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Deep learning unlocks label-free viability
assessment of cancer spheroids in microfluidics†
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Despite recent advances in cancer treatment, refining therapeutic agents remains a critical task for

oncologists. Precise evaluation of drug effectiveness necessitates the use of 3D cell culture instead of

traditional 2D monolayers. Microfluidic platforms have enabled high-throughput drug screening with 3D

models, but current viability assays for 3D cancer spheroids have limitations in reliability and cytotoxicity. This

study introduces a deep learning model for non-destructive, label-free viability estimation based on phase-

contrast images, providing a cost-effective, high-throughput solution for continuous spheroid monitoring in

microfluidics. Microfluidic technology facilitated the creation of a high-throughput cancer spheroid platform

with approximately 12000 spheroids per chip for drug screening. Validation involved tests with eight

conventional chemotherapeutic drugs, revealing a strong correlation between viability assessed via LIVE/

DEAD staining and phase-contrast morphology. Extending the model's application to novel compounds and

cell lines not in the training dataset yielded promising results, implying the potential for a universal viability

estimation model. Experiments with an alternative microscopy setup supported the model's transferability

across different laboratories. Using this method, we also tracked the dynamic changes in spheroid viability

during the course of drug administration. In summary, this research integrates a robust platform with high-

throughput microfluidic cancer spheroid assays and deep learning-based viability estimation, with broad

applicability to various cell lines, compounds, and research settings.

Introduction

Breast cancer is the leading type of cancer among women in the
USA, and the second leading cause of cancer-related deaths
among women.1 While surgical removal is beneficial, adjuvant
chemotherapy is crucial in achieving cancer-free status and

improving survival rates for breast cancer patients. However,
breast cancer is notorious for its ability to become resistant to
drugs.2 Therefore, identifying new compounds for either single
or combined use has become a prominent focus in breast
cancer research.3 As tumor cells in human bodies develop into
three-dimensional (3D) structures, the conventional cell culture
methods in dishes or plates are inadequate to accurately
recapitulate the complex conditions of real tumors, due to the
presence of tissue hypoxia, nutrient deprivation, and acidic
environment in the central regions of tumors.4–7 The physical
barrier in such environments results in a concentration
gradient, leading to poor drug penetration during anti-cancer
drug administration. Moreover, research has indicated that
cancer cells tend to remain dormant in the core of the tumor
and exhibit stem cell-like properties such as the ability to resist
treatment and relapse.8–11 Hence, resistance to drugs can occur
in animal or human models, despite demonstrating inhibitory
effects on tumor cells in two-dimensional (2D) cell cultures.

There are various 3D cell culture technologies that are
currently available in laboratories and on the market. The
hanging drop culture method suspends cells in small droplets
that are hung upside down from a culture dish lid.12–15 The
droplets are formed by carefully pipetting a small volume of cell
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suspension onto the lid of the culture dish. The surface tension
of the liquid in the droplet allows it to hang in place, with the
cells settling at the bottom of the droplet due to gravity and
aggregating to spheroids. Despite its effectiveness, the hanging
drop method can be limited by the need for careful handling
and evaporation-induced osmotic pressure on the spheroids.
One alternative approach to 3D culture is to embed cells in a
hydrogel matrix, which can provide a more physiologically
relevant environment that mimics the extracellular matrix
in vivo.16,17 However, this method can also have some
limitations. Nutrient exchange through the hydrogel can be
slow, which can limit the size of the resulting spheroids and
potentially affect their reproducibility. Another commonly used
approach for 3D culture involves utilizing a low-attachment
surface. Such a surface may be treated with a hydrophilic
substance to decrease cell adhesion. One way to achieve this is
by coating the surface with materials like poly(ethylene glycol)
(PEG),18 poly(hydroxyethyl methacrylate) (pHEMA),11,19,20 or
poly(oxyethylene) (POE) triblock polymer (Pluronic F108).21–23

By preventing cell adhesion on the coated substrate, cells will
aggregate and form 3D spheroids, which can be used for
applications such as drug screening and tissue engineering.

