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Size-related variability of oxygen consumption
rates in individual human hepatic cells†
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Andrea Rinaldo,fg Roman Stocker, h Lars Behrendt§*c and Arti Ahluwalia§*ab

Accurate descriptions of the variability in single-cell oxygen consumption and its size-dependency are key

to establishing more robust tissue models. By combining microfabricated devices with multiparameter

identification algorithms, we demonstrate that single human hepatocytes exhibit an oxygen level-

dependent consumption rate and that their maximal oxygen consumption rate is significantly lower than

that of typical hepatic cell cultures. Moreover, we found that clusters of two or more cells competing for a

limited oxygen supply reduced their maximal consumption rate, highlighting their ability to adapt to local

resource availability and the presence of nearby cells. We used our approach to characterize the

covariance of size and oxygen consumption rate within a cell population, showing that size matters, since

oxygen metabolism covaries lognormally with cell size. Our study paves the way for linking the metabolic

activity of single human hepatocytes to their tissue- or organ-level metabolism and describing its size-

related variability through scaling laws.

Introduction

Biological variability (i.e., the fluctuation of physiological traits
among individuals of the same population, also referred to as
biological noise) is ubiquitous and can impact phenomena
such as metabolic scaling and resilience to environmental
perturbations.1,2 Often, variability is not confined to one
parameter but instead is characterized by an interplay between
multiple variables within an organism or ecosystem. For
instance, it has been suggested that the covariance between the

size and metabolism of individuals influences the ability of
organisms to react to external stimuli (e.g., toxins or drugs) and
may explain patterns in homeostatic control.1,3,4 Joint
variations between physiological parameters can also impact
the susceptibility of organisms to diseases and affect their
overall health.5 Biological variability has been extensively
investigated at the molecular level (transcription and
expression), but less so at cellular and organismal levels.
Investigating single cells, instead of tissues or organs, offers
the opportunity to characterize variability between individuals
to infer dynamics occurring at higher scales of complexity.
Single cells also provide a suitable testbed to determine
intrinsic size-related variability and its role in metabolic
scaling, which has been highlighted as a criterion for
translating biological parameters from micro-scale in vitro
systems to in vivo contexts.1,6,7

As oxygen (O2) is at the heart of aerobic metabolism,8,9

several studies have measured O2 consumption in individual
mammalian cells.10–13 However, the accuracy, reproducibility,
and throughput of O2 measurements at this scale remain
challenging. Mammalian cells possess the ability to modulate
their O2 consumption according to its availability, a process
that, in turn, is influenced by numerous factors (e.g., height
of culture medium and cell density).14,15 However, many
studies assume that cells possess a constant (zero-order)
consumption rate which depends only on cell phenotype. The
O2 consumption rate (Rcell, in mol s−1) of a single cell as a
function of the surrounding O2 concentration (c, in mol m−3)
is typically represented by the Michaelis–Menten (MM)
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model16–18 via two parameters: the maximal consumption rate
(sOCR, in mol s−1) and the MM constant (kM, in mol m−3).

Rcell ¼ −sOCR c
kM þ c

(1)

kM corresponds to the concentration at which the consumption

rate is half of its maximum value. At high O2 levels (c ≫ kM),
the cellular consumption rate saturates at its maximum value
(i.e., Rcell ≅ −sOCR). On the other hand, if c ≪ kM, the cellular
uptake rate depends on the O2 concentration as

Rcell ¼ − sOCR
kM

c. Hence, a cell with a low kM value consumes O2

maximally even at low concentrations, whereas a cell with a
high kM has a low O2 uptake efficiency (i.e., O2 levels must be
high to achieve near-maximal consumption rates).

Despite the widespread application of eqn (1) in predicting
how cells adapt to ambient O2, MM parameters for mammalian
cells have rarely been reported. Some studies have investigated
cell cultures either as 2-dimensional (2D) monolayers or
3-dimensional (3D) constructs (herein referred to as aggregates,
independent of dimensionality), but to date MM parameters
for individual mammalian cells have not been measured. Here
we present a systematic approach to conduct single-cell
measurements of O2 consumption as described by the MM
model. Our primary objective was to estimate the MM
parameters (i.e., sOCR and kM) and explore their size-related
variability in a human hepatic cell line, HepG2.19 Using custom
glass microwell devices coated with luminescent O2-sensitive
optode materials,20,21 we isolated single cells or clusters of a
few cells (from two to seven units confined in the same
microwell but not necessarily adjacent, unlike in 2D or 3D
aggregates) under precisely controlled experimental conditions.
Automated fluorescence microscopy was used to perform time-
series imaging of the wells to extract cell sizes and O2

concentration profiles from individual wells. A multiparameter
identification procedure22 was applied to determine MM
parameters from these profiles. Through this approach, we
were able to estimate single-cell size and MM parameters for

O2 consumption as a joint probability distribution and so
describe their correlated variability.

