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Recent developments and future perspectives of
microfluidics and smart technologies in wearable
devices
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Wearable devices are gaining popularity in the fields of health monitoring, diagnosis, and drug delivery.

Recent advances in wearable technology have enabled real-time analysis of biofluids such as sweat,

interstitial fluid, tears, saliva, wound fluid, and urine. The integration of microfluidics and emerging smart

technologies, such as artificial intelligence (AI), machine learning (ML), and Internet of Things (IoT), into

wearable devices offers great potential for accurate and non-invasive monitoring and diagnosis. This paper

provides an overview of current trends and developments in microfluidics and smart technologies in

wearable devices for analyzing body fluids. The paper discusses common microfluidic technologies in

wearable devices and the challenges associated with analyzing each type of biofluid. The paper emphasizes

the importance of combining smart technologies with microfluidics in wearable devices, and how they can

aid diagnosis and therapy. Finally, the paper covers recent applications, trends, and future developments in

the context of intelligent microfluidic wearable devices.

1. Introduction

Wearable devices have transformed healthcare and personal
wellness by providing affordable and convenient options for
continuous patient monitoring.1 In contrast to traditional
clinical diagnostics, wearable devices can provide real-time
data on an individual's health using non-invasive or
minimally invasive methods, making them an attractive
option for healthcare monitoring.2 For instance, wearable
devices such as Fitbit,3 Apple Watch,4 and Garmin5 are
commonly used for tracking fitness metrics, while other
devices such as continuous glucose monitors6 and ECG
monitors7 are used for medical purposes such as monitoring
blood sugar levels and heart activity. Although these devices
initially struggled to gain acceptance, the COVID-19 pandemic
has accelerated their adoption in healthcare.8 According to
the forecast of Gartner Inc., the global end-user expenditure
on wearable devices was forecasted to reach $93.8 billion in
2022, with most customers relying on smartwatches for
fitness monitoring and smart patches for health monitoring
(Fig. 1).9

To address the need for more specific data collection from
wearable devices, microfluidics has been incorporated into

wearable sensors, allowing medical experts to continuously
acquire specific high-quality data from patients.10,11 By
combining microfluidic wearable sensors with other wearable
technologies, such as gyroscopes, accelerometers, and
temperature sensors, real-time bodily fluids can be analysed
with continuous tracking.12 These integrated devices offer
high throughput, high sensitivity, and low power
consumption.13 Wearable sensors that attach to the skin
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Fig. 1 The market value of wearable devices for health monitoring
worldwide.
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surface can measure temperature, heart rate, blood sugar,
and other vitals more accurately than other wearables,
making them an attractive option for monitoring health.14

Microfluidics can also be used for on-site therapy and precise
delivery of drugs or pharmaceuticals.15,16

Incorporating smart intelligent technologies such as artificial
intelligence (AI), machine learning (ML), and Internet of Things
(IoT) into wearable devices has several technical advantages. AI
algorithms can analyse vast amounts of data collected by
wearable sensors, allowing for a more accurate and detailed
assessment of an individual's health status.17 This analysis
takes into account not only an individual's vital signs, but also
other relevant factors such as age, sex, and geographic region.
By determining the normal range of vital signs for specific
populations, healthcare professionals can provide more
personalized recommendations for treatment and monitoring.18

This personalized approach leads to the development of
individualized health profiles that provide better accuracy in
diagnosing and treating diseases.19 The integration of AI with
Internet of Things (IoT) platforms further enhances the
capabilities of wearable devices, allowing for real-time
monitoring and communication with healthcare
professionals.20,21 The incorporation of these intelligent
technologies in wearable devices can ultimately lead to the
development of a more personalized approach to healthcare,
with the ability to predict and prevent disease, improving overall
wellness.17

These exciting developments make clear that the future of
healthcare is strongly linked to the integration of smart
technologies and microfluidics in wearable devices. The
potential benefits of such integration are numerous.22

However, there are challenges to be addressed, including the
development of algorithms that can accurately interpret and
make sense of the vast amount of data generated by
microfluidic wearable sensors, and ensuring that the
technology is accessible and affordable to all patients.23