In addition to creating a non-adherent environment for cell
aggregation, the precise formation of uniform spheroids from a
small number of cells is another challenge. The conventional
low-attachment plate method leads to the random generation of
spheroids with different sizes throughout the well, resulting in
unreliable results due to the significant impact of spheroid size
on drug response.24,25 Microfluidics is an innovative and potent
tool for high-throughput drug screening as it enables precise
manipulation of cells in a controlled 3D environment.26–35

Thousands of micro-chambers on a single chip can host
spheroids simultaneously for high-throughput drug screening.36

Additionally, the spontaneous loading of cells into all micro-
chambers with good uniformity significantly reduces labor
intensity and improves efficiency.

Although many challenges of high-throughput 3D cancer
spheroid culture for drug screening have been addressed, there
is still a significant issue with reliable and effective readout of
the outcomes. Commonly used assays to measure cell viability
and proliferation after treatment with chemical or physical
stimuli can carry potential cytotoxicity and may lead to
inconsistent and inaccurate results. Specifically, the BrdU assay
can cause DNA damage,37 live/dead staining is cytotoxic,38,39

and the firefly luciferase assay requires cell lysis, which may
lead to confounding experimental results.40 Moreover, though
staining like trypan blue has low cost and rapid protocol, the
results could be inconsistent and inaccurate, especially for 3D
spheroid cultures.41

Recently, deep learning has made it possible to analyze
cellular images with greater accuracy and efficiency. This has led
to the development of high-throughput methods for classifying
the status of cell cycle and identifying subcellular features using
deep learning toolkits.42–47 Even unlabeled transmitted-light
images can be used to predict different fluorescence labels like
cell nuclei and cell type.48 Phase-contrast imaging can also be

used computationally to perform live-dead assays on unlabeled
cells.38,47,49 However, there has been relatively little research on
detecting the viability of cancer spheroids without the use of
labeling techniques. The existing works rely on specialized optical
coherence tomography techniques.50 To overcome these
limitations, we previously tested a deep learning model to
estimate spheroid viability.51 However, this earlier investigation
was confined to a single breast cancer cell line and three drugs,
thus offering limited insights into the model's broader
applicability. Therefore, in this study, we aim to take a more
comprehensive strategy by training a versatile model using eight
conventional chemotherapeutic compounds and subsequently
validate the model's versatility by assessing its performance with
novel compounds, additional cell lines, primary cells not utilized
in the training dataset, and images sourced from external
laboratories to demonstrate the generalizability of the approach.
By combining microfluidics with a generic drug efficacy
estimation approach, our method provides a cost-effective, high-
throughput, and non-destructive way to assess tumor spheroid
viability in real-time that can be widely adapted to many cell
lines, compounds, and laboratories.

Methods
Microfluidic chip design and fabrication

A layer of micro-patterned PDMS (polydimethylsiloxane, Sylgard
184, Dow Corning) was bonded to a bottomless 6-channel slide
(Sticky-Slide VI 0.4, 80608, ibidi) to create cancer spheroid
devices. Each device, measuring 75.5 mm by 25.5 mm and
following the 96-well plate format with a pitch of 9 mm between
wells, can accommodate approximately 12 000 micro-chambers
for spheroid culture and test 6 drug treatment conditions on a
device.20 Sanitization to maintain a sterile condition. Pluronic®
F-108 (BASF, CAS 9003-11-6) solution (5% in DI water) was
applied to the device 12 hours before cell loading to create a
non-adherent PDMS substrate for cell aggregation.23,52,53 Prior
to experimentation, the devices were washed with PBS (Gibco
10010) for one hour to eliminate residual F-108 solution.

Cell culture

We cultured SUM159 and SUM149 cells in F-12 (Gibco 11765)
media supplemented with 5% FBS (Gibco 16000), 1% pen/strep
(Gibco 15070), 1% GlutaMax (Gibco 35050), 1 μg mL−1

hydrocortisone (Sigma H4001), and 5 μg mL−1 insulin (Sigma
I6634), and 0.1% of plasmocin (InvivoGen, ant-mpp). We cultured
T47D cells in RPMI 1640 medium (Gibco 1875) supplemented with
10% fetal bovine serum (FBS, Gibco 16000), 1% GlutaMax (Gibco
35050), 1% penicillin/streptomycin (pen/strep, Gibco 15070), and
0.1% of plasmocin (InvivoGen ant-mpp). Vari068 is a patient-
derived cell line (originally derived from an ER-/PR-/Her2− breast
cancer patient who had signed informed consent) adapted to the
standard two-dimensional culture environment.11,54,55 We cultured
Vari068 cells in DMEM Medium (Gibco 11995) supplemented with
10% fetal bovine serum (FBS, Gibco 16000), 1% GlutaMax (Gibco
35050), 1% penicillin/streptomycin (pen/strep, Gibco 15070), and
0.1% of plasmocin (InvivoGen ant-mpp). All cells were cultured in
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regular polystyrene culture dishes and passaged at or before cells
reached 80% confluency. We maintained all cells at 37 °C in a
humidified incubator with 5% CO2.