This quantitative description of single-cell O2 consumption
allows probing the biophysical basis of cooperative metabolic
dynamics, which are only detectable at higher levels of
organization. Furthermore, the identification and
characterisation of the covariation of size and O2 consumption
parameters for single cells can help in understanding how these
dynamics are linked to behaviours that emerge in tissues and
organs. It also provides a means for investigating the origins of
allometric scaling between size and metabolic rates of whole
organisms, a subject of long and wide-ranging debate.3

Materials and methods
Microwell devices for single-cell isolation and oxygen sensing

The microwell array consists of a standard borosilicate glass
slide with geometrically arranged microwells (100 columns ×
250 rows, n = 25 000 microwells) fabricated via standard UV
lithography and dry etching techniques. It was custom-built
to allow the isolation of single cells or small clusters of cells
in each microwell (see the schematic in Fig. 1 and S2†). The
microfabrication procedure for this device is summarised in
the ESI† (Fig. S1), and Table S1† reports relevant technical
features of the dry etching process and geometric
specifications of the array customized to match the size of
human hepatic cells and to minimize optical and diffusional
crosstalk between microwells.

Optode sensor composition, deposition and calibration

Composition. Quenching-based luminescent optode
materials were chosen for O2 sensing as they are characterized
by a high spatial resolution and short response time, as
required for single-cell O2 consumption rate
measurements.23,24 The deposited optode material was
composed of platinum(II)-5,10,15,20-tetrakis-(2,3,4,5,6-penta-
fluorophenyl)-porphyrin (PtTFPP), polystyrene (PS) and
MACROLEX® yellow 10GN (MY) dissolved in toluene. Here,

Fig. 1 Schematic of the assembled glass microfluidic device. (A) Microwells coated with optode chemistry are seeded with hepatic cells
suspended in culture medium and can contain a single cell or a few cells. Subsequently, the device is overlaid with a glass coverslip coated in
heavy mineral oil, which reduces lateral (i.e., inter-well) O2 diffusion so that the microwells effectively reach hypoxic conditions. (B) Once sealed,
the system is exposed to short pulses of UV light and the resulting luminescence emission from optodes is detected over time to derive O2

concentrations across microwells. Inset: a typical O2 concentration profile obtainable by monitoring optode response in an individual microwell
where at least one cell is settled.

Lab on a Chip Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
Ju

ly
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

/2
0/

20
26

 2
:0

1:
36

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4lc00204k


4130 | Lab Chip, 2024, 24, 4128–4137 This journal is © The Royal Society of Chemistry 2024

PtTFPP is the O2-sensitive dye whereas MY acts as a reference
(i.e., O2-insensitive) dye. Both dyes are excited using UV light (λ
= 396 nm) and emit red luminescence (PtTFPP, λ ≥ 650 nm) or
green luminescence (MY, λ = 507 nm) in an O2 concentration-
dependent manner24 or at a constant intensity, respectively.
Since fluctuations of the emission intensity due to
environmental factors independent of the O2 concentration
affect both dyes, while only PtTFPP is sensitive to O2 level
variations, the ratio of red-to-green emission intensities (R)
represents a robust O2-dependent signal, with minimal noise
from environmental artefacts (e.g., sensor bleaching).25,26 With
appropriate calibration, R thus allows for relating the signal to
O2 content within individual microwells.

Deposition. To deposit the optode material, a 10% w/v
solution of PS in toluene containing 0.15 g L−1 of both MY
and PtTFPP was spread on the glass microwell array via a
thin film applicator. The homogeneity of the optode coating
was assessed by profilometry (see ESI1† for details), which
revealed that it had a nominal thickness of 5 μm and was
most uniform in the central region of the array. Therefore,
we prioritized this central area (containing at least 200
microwells) for seeding cells and investigating their O2

consumption. As the deposited optode material is
hydrophobic, the array was briefly treated with O2 plasma
(Zepto, Diener electronic, Ebhausen, Germany) for 10 s at
0.4 mbar and 50% intensity to promote filling of microwells
with culture medium and assist in cell adhesion. This
plasma treatment did not affect the response of optode
materials to O2. To avoid undesired background
fluorescence, the optode material deposited outside of the
microwells was removed using a scalpel. This process
resulted in two regions with different wettability, i.e., (i)
hydrophilic microwells containing a layer of optode material
(yellow regions in Fig. 2A) surrounded by (ii) hydrophobic
glass (gray regions in Fig. 2A).