To fully realize the potential of smart microfluidic
wearable devices in healthcare, it is crucial to continue
investing in research and development, as well as promoting
collaboration between experts in the fields of AI,
microfluidics, and healthcare. Considering this objective, the
present review focuses on non-invasive and minimally
invasive microfluidic wearable sensors, for analysis, diagnosis
and monitoring. The novelty of this review is that it
emphasises the combination of emerging smart technologies
and microfluidics, and how it can aid diagnosis and therapy
of wearable devices. Furthermore, recent applications, recent
trends, and future developments in smart microfluidic
wearable devices are also provided.

2. Microfluidics in wearable devices

Microfluidics is a rapidly growing research field that focuses
on the manipulation of fluids on the microscale, with typical
dimensions of microchannels less than 1 mm.11,15,24 This
field has been the subject of numerous theoretical studies

aiming at more efficient processes and devices for
applications in chemistry, biology, and medicine.25,26

Microfluidic technologies are well-suited for a variety of
applications due to their advantages of low volumes, high
sensitivity, rapid processing, high spatial resolution, and
high integration with sensing components.15,27,28 The ease
and low cost of fabrication, prototyping, and implementation
have also played an important role in the success of
microfluidic technology.

In the field of wearable devices, microfluidics has seen
significant growth, particularly for healthcare applications. By
controlling and manipulating small amounts of bodily fluids on
the microscale, microfluidics enables more accurate and precise
analysis of these fluids, essential for continuously monitoring a
patient's health.29 Small changes in bodily fluids can provide
critical information about a patient's health status, making
microfluidics a valuable tool in healthcare monitoring.30 As
mentioned earlier, microfluidics can also be used for the precise
delivery of drugs or other therapeutic agents, enhancing the
effectiveness of treatment.

The miniaturization of microfluidic components makes
integrating this technology into wearable devices possible,
allowing for portability and ease of use.31 Microfluidic
technology is offering a promising solution for non-invasive and
real-time monitoring.13 Wearable devices that incorporate
microfluidic channels can provide valuable information about a
wearer's health status, including electrolyte levels and
biomarkers, which enables the diagnosis and management of a
range of health conditions.32

The potential applications of microfluidic wearable devices
are not limited to healthcare alone. This technology has the
potential to be utilized in environmental monitoring, food
safety, and sports performance.33,34 For instance, microfluidic
wearable devices can be used to monitor environmental
pollutants or detect contaminants in food products. In sports,
these devices can be used to monitor the electrolyte levels of
athletes during training and competition.35

The proper functioning of a microfluidic device depends on
careful consideration of each step of the development process,
from design to fabrication, to analysis and to signal
processing.36 The fabrication of a microfluidic device involves
designing and manufacturing microchannels, chambers, and
valves using materials such as glass, silicon, or polymers.25,37,38

Appropriate sample collection and storage methods are crucial
to ensure accurate and reliable results. Various techniques can
be employed depending on the type of sample being analysed.
Sample analysis is the core component of a microfluidic device
and involves a range of methods such as optical,
electrochemical, and biological assays, to detect and quantify
analytes such as biomarkers.39 Within microfluidic wearable
devices, signal transduction and amplification processes play a
crucial role in transforming subtle signals from samples into
easily interpretable data. Concurrently, mechanical sensing
mechanisms ensure the precise handling and delivery of these
minuscule samples, significantly enhancing the accuracy of
measurements and analyses. Finally, the device must be
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powered, which can be achieved through various means, such
as batteries or external power sources.40,41

Polydimethylsiloxane (PDMS),42 paper microfluidics,25 and
patches with microneedles43 are microfluidic technologies
that have unique features and advantages for various
applications. The following sections provide a detailed
discussion on the applications of the aforementioned
technologies and their corresponding features.