Cell loading on microfluidic cancer spheroid chip

Breast cancer cells were harvested from a petri dish using a
0.05% trypsin/EDTA solution (Gibco, 25300) for 4–6 minutes
depending on the cell lines. They were then centrifuged at 100 ×
g for 4 minutes and re-suspended to a concentration of 4 × 106

cells per mL in regular cell culture media. The microfluidic
device was washed with cell culture media twice, and
subsequently, 100 μL of the cell suspension was introduced into
each inlet of the chip. Cells flowed into the spheroid microwells
through designated inflow channels. Subsequently, we gently
agitated the device to facilitate the settling of cells located on
the sidewalls of microwells into the microwells. After a 5 minute
cell loading period, the media in the outlet was removed, and
100 μL of fresh culture media was pipetted into the inlets to
wash away excess cells for three times. Since the cells did not
adhere to the PDMS substrate, they aggregated with each other
within 24 hours.20

Drug treatment and drug efficacy readout

We treated spheroids with conventional chemotherapeutics and
novel inhibitors. Detailed list and targets are presented in Table
S1.† All drugs were initially reconstituted in dimethylsulfoxide
(DMSO) to create 10 mM stock solutions. Subsequently, a
tenfold serial dilution was performed, ranging from 1 mM to 1
nM, with culture media for treatment purposes. These various
drug concentrations were introduced into corresponding inlets
on the microfluidic chip. We aspirated outlets and added 100
μL of the drug solution to the inlets. To minimize disruption of
aggregated tumor spheroids, 20 μL of media was removed or
added each time. Following a 72 hour drug treatment period,
cancer spheroids were stained using the LIVE/DEAD Viability/
Cytotoxicity Kit for mammalian cells (Life Technologies, L3224).
This entailed employing 2 μM of LIVE (calcein-AM) and 4 μM of
DEAD (ethidium homodimer-1) staining reagents diluted in
media. Imaging experiments were conducted to validate that
the fluorescence staining reagents do not alter the phase-
contrast morphology of spheroids. To avoid disrupting the
spheroids, the drug solution was aspirated from the devices and

replaced with 100 μL staining solution, administered in 20 μL
increments. An incubation period of 1 hour was employed in an
incubator set at 37 °C within a 5% CO2 environment.
Subsequently, the microfluidic device was subjected to
microscopy for imaging.

Image acquisition

Stained cells in the cancer spheroid devices were imaged using
an inverted microscope (Nikon Ti2E). The phase-contrast and

fluorescence images were taken with a 4× objective lens (1.6 μm
per pixel) and a monochrome CMOS camera (Hamamatsu ORCA-
Fusion Gen-III SCMOS Camera). The field of view is around 14
mm2, which can cover more than 600 spheroids per micro-
chambers in an image. Live staining was imaged by a FITC filter
set, and dead staining was imaged by a TRITC filter set. Focusing
was performed to ensure the image remained in focus
throughout the imaging experiments. To assess transferability
across diverse imaging environments, a Lionheart FX automated
microscope with Gen 5 software was employed.

Image processing program

For image processing, we employed a MATLAB program using
the circular Hough transform to accurately extract individual
circular microwells containing tumor spheroids. This method
detected circular microwells with a predetermined radius, which
was effective due to the distinct circular edges and fixed size of
each microwell. Phase-contrast images captured the tumor
spheroid morphology within these circular microwells. The green
and red fluorescence intensities were used to represent LIVE and
DEAD signals, respectively. Background fluorescence for LIVE
and DEAD staining was determined based on areas outside the
circular microwells. To filter out empty microwells, we trained a
Convolutional Neural Network (CNN) classification model using
1000 microwells with spheroids and 1000 without.