Calibration. Following optode deposition, a calibration
curve was constructed by averaging data acquired from 216
central microwells. To perform calibration measurements,
the optode-coated array was placed into a gas-impermeable

chamber with a transparent window for image acquisition.
The chamber was placed in a microscopy incubator (Okolab
srl, Pozzuoli, Italy) maintained at 37 °C, to avoid temperature
fluctuations which might influence optode responses (Fig.
S2†). Optode emissions were recorded via a fully automated
fluorescence microscope (Nikon Ti2-E, Nikon, Tokyo, Japan)
equipped with an RGB camera (DFK 33UX264 colour
industrial camera, The Imaging Source) and a LED excitation
light (Spectra X, Lumencor, OR, USA).

Calibration was performed introducing gases at five
different levels of O2 saturation by combining compressed air
and nitrogen (N2) through a gas mixer set up (Red-y smart
series mass flow meters, Voegtlin GmbH, Muttenz,
Switzerland). This system enabled modulation of the partial
pressures of the mixture components by tuning the flow rate
from their sources. The stability of air saturation within the
sealed chamber was verified by monitoring it with a
calibrated optical microsensor (OXR250, Pyroscience GmbH,
Aachen, Germany). Images of single microwells were acquired
with a 40× objective. All other imaging parameters were set
as listed in Table 1 for monitoring cellular O2 consumption.
A simplified form of the two-site model (eqn (2))27–29 was
then fitted to collected datapoints in order to derive average
calibration parameters for the specific array – i.e., the Stern–

Fig. 2 O2 sensing in glass microwells. (A) Brightfield image of individual microwells with deposited optode chemistry (yellow) in the custom-built
glass microwell array. (B) Corresponding luminescent response (red) upon exposure to excitation light. (C) Image of a single hepatic cell in a 100
μm diameter microwell.

Table 1 Experimental parameters for O2 sensing. Parameters refer to the
Nikon Ti2-E automated fluorescence microscopy system used for O2

consumption measurements

Parameter Numerical value

Magnification 10×
Large image size (n × m) 6 × 6
Time scale (tend) 1 h
Time resolution (Δt) 20 s
Excitation light wavelength 396 nm
Excitation light intensity 20% of maximum intensitya

Excitation duration 50 ms

a To achieve optimal saturation of the sensing dye, the intensity of
the excitation light was coherently adjusted for each round of
calibration and subsequent experiment.

Lab on a ChipPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
Ju

ly
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

/2
0/

20
26

 2
:0

1:
36

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4lc00204k


Lab Chip, 2024, 24, 4128–4137 | 4131This journal is © The Royal Society of Chemistry 2024

Volmer (SV) constant24 of the primary site for O2 quenching
on the dye (kSV, expressed in 1/% air sat.) and the fractional
contribution ( f ) of such primary site to the red-to-green ratio
in totally anoxic conditions (R0, measured by exposing the
device to pure N2).

R
R0

¼ 1þ 1
1þ kSVO2

− 1
� �

f (2)

In eqn (2), O2 (% air sat.) denotes the O2 saturation level in
the gas mixture. Refer to the ESI† (section ESI2) for further
details on the calibration model.

Calibration curves were also estimated in liquid phase
(i.e., cell culture medium) and compared to those obtained
for corresponding microwell arrays using gases (data not
shown). No significant differences emerged between liquid
phase and gas phase calibrations, and hence we routinely
relied on the more convenient gas calibration prior to each
experiment. Further, we ensured that optode bleaching was
negligible in the timeframe of our single-cell O2 consumption
tests (see ESI3† for details). Finally, experiments were
conducted to determine the extent of optical crosstalk
between microwells and to define inter-well distance and cell
occupancy to minimize it (see ESI4† for details).

