y-intercept for the LOD was then
calculated by multiplying the standard deviation of the
signal at 0 nM concentration of the target by three and
adding this value to the y-intercept of the calibration curve.
Finally, the LOD concentration was determined using the
fitted curve equation. The test area RGB intensity was
quantified using ImageJ (ESI,† Fig. S3e) and plotted as a
function of protein concentration. Blue GNS–Ab1/Ab1
showed a strong dose response curve with alpha, and fit to
a Langmuir equation yielding an LOD of 22.2 nM (ESI†
S4a), but did not exhibit a dose response with BA.5 that
could be fit (ESI,† Fig. S4b). The NP–Ab2/Ab2 pair exhibited
a strong dose response and yielded an LOD of 4.17 nM for
the area before the hook region (ESI,† Fig. S4c and d, pink).
The hook effect, a common issue in immunoassays, occurs
when high analyte concentrations produce falsely low
readings, limiting the system's dynamic range. This effect
causes misleading low readings at high alpha
concentrations when using the NP–Ab2/Ab2 conjugate. We
measured the LOD by testing smaller concentrations of the
alpha spike protein. Moreover, the NP–Ab2/Ab2 pair did not
bind to BA.5 (ESI,† Fig. S4c, blue), where it did not show a
significant increase in intensity with increasing BA.5
concentration. While MST results indicated that Ab1 could
bind to BA.5 and that the NP–Ab1/Ab1 pair could also bind
to BA.5, (Fig. 3b), binding was decreased for the GNS–Ab1
conjugate. To compare the limit of detection (LOD) of our
system with the target concentration in an infected patient's
serum sample, we referenced the expected target
concentration range of 2.5 μg mL−1 to 17.5 μg mL−1 from
George et al.38 For the GNS–Ab1/Ab1 pair with the alpha
protein, our LOD is 0.216 μg mL−1, which is well below the
concentration found in an infected patient's sample.
Similarly, for the NP–Ab2/Ab2 pair with the alpha protein,
our LOD is 0.769 μg mL−1. However, for the BA.5 variant,
we were unable to determine a reliable LOD with either
antibody pair, precluding a meaningful comparison of LOD
versus target concentration for this variant.

Challenging the test with an unknown variant

Having demonstrated the ability to discriminate between
alpha and BA.5 variants, we then explored whether the test
could pick up a variant for which it was not trained, utilizing
Omicron BA.1 as an unknown (Fig. 5a). This time we used

PCA to evaluate the colorimetric pattern of the assay8,11 as it
can classify unknowns into groups with comparable
properties, and is a powerful approach for its ability to
discriminate between analytes that are highly similar. Here
the sequence similarity between the targets was high, where
BLASTp results (Fig. S1†) revealed a sequence identity for
BA.1 of 96% with BA.5 and 95% with alpha (Fig. 1e).

Strips run with BA.1 exhibited a different colorimetric
pattern compared to alpha, BA.5, and the negative control,
where it resulted in a single dark blue spot at the upper test
area (Fig. 5b, triplicates, ESI† Fig. S5). To determine
whether this pattern was distinguishable from those of the
other targets, we used PCA of the stain vectors of the RGB
values of the two test areas. BA.1 clustered in an entirely
new region that was well separated from alpha, BA.5, and
the negative control, with no overlap (Fig. 5c, orange). Thus,
the colorimetric pattern was sufficiently distinct to enable
discrimination of BA.1 from alpha and BA.5. This shows
that the test could identify a new variant on which it was
not trained.

Fig. 5 a) Challenging the test with an unknown variant. Strips were
run with alpha, BA.5, and then challenged with BA.1 as a new variant;
b) resulting strip images run with the unknowns; c) PCA of clustering
with 95% confidence ellipses, with unknowns in green and BA.1
unknown in orange triangles; d) dendrogram constructed using HCA;
e) RGB plot of test areas showing the range of colors possible for the
GNS–Ab1 (blue prism) and NP–Ab2 (pink prism). Each individual dot is
the RGB value for a given test result and/or spotted strip (ESI† Fig. S5);
f) scree plot of the assay.
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The other unknowns were species the assay had
encountered before (negative control, alpha, and BA.5) which
were also correctly classified, where each of them was
properly assigned to their respective clusters
(Fig. 5c, green triangles). A zoom in of the data in 3D is
shown in ESI,† Fig. S6.