Training of neural network

After image processing, a database with 21845 spheroids was
established for Convolutional Neural Network (CNN) training. The
CNN architecture comprises an input layer, multiple hidden
convolution layers, and an output layer. Input images undergo
convolutional processing to generate classification or prediction
outputs. The neural network's structures are available in Fig. S1.†
In this investigation, phase-contrast images of tumor spheroids
served as input predictor variables. For classification, each
spheroid was attributed a categorical label based on its drug
treatment concentration, forming the expected output. In cases of
regression tasks, anticipated numeric output was assigned to each
spheroid, representing its viability score as measured through
LIVE/DEAD staining. Given that LIVE/DEAD staining induces
background fluorescence, we conducted background subtraction
from the signal. The viability score was derived using the formula:

Spheroid Viability Score ¼ LIVE Signal − LIVE Background
LIVE Signal − LIVE Backgroundþ DEAD Signal − DEAD Background

(1)

This score ranged from 0 to 1, with higher values signifying
healthier spheroids. The MATLAB 2022b deep learning toolbox
was utilized with the established database to train a CNN model.
The model sought correlations between input phase-contrast
images and categorical labels or numeric viability scores as
outputs. “Ground truth” labels, derived from direct observations
of LIVE/DEAD staining, were considered correct and used for
model training and accuracy assessment. The adaptive moment
estimation optimizer (ADAM) and data shuffling techniques were
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implemented. To ensure model convergence, the learning rate
was gradually reduced, and L2 regularization was applied to
address overfitting and facilitate feature selection.56,57 Conforming
to standard machine learning protocols, 80% of the data were
allocated for CNN model training, while the remaining 20% were
reserved for model accuracy evaluation.47,51,58 Classification
accuracy was quantified utilizing the MATLAB deep learning
toolbox. When the predicted viability value falls below 0, it is
predicted as 0. Conversely, if the predicted viability value exceeds
1, it is predicted as 1.

Results and discussion
High-throughput cancer spheroid formation on-chip

We developed a microfluidic high-throughput cancer spheroid
formation platform. This platform leverages the favorable
properties of PDMS as a substrate, characterized by its
transparency, biocompatibility, gas permeability, and resistance
to harsh chemicals, such as chemotherapeutics. The
microfluidic substrate is patterned with a compact array of
microwells. Each chip contains approximately 12000
microwells, six channels for testing six conditions, each
equipped with around 2000 spheroid-forming microwells
(Fig. 1A and B). This high capacity enables us to conduct
efficient and high-throughput cancer drug screening. Media
exchange is streamlined, as our design facilitates easy
refreshment of the culture medium without disturbing the
isolated cancer spheroids in the microwells. This prevents
undesired spheroid aggregation during media exchange, a
common challenge in conventional non-adherent culture
methods. The compact microwell layout with around 51

microwells per square millimeter permits the simultaneous
imaging of over 600 microwells. This technology holds great
potential for accelerating the identification of novel cancer
therapies through high-throughput cancer spheroid testings.

Cancer cells were retrieved from petri dishes and loaded
into the microfluidic device via pipetting through designated
inlets. Media flow directed the cells into the channels, and
following gentle agitation to ensure that gravity guided the
cells into the microwells (Fig. 1C). Surface modification with
Pluronic F-108 prevented cell adhesion to the PDMS
substrate, allowing cancer cells to aggregate as spheroids
through interactions mediated by cell surface adhesion
molecules. After a day of cultivation, the cancer spheroids
compactly aggregated, becoming suitable for compound
treatment and finally LIVE/DEAD staining (Fig. 1D–F).
Thanks to the consistent size of the microwells and a
uniform cell density per channel, the formation of uniform
cancer spheroids (diameter: 67.9 ± 3.9 μm, N = 45, ± indicates
standard deviation (S.D.)) ensured the reliability and
reproducibility of the experimental results. To handle a large
number of images generated by our platform, a customized
MATLAB program was developed. This program includes an
automated cell cropping function that accurately identifies
circular chambers, cropping them for subsequent data
analysis and machine learning applications. To eliminate
empty microwells, we trained a CNN classification model
employing 1000 microwells containing spheroids and 1000
without. This model exhibited an impressive 99% accuracy
(Fig. S2†).