Single-cell oxygen measurements

Cell preparation. Human hepatic cells from hepatocellular
carcinoma (HepG2 cells, ATCC, Manassas, Virginia, USA)
were maintained in T25 flasks (Sarstedt, Numbrecht,
Germany) under standard conditions (37 °C, 95% humidity,
5% CO2). Fresh Dulbecco's Modified Eagle Medium (DMEM –

Sigma-Aldrich, St Louis, Missouri, USA) supplemented with
10% v/v foetal bovine serum (FBS – Sigma-Aldrich) was
supplied every 3 days. Before experiments, cells were
detached with trypsin–EDTA (Lonza, Basel, Switzerland).

After optode calibration, the central area of the microwell
array was overlaid with a thick poly-dimethyl-siloxane (PDMS)
frame into which 500 μL of cell suspension in DMEM was
pipetted. This allowed control of the seeding density and
ensured that cells were confined to the region where the
optode coating was determined to be homogeneous.
Experiments were performed with different seeding densities,
ranging from 2 × 103 cells per mL up to 106 cells per mL. The
former resulted in an optimal trade-off between an
acceptable number of microwells containing single cells and
minimal lateral O2 diffusion between neighbouring
microwells. Following cell seeding, the device was incubated
overnight to allow cell adhesion to the microwells (Fig. 2C).

Monitoring single-cell consumption. Immediatly before O2

consumption experiments, the culture medium within the
PDMS frame was changed and 60 μL of fresh DMEM was
dispensed into the microwells. Then, the PDMS frame was
removed and microwells seeded with cells were covered with
a coverslip, which was affixed to the array via both paperclips
and magnets (Fig. S1†). A thin coating of heavy mineral oil
(Sigma-Aldrich) was applied to the underside of the coverslip

to isolate the microwells from environmental O2 (Fig. 1) and
to define the initial and boundary conditions of the system.
Mineral oil has a significantly lower O2 diffusion coefficient
than aqueous media30 and effectively seals off the array from
ambient O2, allowing a hypoxic steady state to be reached – a
necessary condition to properly characterize the MM
consumption kinetics, particularly kM (see subsection
Modelling single-cell consumption). The ratio of mineral oil to
cell culture media was optimized to ensure maximal phase
separation and minimize lateral (i.e., inter-well) O2 diffusion
and, at the same time, guarantee that cells are exposed to the
medium phase within microwells (see ESI5† for details).
Image acquisition was started immediately after device
assembly to ensure rapid monitoring of O2 dynamics (i.e.,
from the initial condition of maximum O2 in the medium to
the achievement of stationary hypoxia, defined as c ≤ 0.04
mol m−3 (ref. 31)). Measurement duration and sampling
frequency were set according to instrument limits and
modelling considerations (see subsection Modelling single-cell
consumption). The O2 dynamics associated with cell
consumption were measured by repeatedly scanning the
central area containing cells, using large area scanning
mode. Briefly, this mode allows for the acquisition of a
matrix of images (referred to as large image) covering 216
microwells, that are serially acquired according to a raster
scanning path defined by means of the spatial coordinates of
its centroid. The large image acquisition parameters are
listed in Table 1.

Following each experiment, 30 μL of trypan blue dye
(0.4% w/v solution, Sigma-Aldrich) was gently pipetted
through the gap between the microwell array and the
coverslip. Trypan blue was left to diffuse over the array for
about 10 min, then a brightfield large image was acquired
setting the same scanning pathway as used during
experiments. This procedure enabled identifying Ncell in each
microwell and estimating cell size (i.e., the projected area)
using ImageJ.32

Determination of concentration profiles. Time series of
large images were processed exploiting algorithms purposely
developed in Matlab (R2021b, MathWorks, Massachusetts,
USA). Briefly, each RGB image was segmented by means of
customized thresholding to distinguish PtTFPP-decorated
microwells from the background. This allowed for the
computation of the pixel-by-pixel R. Finally, for each
microwell, R profiles were determined over time by averaging
over pixels belonging to the same microwell. This allowed for
conversion of R signals into O2 concentrations using
previously established calibration curves.

Modelling single-cell consumption. Leveraging analytical
considerations and bearing in mind that neither cell location
nor the number of cells per well (Ncell) can be determined a
priori, we established the duration (tend) and sampling
frequency ( f ) of measurements based on the experimental
setup. From a modelling point of view, each microwell is a
region of the space governed by the reaction–diffusion
equation (eqn (3)):
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∂c
∂t ¼ D∇2cþ R (3)

where c = c(x, y, z, t) (mol m−3) is the O2 concentration field
in the microwell, D (m2 s−1) is the diffusion constant of O2

and R = R(x, y, z, t) (mol m−3 s−1) is the O2 production/
consumption rate per unit volume. In the case of
consumption, R is negative and can be described as a
function of the single-cell MM consumption rate (Rcell)
defined in eqn (1). Thus:

R = ρcellRcell (4)

where ρcell (cells per m3) is the cell density in the microwell
volume.