Dendrograms were constructed using hierarchical cluster
analysis (HCA) of the RGB data (Fig. 5d).11 Unknowns (bold,
marked with *) were located within the clusters of their true
classes. Thus, the test correctly classified the unknown
variants. This shows that the assay using only antibodies for
alpha, could pick up an unknown variant on which it was not
trained, and distinguish it from the variants in the original
training set.

The 24-spot olfactory array of Suslick et al. could
discriminate between a massively large number of analytes.39

In this context, the discriminatory power refers to the ability
of the array to distinguish between different analytes based
on the unique colorimetric patterns produced by the
interaction of the compounds with the array of chemo-
responsive dyes. Assuming detectable RGB 8-bit differences
of 4 and utilizing their scree plot, they estimated a
discriminatory power of 1012.39 To calculate the
discriminatory power of our assay, we quantified the number
of distinct patterns the multiplexed immunoassay can
generate, which is determined by the variability and
resolution of the color changes observed, number of test
areas available, and the distribution of the variance within
the data. Here, the red NPs and blue GNS do not span the
entire RGB spectrum, especially when they are spotted onto
paper substrates, and thus are expected to yield a narrower
range of possible RGB values. To determine the range of
possible colors at a test strip, we experimentally measured
the RGB values for different concentrations of the red NP–
Ab2 and blue GNS–Ab1 on nitrocellulose. We spotted the
GNS–Ab1 and NP–Ab2 down on nitrocellulose in aliquots up
to the final volume used in an assay run (3 μL for blue GNS–
Ab1, 2 μL for red NP–Ab2, ESI† Fig. S7) and measured RGB
values of the spots (Fig. 5e). Given that the entire RGB space
is not accessible with these two stains, we experimentally
determined the number of distinct colors achievable by
mixing the NP and GNS at various ratios. Included in the
figure are the RGB values for mixtures of red NP–Ab2 and
blue GNS–Ab1 spotted down on nitrocellulose as well as all
of the RGB values of test areas from the strips for the
negative control, alpha, BA.5, and BA.1. The maximum RGB
value for each immunoprobe is indicated (blue and pink
prisms). Based on the available RGB space, we estimated that
there are ∼30 distinguishable colors for a given spot, so for
two spots this yields (30)2 = 900 possible combinations. While
8-bit RGB analysis theoretically allows for finer color
distinctions, we opted for a more conservative estimate to
avoid overstating the assay's discriminatory power. Based on
the scree plot showing the cumulative percentage of the
variance as a function of the principal components (Fig. 5f),
we found that >99% of the information is contained within

two components, so that only 2 components are necessary for
discriminating the analytes. While this is a rough estimate
for the discriminatory power, it is still higher compared to
the total number of confirmed SARS-CoV-2 variants, which is
currently over 35.40,41

Chemical olfactory arrays can discriminate a large number
of closely related species by using a large array of binding
agents which possess a range of cross reactivities, where
some species will bind broadly to all analytes, and others to
only a select few. They typically rely on a single binding event
between the analyte and the immobilized sensor molecule to
induce a color change, typically employing porphyrins and
other organometallic molecules.11,39 However, for paper
immunoassays, a signal is generated upon sandwich
formation of the antigen with both with NP–Ab and the
immobilized Ab. Because there are two binding events, the
signal is the result of two different binding affinities. This
affords room for differential signals in our 2-spot array,
which has only 12 different possible combinations for
sandwich formation. Based on the estimated discriminatory
power, we believe that an extensive array of antibodies is not
necessary in order to discriminate between several variants.
Thus, the test can be quite economical, as antibodies are the
most expensive component in a lateral flow assay strip.24

Furthermore, using polyclonals for certain antibodies is
advantageous, as they can bind to a range of epitopes on the
target. Consequently, they have a higher probability of cross-
reactivity, a favorable attribute for adaptive immunoassays.
While the benefit of monoclonals is attractive due to their
high specificity, this actually can be a drawback when trying
to make an adaptive assay that can detect an emerging target,
and they would need to be combined with the use of
polyclonals. Here, because Ab1 and Ab2 are polyclonal, we
showed that they exhibited different levels of cross-reactivity
sufficient to make an array. Ultimately, determining the
number of suitable test areas with unique antibodies and
also NP–Ab conjugates is something that requires systematic
experimental investigation, where the antibodies are varied
and the ability to distinguish unknowns is quantified, and
will be subject of future studies.

Conclusions

We demonstrated an approach to make an immunoassay that
can detect a variant that was not encountered before by
adapting it to behave like a chemical olfactory array. The
assay used two different colored nanoparticles in a 2-spot
array, and readout of the colorimetric pattern was by PCA as
opposed to a binary yes/no answer based on presence of
signal. In doing so, the immunoassay could detect the
presence of an unknown in a low-cost format.