Morphological changes of spheroids after drug treatment

Using our cancer spheroid platform, we tested eight
conventional chemotherapeutic drugs to a wide range of six
concentrations over three days, based on established protocols.
Take doxorubicin as an example: spheroids treated with low
concentrations (e.g., 0.01 μM and 0.1 μM) displayed
predominantly live cells (green fluorescence via LIVE staining)
with few dead cells indicated by sporadic red fluorescence
(DEAD staining) (Fig. 2A). The phase-contrast images also
revealed a healthy spheroid morphology, featuring sharp
boundaries and clear centers. In contrast, high concentrations
(e.g., 100 μM, and 1000 μM) resulted in numerous dead cells at
the spheroid core indicated by red fluorescence and a
prevalence of dark, non-viable cells throughout the spheroid in
phase-contrast imaging. These results underline the correlation
between spheroid viability determined by fluorescence-based
LIVE/DEAD staining and the phase-contrast morphology of
spheroids. This correlation supports the feasibility of estimating
viability via phase-contrast imaging. To further validate this
approach, we employed a CNN model for image classification
based on treatment doses. For doxorubicin, the model achieved
an impressive 96.3% accuracy in distinguishing between the six
concentrations, even though distinguishing low-dose treatments
presented some challenges, which were caused by the minimal
discernible morphological differences between low-dose

Fig. 1 Design and operation of the tumor spheroid chip. (A) A
photograph of the cancer spheroid chip used for drug screening. The chip
facilitates testing of six conditions, each accommodating approximately
2000 chambers for spheroid cultivation. (B) A microscopy image
displaying an array of cancer spheroids on a chip. (C) SUM159 breast
cancer cells were loaded into the cancer spheroid microwells. (D) The
cells aggregated to form a cancer spheroid after one day. (E) A spheroid
following a three-day treatment with doxorubicin. (F) A spheroid subjected
to LIVE/DEAD staining (scale bar: 50 μm).
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treatments (Fig. 2B). Remarkably, high-dose versus low-dose
separation yielded consistently high prediction accuracy. The
classification of Paclitaxel treatment concentrations also yielded
a high accuracy of 92.7% (Fig. 2C).

Estimation of cancer spheroid viability using phase-contrast
microscopy

While phase-contrast morphology reveals substantial differences
between healthy and compromised tumor spheroids, relying
solely on qualitative morphological observations cannot offer a
quantitative assessment of spheroid viability. To bridge this gap,
we introduced a CNN model designed to quantitatively estimate
viability scores. Our CNN model was rigorously trained, using
phase-contrast images of spheroids as inputs, with the desired
outputs being viability scores based on LIVE/DEAD staining. Our
training dataset comprised spheroid images subjected to eight
different conventional drugs, each administered at six different
concentrations, encompassing a diverse range of treatment

conditions. Within this dataset, 80% of the images were
designated for training purposes, with the remaining 20%
allocated for testing. We initiated our evaluation by comparing
the viability scores of individual spheroids, as determined by
LIVE/DEAD staining and as predicted by our CNN model from
phase-contrast images. We achieved a remarkable high
correlation coefficient of 0.908 (Fig. 3A). Given the high
correlation, we observed a greater dispersion of data points
among spheroids with low viability. This phenomenon can be
attributed to two primary factors. Firstly, healthy spheroids
typically exhibit a more uniform morphology compared to those
that have been compromised. Additionally, our dataset contains
a larger proportion of healthy spheroids compared to those
significantly inhibited by treatment. Despite efforts to increase
the representation of compromised spheroids by employing high
drug concentrations of 100 μM or even 1 mM, they remain
underrepresented. Further escalation of the drug concentration
has practical limitations related to solubility and potential DMSO
solvent toxicity. Both inherent morphological heterogeneity and

Fig. 2 Alterations in cancer spheroid morphology due to drug treatment. (A) Exemplary images of SUM159 cancer spheroids subjected to six
different doxorubicin concentrations and DMSO control. Spheroid viability was quantified using LIVE/DEAD staining. FITC green fluorescence
denotes live cells, while TRITC red fluorescence represents dead cells. As drug concentration rises, green fluorescence intensity decreases, and
red fluorescence intensity increases. The phase-contrast morphology also varies with distinct drug treatments (scale bar: 50 μm). (B) The
classification of doxorubicin treatment accurately (96.3%) predicts the drug treatment concentration based on its phase-contrast image. Green
boxes signify correct predictions, red boxes denote incorrect predictions, and grey boxes show row/column totals. The box describes either the
number of prediction cases or the percentage of correct prediction. Rows of boxes belong to spheroids treated with the same concentration,
while columns of boxes correspond to spheroids predicted to be treated with the same concentration. (C) Classification of the six treatment
concentrations of paclitaxel with an accuracy of 92.7%.
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dataset composition contribute to this issue. Given our high
throughput to promptly analyze many spheroids, we averaged the
spheroids treated under the same conditions to compute average
viability scores, resulting in an even higher correlation coefficient
of 0.989 (Fig. 3B). These encouraging findings from eight
different compounds strongly suggest the feasibility of
establishing a generic model for estimating spheroid viability
from phase-contrast images. Furthermore, we demonstrated the
efficacy of our method by generating treatment response curve
based on both LIVE/DEAD staining (ground truth) and CNN
predictions (Fig. 3C). In this comparison, the treatment response
curve obtained from both approaches demonstrated remarkable
consistency, providing validation for our label-free spheroid
viability estimation method.