Given that cell and microwell sizes are comparable, and
assuming that O2 consumption is uniform in the cell volume
– and hence in the well domain – the cell density can be
expressed as ρcell = Ncell/Vwell (with Vwell indicating the
microwell volume, Table S1†).

As the heavy mineral oil layer is considered impermeable
to O2, there is no flux at the oil/air boundary, likewise at the
microwell walls or – given the homogeneity of consumption
in the volume – within the domain. These assumptions imply
that the O2 concentration field in the microwell depends only
on time (c(x, y, z, t) = c(t)), and the governing equation can be

simplified as
∂c
∂t ¼ R. In these conditions, a suitable duration

for monitoring O2 consumption to hypoxia within each
microwell was estimated based on the characteristic reaction
time, τr:

τR ¼ kM þ c0
ρcell × sOCR

(5)

where conditions of O2 saturation (i.e., c = c0, see Table 2)
and Ncell = 1 were assumed. These are cautious choices
leading to the longest τr possible for the system, guaranteeing
that the consumption dynamics are fully captured. Typical
literature values were then used for sOCR and kM,

6,18,33,34

giving τr = 678.4 s. Thus, experiments were set with tend ≥ 5τR
and f ≥ 10/τR.

Kinetic parameter identification

Experimentally measured O2 concentration profiles
constituted the input datasets for the multiparameter
identification algorithm reported in.22 Briefly, values of sOCR
and kM were estimated comparing the O2 dynamics measured
in each microwell containing cells to those predicted in silico
by modelling the system according to eqn (3) and (4). A

model governed by the dimensionless form of eqn (3) was
iteratively solved for each specific microwell, taking Ncell from
the trypan blue-stained image and parameters listed in
Table 2 into account.

∂γ
∂T ¼ − τR × ρcell × sOCR × γ

c0 kM=c0 þ γð Þ (6)

In eqn (6), γ = c/c0 and T = t/τR are the non-dimensional
concentration and time, respectively. Considering eqn (5), the
dimensionless equation implemented for simulating O2

consumption in the well is the following:

∂γ
∂T ¼ −Ncell

kM=c0 þ 1ð Þγ
kM=c0 þ γð Þ (7)

The multiparameter identification algorithm described in ref.
22 was used to estimate the MM parameters through eqn (7).
Although the equation does not explicitly depend on sOCR,
the latter determines the time scale of the solution, given the
definition provided for the dimensionless time T.

Statistical analysis and software

Numerical values of consumption parameters identified for
microwells as a function of Ncell were compared by means
of a non-parametric Kruskal–Wallis test and pairwise post
hoc Dunn's multiple comparisons. Non-linear correlation
(i.e., non-parametric Spearman coefficient) of sOCR and kM
with respect to Ncell as well as with each other was also
tested. Overall statistical differences between the MM
parameters estimated here and typical literature values were
assessed for both sOCR and kM using a non-parametric
Wilcoxon signed-rank test. Furthermore, the joint
distribution of single-cell size and sOCR was tested for both
normality and lognormality via the Henze–Zirkler
multivariate normality test performed on the original and
log-transformed dataset, respectively.

Image processing, simulation of O2 transport and
consumption and multiparameter identification were
implemented in Matlab (R2021b), while GraphPad Prism
(version 7, GraphPad Software, California USA) was used to
perform all statistical analyses.

Results

Using glass microwell devices (Fig. 2A) sealed via heavy mineral
oil in conjunction with O2 sensitive optode chemistry (Fig. 2B)
we measured a total of 1080 microwells across five independent
experiments. Of these, 227 microwells (∼21%) contained at

Table 2 Initial condition and range of parametric sweep implemented for simulating O2 dynamics within a microwell where Ncell cells have settled

Parameter Numerical value Description

c0 0.2 mol m−3 (ref. 18) Initial condition of O2 saturated-culture medium
sOCR [10−18; 10−16] mol s−1 per cell (deduced from ref. 18 and 35) Initial range of parametric sweep
kM [10−3; 10−1] mol m−3 (deduced from ref. 17, 18 and 35) Initial range of parametric sweep
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least one hepatic cell whose O2 consumption dynamics (Fig. 3A)
could be recorded without interference from neighbouring wells
(see ESI,† section ESI4). The distribution of the number of cells
per well (or occupation, Ncell) is reported in Fig. 3B. Notably, in
more than half of the cases in which cells were present in a
microwell (i.e., 119 measurements, ∼11% of all investigated
microwells), a single cell was probed (Fig. 2C), while a
maximum of seven cells per well was recognized only once.