This assay was exclusively built using antibodies raised
against the alpha variant, eliminating the necessity for
antibodies tailored to each detectable variant. This
underscores the ability to repurpose reagents successfully.
Furthermore, the assay required only two different antibodies
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—one that was cross reactive, and one that was less so.
Commercial antibodies were deliberately chosen to show that
custom antibodies are not required.

While we have demonstrated repurposing antibodies in
immunoassays before, here we applied the technique to the
SARS-CoV-2 spike protein for variant discrimination.
Previously, our studies demonstrated the adaptability of
repurposing antibodies from one virus to effectively detect an
entirely different virus, e.g., repurposing dengue and Zika
antibodies to detect yellow fever NS1, or utilizing dengue
antibodies for Zika detection, and even repurposing dengue 3
antibodies to detect dengue serotypes 1–4. Notably, in all of
these instances, the targets were already identified, where the
test was trained on the targets via supervised learning. In
addition, the sequence similarities in the prior works were
comparatively lower, approximately ∼55%, ∼75%, and
∼85%, respectively.18,33 Variants of SARS-CoV-2 are more
challenging because sequence identity and similarity between
them are much higher in comparison (>95%). Taking into
consideration these prior examples, this shows that
repurposing antibodies can be successful with a large range
of sequence similarities. Future work could push the upper
and lower bounds on similarities as well as epitope mapping
to gain a fuller understanding of the mechanism, and then
extend this approach to pick up an unknown disease.

Current approaches in diagnostic development have
significant shortcomings, with major bottlenecks in antibody
production,42–44 where deployment of a point of care LFA test
can take as long as a year. This is far too long to aid in rapid
response to new diseases, which are often characterized by
large increases in cases within a timeframe of weeks. This
problem highlights the need for new ways outside of
traditional approaches to get diagnostics for emerging
diseases on the ground sooner.45 Ignoring new outbreaks or
not scanning for potential ones has dangerous
consequences.46 Past experience has shown that public
health systems need to be better prepared not just for the
next SARS-CoV-2 variant, but for the next virus, pointing to
the dire need for widespread disease surveillance.47 While
there are surveillance efforts sequencing viruses in animal
populations that can potentially induce zoonotic spillover,
these spillover events are rare, making it nearly impossible to
predict what will cause the next pandemic.48,49 Arguably, our
response to new outbreaks has been suboptimal, primarily
attributed to our inadequate preparedness for such events.50

This underscores the fact that traditional approaches, i.e.,
generating a new antibody for every new disease variant once
we detect it in circulation, are not rapid enough for an
effective response.

The approach here can offer a solution to detect an
unknown and classify it in a rapid, widely deployable format.
It has the potential to be applied to other pathogens and
evolving targets, not just viral but also bacterial targets.1

While it is probably not possible to make a single universal
immunoassay that can detect any virus, it seems plausible to
make for a broad virus type (e.g., one that encompasses

flaviviruses, another for coronaviruses, filoviruses, etc.).
Furthermore, the assay can be tailored to target things that
could potentially arise in a particular geographic region. It
should be of note that the identity of the antibodies used in
the assay may result in limitations in their range of cross
reactivities and what the ultimate assay can detect and
distinguish. Also, traditional challenges faced by paper
immunoassays such as non-specific adsorption and sample
matrix effects would still be a potential problem.

The protocol is simple to execute and results in a low-cost
assay, as it uses colorimetric/visual sensing, where readout
does not require sophisticated instrumentation and can be
via mobile phone images or desktop scanners. Moreover, the
protocol can be easily shared and adapted to whatever
reagents an end-user has, eliminating the need for
specialized reagents and antibodies that may not be currently
accessible. This renders it amenable for wide distribution,
unlike sequencing which has intensive requirements for
trained personnel, instrumentation, reagents, energy, and lab
infrastructure. Additionally, the affinity agents in the
immunoassay are not limited exclusively to antibodies; they
may encompass peptides, nanobodies, or other species that
have reasonable (∼nM) binding affinity.

Data availability

The data supporting this article have been included as part
of the ESI.† These include the Matlab script used for the PCA
of the unknowns, and data in the form of the RGB values of
the assay strips as a Microsoft Excel table.

The machine learning (ML) script was used in ref. 35
(Mata Calidonio and Hamad-Schifferli) and is available in the
ESI† for that publication.
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