Optimization of the convolutional neural network models

While our initial experiments yielded promising outcomes
using a 7-layer CNN model, we conducted additional tests to
explore optimization possibilities. We compared four possible
alternative network structures (Fig. S1†), to investigate the

potential enhancements achievable by modifying convolutional
layer count and structure. The results, depicted in Fig. 3D,
indicated that reducing the number of convolutional layers
notably compromised prediction accuracy. Conversely,
increasing the number of convolutional layers also yielded a
reduction in accuracy due to potential model overfitting. These
findings underscore the appropriateness of the originally
selected model. Any further complexity would primarily extend
computation times and reduce accuracy.

Inter-drug validation of the CNN model

Having effectively predicted outcomes for eight drugs within the
training dataset, we proceeded to assess the model's capability
in predicting the effects of new compounds outside the training
dataset. Given the dataset's diverse cell killing mechanisms, we
expected that responses induced by other compounds share
notable similarities in resulting spheroid morphology.59,60 To
explore this, we tested novel compounds, namely CC-115, and
pyronaridine tetraphosphate. CC-115, recognized as a dual
inhibitor targeting mTOR kinase and DNA-dependent protein

Fig. 3 The prediction of cancer spheroid viability scores via a CNN regression model. (A) Predictions of viability scores for individual SUM159
spheroids treated with eight drugs. The X-axis corresponds to viability scores predicted using phase-contrast images with a CNN model, and the
Y-axis indicates the ground truth viability scores measured by LIVE/DEAD staining. Each data point symbolizes a spheroid, with different colors
representing various drugs. An R-value of 0.908 from linear regression highlights a strong correlation between the ground truth and predictions.
(B) Predictions for individual treatment conditions of SUM159 spheroids exposed to eight drugs. Each data point represents a treatment condition
(average of all spheroids treated by that condition), with distinct colors denoting different drugs. An R-value of 0.989 from linear regression
highlights a strong correlation between the ground truth and predictions. (C) Treatment response curves for doxorubicin's drug efficacy on cancer
spheroids. The X-axis represents drug concentration, and the Y-axis signifies viability scores. The blue curve is established on the ground truth
derived from LIVE/DEAD staining, while the red curve relies on predictions using phase-contrast images. The error bars represent the standard
deviation calculated from 20% of the total number of spheroids, corresponding to approximately 120 spheroids, for each data point. (D) A
comparison among different CNN network structures (N = 3 independent trials).
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kinase, has demonstrated effectiveness in eliminating cancer
cells with heightened oxidative stress levels, as evidenced in
renal cell carcinoma, melanoma, and non-small cell lung cancer
studies.61–65 Furthermore, its well-tolerated nature in the initial
phase I trial has been established.62 Pyronaridine, an
aminoquinoline-based antimalarial drug,66 has shown potential
in overcoming cancer treatment resistance but remains
relatively unexplored in breast cancer.67,68 As anticipated, the
application of these compounds effectively inhibited breast
cancer spheroids and resulted in consistent morphological
changes similar to conventional chemotherapeutic drugs
(Fig. 4A). Utilizing the model trained by eight conventional
chemotherapeutic drugs, we achieved a high correlation
coefficient of 0.961 when predicting the efficacy of the novel
compounds (Fig. 4B). Notably, the treatment response curve
derived from LIVE/DEAD staining and CNN predictions aligned
well (Fig. 4C). This underscores the presence of shared
morphological features among spheroids influenced by various
drugs, affirming the model's adaptability.