Oxygen consumption kinetics and number of cells per well

O2 profiles determined from individual or multiple cells were
used to compute sOCR and kM through a multiparameter
identification algorithm.22 Both MM parameters are reported
as overall probability distributions (Fig. 3C and E) and as a
function of Ncell (Fig. 3D and F). A Kruskal–Wallis test
highlighted significant differences among sOCR values
determined for microwells containing different numbers of

Fig. 3 MM kinetic parameters in isolated hepatic cells determined through a multiparameter identification procedure. (A) O2 concentration profiles
measured in a microwell array. (B) Occupation (Ncell) frequency of cells in microwells. (C) Relative frequency of sOCR in occupied microwells. (D)
Correlation between the number of cells per microwell and the corresponding sOCR value (r = −1 with p = 0.0028), over all occupied microwells. The
black dashed curve is a weighted fit of results (one phase exponential decay, R2 = 0.9722). Pairwise statistical differences computed using Dunn's post
hoc multiple comparisons are also reported (* p < 0.05, ** p < 0.005). (E) Relative frequency of kM in occupied microwells (expressed in logarithmic
scale). (F) No correlation was observed between kM and the number of cells per well (r = −0.8286 with p = 0.0583). The vertical dark green dashed lines
in (C) and (E) denote median literature values of sOCR and kM,

15,18,22,33,34 respectively (see Table 3 for a complete list of reported values), while the solid
black line in (E) indicates the O2 saturation level in water (c0). In (D) and (F), data are reported as median ± range.
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cells (p < 0.0001). Specifically, we found that sOCR decreases
with increasing Ncell (Fig. 3D, Spearman coefficient r = −1
with p = 0.0028); this suggests that cells adjust their sOCR in
the presence of neighbouring cells sharing the same
microenvironment. Notably, although our sOCR values are
similar to previous estimates for hepatocytes cultured in a
hollow fibre bioartificial liver,34 they are significantly lower
(median sOCR = 1.1 × 10−17 mol s−1 per cell) than most of
those reported in the literature for hepatocyte monolayers or
3D aggregates (median sOCR = 5.5 × 10−17 mol s−1 per cell,
Wilcoxon test, p < 0.0001, Fig. 3C).6,15,18,22,33,36,37

Our measurements of kM show a wide distribution,
covering three orders of magnitude (Fig. 3E), with a
significantly higher median (5.1 × 10−2 mol m−3) compared to
values previously reported for 2D and 3D hepatic constructs
(6.2 × 10−3 mol m−3 – Wilcoxon test, p < 0.0001).15,22

Approximately 34% of the measured kM values are
comparable to or even higher than the O2 saturation level in
water (c0 = 0.21 mol m−3), suggesting that, once isolated,
about a third of the cells do not approach their maximal
consumption rate but instead follow first order kinetics. Due
to the large variability of kM, neither a significant correlation
with Ncell (Spearman coefficient r = −0.8286 with p = 0.0583)
nor statistical differences among its medians for different
Ncell values (Kruskal–Wallis test, p = 0.2075) were detected
(Fig. 3F).

To help distinguish mutual dependencies of sOCR and kM,
MM parameters for all microwells investigated are presented
in a scatter plot (Fig. 4A). Data points referring to microwells
populated by the same number of cells are clustered along
the sOCR axis, while no noticeable separation among groups
of points corresponding to different values of Ncell with
respect to kM is observed. A correlation analysis suggests that
the two MM parameters depend on each other (Spearman

coefficient r = 0.5864 with p < 0.0001), albeit less
significantly than in previous observations for 2D and 3D
aggregates of hepatic cells (e.g., r = 0.7857, ref. 22). For
comparison, bulk values for the two kinetic parameters,
averaged over several cells as reported in the
literature,6,15,18,22,33,34,36,37 are also indicated in Fig. 4A and
listed in Table 3.