Inter-cell line validation of the CNN model

Broadening our investigation, we evaluated various breast
cancer cell lines using the model initially trained by a triple-

negative breast cancer (TNBC) cell line SUM159. This model
was utilized to assess spheroid viability for both TNBC
SUM149 and hormone receptor-positive (ER-positive and PR-
positive) T47D cell lines. Upon subjecting SUM149 to
docetaxel treatment, we observed comparable cell
morphology in treated spheroids as SUM159 (Fig. 5A).
Additionally, we assessed the effects of docetaxel on SUM149
and bortezomib and docetaxel on T47D (Fig. 5B). The
correlation coefficient between the observed and predicted
outcomes was 0.945 for SUM149 and T47D. Notably, despite
both drugs (bortezomib and docetaxel) and cell lines
(SUM149 and T47D) were not being part of the training
dataset, the correlation coefficients remained high, only
marginally lower than that of SUM159. Moreover, the
treatment response curve exhibited consistency between the
observed and predicted values (Fig. 5C). In order to enhance
the clinical significance of our discoveries, we included
breast cancer cells derived from a TNBC patient. The patient
derived Vari068 cells successfully formed coherent cancer
spheroids within our microfluidic platform. We treated
doxorubicin to inhibit Vari068 spheroids and used the CNN
model trained with SUM159 cells for predicting the viability
of spheroids. Encouragingly, the ground truth viability aligns
well with our prediction, displaying a robust correlation

Fig. 4 The prediction of cancer spheroid viability scores treated by novel compounds. (A) Representative images of SUM159 cancer spheroids
exposed to six different concentrations of CC-115 (scale bar: 50 μm). (B) Predictions for individual treatment conditions of SUM159 spheroids
subjected to novel compounds of CC-115 and pyronaridine. Each data point corresponds to a treatment condition, with distinct symbols indicating
different drugs. An R-value of 0.961 from linear regression highlights a strong correlation between the ground truth and predictions. (C) Treatment
response curve depicting the drug efficacy of CC-115 on cancer spheroids. The error bars represent the standard deviation calculated from 20% of
the total number of spheroids, corresponding to approximately 120 spheroids, for each data point.
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coefficient of 0.942 alongside consistent treatment response
curves (Fig. 6A and B). This exploration of multiple cell lines
yielded positive outcomes. The shared morphological
features across diverse cells imply potential applicability of
the model for wide-ranging drug screening initiatives.

Validation of the model by different imaging environments

To assess the CNN model's transferability to analyze images
acquired in diverse imaging settings, we conducted a side-by-
side experiment involving two distinct imaging setups. Setup
1 featured a Nikon Ti2E microscope and Hamamatsu ORCA-
Fusion Gen-III SCMOS camera, while setup 2 employed a
BioTek Lionheart FX automated digital microscope. These
variations in microscope types, objective lenses, and cameras
created distinct imaging environments, providing a robust
test for model transferability. To standardize for different
magnifications, we resized the collected images before
analysis. Notably, our model was exclusively trained using
images from setup 1. As illustrated in Fig. 6C and D, our
results demonstrated consistent spheroid viability
assessments for images obtained from both setups with a
high correlation coefficient of 0.975. These experiments

unequivocally establish the method's transferability across
different laboratory settings.

Dynamic monitoring of tumor spheroid viability

The label-free viability assessment method we employ eliminates
the need for toxic LIVE/DEAD staining, allowing continuous and
non-invasive monitoring of tumor spheroid viability in real-time.
In our study, SUM159 spheroids were treated with ML162, a
GPX4 inhibitor known to induce ferroptosis (Fig. 7).69,70 Using
our model, we observed a rapid reduction in viability with 10 μM
of ML162 treatment compared to the control group. This
demonstrates the effectiveness of our approach in dynamic
viability estimation without destructive methods, offering
potential for accelerated drug discovery and efficacy testing.