Joint measurements of single-cell size and metabolism

Immediately after each experiment, HepG2 cells were stained
with Trypan Blue, which allowed determining single-cell sizes
from projected cell areas. From this data, we estimated the
joint distribution of single-cell size and sOCR (Fig. 4B). The
Henze–Zirkler test (α = 0.05) demonstrated that the sample
can be described by a lognormal joint probability density
function (p = 0.0633). Further confirmation of lognormality
was provided by independent optical measurements of dry
mass of individual HepG2 cells – performed by means of
quantitative phase imaging – which also displayed a marginal
distribution with a lognormal shape (see ESI6†).

Discussion

Here we report on the characterization of O2 metabolism in
single human hepatic cells through an integrated in vitro–in
silico approach. One or a few cells were seeded in
microfabricated microwells coated with O2-sensitive optodes
and sealed from ambient air, enabling the precise
measurement of O2 consumption over time. These data were
then exploited in a multiparameter identification algorithm22

to characterize the cellular O2 consumption kinetics
according to the MM model (eqn (1)). As shown in Fig. 3C
and Table 3, we demonstrate that isolated HepG2 cells have
lower sOCR values compared to previously reported ones for

Fig. 4 Mutual dependency of MM parameters and the size-related variability of O2 consumption in single human hepatic cells. (A) Scatter plot of
measured sOCR and kM values. The Spearman coefficient indicates that the two parameters are weakly correlated (r = 0.5864). Each data point is
denoted by a marker having shape and colour which depend on the corresponding value of Ncell for that data point. The green plus15 and the dark
blue cross22 are median bulk values from the literature (see Table 3). Black vertical lines indicate sOCR values from previous studies assuming
zero-order kinetics for O2 consumption (dotted: ref. 36, solid: ref. 37, dashed: ref. 34). Note that kM values are reported in logarithmic scale. (B)
Joint distribution of single-cell size (i.e., projected area) and O2 metabolism (i.e., sOCR), expressed as relative frequency of occurrence.
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2D or 3D aggregates of the same cell type in comparable
environmental conditions (except for ref. 34), including those
obtained in our previous studies.15,22 Interestingly, the
sensing principle (i.e., fluorescence quenching) exploited in
ref. 15 and 22 is the same as that of the optodes used here,
while the other data in Table 3 refer to O2 concentration
measurements performed using commercial electrochemical
sensors (e.g., Clark-type electrodes). This suggests that cells
change their O2 consumption when isolated as individuals or
in clusters of a few cells, reducing their maximal
consumption rate (i.e., sOCR). Furthermore, the decrease in
sOCR with increasing microwell occupancy (Ncell) shows that
changes in metabolism occur as a function of both the local
O2 concentration – as per the MM equation – and the
presence of neighbouring cells (Fig. 3D) – manifested as a
reduction in sOCR. This behaviour mirrors observations on
hepatocytes in 2D and 3D aggregates and could be
interpreted as an effect of cooperation between individual
cells which are not aggregated but coexist in a
microenvironment where a limited resource is shared.
However, contrary to our previous observations for hepatic
cells in 2D and 3D, the adaptive behaviour – that is the
modulation as a function of the number of neighboring cells,
if any – in isolated cells appears not to affect the O2 uptake
efficiency, since kM is not dependent on Ncell (Fig. 3F).

In fact, the correlation between the two parameters is
weak (Fig. 4A) and less significant than in 2D or 3D
aggregates.22

It is worth noting that the identification of kM is
influenced by the ability of the microwell system to effectively
achieve hypoxic steady-state conditions. Thus, although the
optodes are highly sensitive at low O2 concentrations (see
ESI2†), even slight variations of stationary O2 levels can
influence the estimation of kM and widen its dispersion.
Indeed, precisely characterizing kM is a well-known challenge
due to the sensitivity of estimated values to experimental
conditions,22,38,39 which might ultimately mask potential
trends. Nonetheless, the estimates of sOCR reported here are
statistically robust and not impacted by the uncertainty in
kM, as shown in Fig. 3D.

In ref. 22 we showed that the MM parameters can be
combined to define an uptake coefficient – a measure of the

surrounding area per unit time in which a cell is able to
perceive and consume O2 – which can be related to a proximity
index – PI, expressing the extent of cell packing within the
aggregate.22 The uptake coefficient increases to a saturating
threshold along with PI in cell aggregates. In the microwells, in
the limit PI → 0 for a single cell, while it is of the order of
magnitude of 10−3 μm−1 for cell clusters (see SM7 for the
analytical details), leading to uptake coefficients coherent with
the values of sOCR and kM we report here (Fig. 3, Table 3). This
suggests that the lower values of sOCR with respect to cell
aggregates are a consequence of limited packing and inter-
individual interaction (i.e., aggregation) in microwells.

Together with our previous findings,22 this study lays the
foundations toward a refinement of the current formulation
of the MM model, involving the mutual dependency of sOCR
and kM through the extent of cell packing (i.e., PI). This
might be beneficial for predicting O2 metabolism in in vitro
liver systems and consequently promote the design of tissue
models with enhanced resemblance to their in vivo
counterpart. Furthermore, these results may help in the
mechanistic explanation of liver zonation40 and provide
useful insights for the development of novel and more
effective therapeutic treatments for hepatic diseases.

The throughput of our approach also allowed us to
measure the correlated variability of cell size and maximal O2

consumption rate (i.e., sOCR) and describe their joint
frequency distribution (Fig. 4B). This outcome successfully
overcomes the challenge of jointly investigating individual
size and metabolism, a hurdle previously encountered by our
group and others.3 Although further experiments are required
to fully capture the covariance between single-cell size and O2

consumption,1 our study provides the first size-metabolic rate
distribution based on joint experimental datasets reported so
far. Notably, our analysis demonstrates that the sample is
extracted from a population characterized by a lognormal
multivariate function. Lognormally-distributed marginal
probabilities have been commonly observed for organismal
sizes,41 but they have not been explicitly reported for
metabolic rates. Their covariation demonstrates that size is a
determinant of O2 consumption in single cells. The
lognormality suggests that most cells are relatively small and
typically associated with low values of sOCR, while larger

Table 3 Values of sOCR and kM from previous studies as bulk averages of hepatic cell aggregates. Data are expressed as mean ± standard deviation.
For consistency with the literature, values from this and our previous works are reported using the same statistics. For studies investigating different cell
densities,15,22 values corresponding to the median cell density are reported. For references which consider zero-order consumption kinetics,33,34,36,37 kM
values are not applicable (NA)

Aggregate type sOCR (×10−18 mol s−1 per cell) kM (×10−3 mol m−3) Reference

Isolated single cell 13.35 ± 10.05 76.40 ± 52.60 This study
Cell-laden hydrogel (3D) 69.00 ± 0.15 6.20 ± 0.06 15
Cell monolayer (2D) 43.85 ± 27.41 23.50 ± 2.20 22
Cell-laden spheroid (3D) 78.07 ± 11.45 3.78 ± 1.52 22
Cell-loaded hollow fibers (bioartificial liver) 13.00 ± 5.89 NA 34
Cell monolayer (2D) 55.00 ± 9.85 NA 33
Cell-laden hydrogel (3D) 24.00 ± 7.13 NA 36
Microcarrier (3D) 75.00 ± 18.68 NA 37
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cells are less frequent and unlikely to consume O2 rapidly.
This result is also supported by previous experimental
investigations on eukaryotic cells,42–44 highlighting that there
exists an optimal range of sizes which allows for optimized
single-cell metabolic activity. This implies that – although the
mitochondrial count per cell has been reported to increase
linearly with size44 – the largest individuals within a cell
population are less efficient from a functional point of view
and hence rarely observable.

Characterizing the covariance of single-cell size and
metabolic parameters – as achieved here – is crucial to
comprehensively describe the O2 consumption dynamics of
human hepatocytes in isolation. It also paves the way to link
these dynamics to the tissue or organ levels and to interpret
behaviours emerging at higher scales such as cooperation or
size-related (allometric) scaling. A direct application of this
work is the development of engineered cellular systems capable
of recapitulating the heterogeneity of single-cell metabolic
phenotypes. This may enhance precision medicine approaches,
drug development strategies or (eco)toxicological assessments.
Besides the biomedical field, the proposed methodology is also
of general interest as it provides a powerful framework for
systematically characterizing O2 metabolism and its size-
related fluctuations in other single-cell scenarios, ranging from
the photosynthetic activity of marine microorganisms to the
evaluation of the impact of chemicals or environmental
stressors on single-cell respiration.

Data availability

All the data supporting this manuscript, the source code of
the multi-parameter identification algorithm and scripts for
statistical analysis are available upon reasonable request to
the corresponding authors.
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