Conclusion

In cancer research, the search for improved therapeutic agents
is a protracted endeavor. Conventional cell culture techniques
in 2D dishes or plates fail to faithfully replicate tumor
conditions. Various 3D cell culture methods, such as hanging
drops, hydrogel embedding, and low-attachment surfaces,
address some of these limitations. Microfluidics offers precise

Fig. 5 The prediction of cancer spheroid viability scores of other breast cancer cell lines. (A) Representative images of SUM149 cancer spheroids
exposed to six different concentrations of docetaxel (scale bar: 50 μm). (B) Predictions for individual treatment conditions of SUM149 and T47D
spheroids subjected to docetaxel and bortezomib. Each data point corresponds to a treatment condition, with distinct symbols indicating different
drugs and cell lines. An R-value of 0.945 from linear regression highlights a strong correlation between the ground truth and predictions. (C)
Treatment response curve depicting the drug efficacy of docetaxel on SUM149 cancer spheroids. The error bars represent the standard deviation
calculated from 20% of the total number of spheroids, corresponding to approximately 120 spheroids, for each data point.
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cell manipulation for high-throughput drug screening. However,
existing viability assays for 3D cancer spheroids can be
unreliable and cytotoxic. This study presents a deep learning

model for non-invasive, label-free viability estimation of tumor
spheroids, providing a cost-effective and high-throughput
solution for continuous monitoring of spheroids over time. A
high-throughput microfluidic cancer spheroid formation
platform was developed. This device features around 12000
microwells per chip across six channels for efficient high-
throughput drug screening. It facilitates media exchange
without disrupting the spheroids, ensuring reliable results. A
custom MATLAB program was employed for precise image
analysis to support machine learning applications. Eight
conventional chemotherapeutic drugs were tested on cancer
spheroids at various concentrations. Visual observations
suggested a link between spheroid viability and their phase-
contrast morphology, supporting viability estimation through
phase-contrast imaging. A CNN classification model achieved
remarkable accuracy in classifying images based on treatment
dosages, even for the challenging task of distinguishing low-
dose treatments. A CNN regression model was trained to
quantitatively estimate viability scores based on phase-contrast
images, showing a strong correlation with LIVE/DEAD staining.
Further validation generated treatment response curves that
closely aligned with ground truth values. Additional
experiments explored alternative CNN models, affirming the
appropriateness of the selected CNN model. The model

Fig. 6 Predicting viability scores of patient-derived cancer spheroid and using an alternative microscopy setup. (A) Predictions for individual
treatment conditions of Vari068 patient-derived cancer spheroids exposed to doxorubicin. Each data point represents a treatment concentration.
A strong correlation between the ground truth and predictions demonstrated by an R-value of 0.942 from linear regression. (B) Treatment
response curve depicting the drug efficacy of doxorubicin on Vari068 cancer spheroids. The error bars represent the standard deviation calculated
from 20% of the total number of spheroids, corresponding to approximately 120 spheroids, for each data point. (C) Predictions for treatment
conditions of SUM149 cell spheroids exposed to docetaxel based on images from an alternative microscopy setup. Each data point represents a
treatment concentration. A strong correlation between the ground truth and predictions demonstrated by an R-value of 0.975 from linear
regression. (D) Treatment response curve depicting the drug efficacy of docetaxel on SUM149 cancer spheroids. The error bars represent the
standard deviation calculated from 20% of the total number of spheroids, corresponding to approximately 120 spheroids, for each data point.

Fig. 7 Dynamic monitoring of spheroid viability over time. Treatment
with 10 μM ML162 promptly killed tumor spheroids, with no viability
alteration in the control group. The X-axis denotes treatment time,
while the Y-axis indicates normalized viability scores. The blue curve
represents the control, and the red curve depicts ML162 treatment.
The error bars represent the standard deviation (N = 30 spheroids).
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exhibited robustness when tested with different drugs those
were not in the training dataset, suggesting shared
morphological features among spheroids affected by various
compounds. Furthermore, the model effectively predicted
viability for different breast cancer cell lines and patient derived
cells. This research holds the potential for a universal model for
spheroid viability estimation across compounds and cell lines.
The study also assessed the CNN model's adaptability by
comparing images from two different microscopy setups,
demonstrating consistent spheroid viability assessments, and
highlighting the method's transferability across diverse
laboratory environments. In conclusion, the label-free approach
offers several key advantages, including: (1) cost and time
reduction by eliminating the need for fluorescent staining, (2)
increased throughput by circumventing the time-consuming
process of fluorescent microscopy, and (3) non-destructive
measurement, enabling the tracking of spheroid changes
throughout drug administration. The successful validation of
our method across novel compounds, additional cell lines,
primary cells not in the training dataset, and images sourced
from external laboratories sets the stage for high-throughput
screening of 3D spheroids with numerous compounds within
microfluidics.
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