2.1. PDMS-based microfluidics

Microfluidic devices for manipulating small volumes of fluids
are commonly made from polymers due to their
biocompatibility, flexibility, and cost-effectiveness.44 Techniques
for manufacturing polymer-based microfluidic devices include
soft lithography,45 hot embossing,46 and injection moulding,47

with soft lithography being the most widely used.48

Polydimethylsiloxane (PDMS) is the most commonly used
polymer for fabricating microfluidic devices.49 Other than
PDMS, other polymers are polystyrene (PS),50 polyether ether
ketone (PEEK),51 polyethylene terephthalate (PET),52 polyvinyl
chloride (PVC),53 polymethylmethacrylate (PMMA),54 cyclic
olefin copolymer (COC),55 polycarbonate (PC),56 and
polyetherimide (PEI)57 that are used for making microfluidic
devices.58

PDMS belongs to the siloxane family and is a type of
mineral organic polymer. PDMS is highly suitable for lab-on-
a-chip (LOC) applications,59 and its unique properties make
it a primary choice for researchers and developers working
on microfluidic devices and wearable sensors. PDMS has a
low Young's modulus, allowing it to easily conform to and
wrap around curved surfaces.60 This property also makes it a
popular choice for providing conformal contact with different
surfaces. Its elasticity and flexibility are highly desirable
properties of wearable devices.61 PDMS is relatively low-cost
compared to other materials used for microfluidics. The
transparency of PDMS allows for easy visualization of the
fluid content and all other components.62 These features
make PDMS ideal for serving as a foundational material for
wearable electronic devices like fitness trackers. Researchers
commonly use two types of PDMS, PDMS RTV-615 and PDMS
Sylgard 184, for microfluidic applications.63 However, the
exact composition of these two PDMS types is not disclosed
by the vendors.

Researchers have developed innovative ways to utilize
PDMS in wearable microdevices. For example, Trinh et al.
developed a wearable microdevice that uses flexible and soft-
contact PDMS for the amplification of nucleic acids through
recombinase polymerase amplification (RPA).38 The PDMS
was mixed with different ratios of the pre-polymer and a
curing agent without altering the fundamental properties of
PDMS. The team demonstrated that the basic characteristics
of PDMS remained consistent despite the change in the
prepolymer and curing agent ratio. The replica moulding
technique was used to build the wearable PDMS microdevice
with microchambers for RPA reagents. It required soft

lithography to create a mould on a PET film, pouring and
curing pre-polymer PDMS, and then adhering it to a thin
PDMS film. For RPA tests, the flexible device adhered to
human skin. The wearable RPA microdevice contained
procedures for loading RPA reagents and carrying out
reactions both before and after it was attached to a person's
skin. To prevent sample loss during movement, a thin PDMS
sheet was placed over the microdevice chamber during
reactions. The microdevice was taken out after the reaction
to be used for RPA result analysis. Fig. 2a shows the typical
operation of the wearable PDMS device.

On the other hand, Heo et al. developed a collagen–PDMS
composite material that maintains the soft elastomer
properties needed for skin-interfaced microfluidics while
reducing water evaporation.64 The skin-interfaced collagen–
PDMS microfluidic device enhances sweat retention by 45%
over a period of 9 hours compared to pure PDMS. Fig. 2b
shows an exploded view of the device with layers including a
cover layer, an indicator dye, a channel layer and adhesive.

While PDMS is widely used in the fabrication of
microfluidic devices, the material has limitations. For
instance, PDMS may age over time, limiting the intended
performance. Additionally, PDMS is not highly compatible
with many organic solvents, absorbing hydrophobic
molecules and water vapour, which can be inadvertently
emitted during experiments.65 One major drawback of PDMS
microfluidic devices is the inability to integrate electrodes
within the device.66 However, this can be overcome by
placing electrodes on a glass cover slide instead of directly on
the chip.

2.2. Paper-based microfluidics

Existing diagnostic technologies are often expensive and
inaccessible. This bottleneck can be addressed by paper-
based microfluidic devices.67 As an inexpensive and
lightweight substrate, paper is an ideal option for
microfluidic devices that are portable for immediate use.68

These devices are made by patterning paper with
hydrophobic structures to define hydrophilic channels that
transport fluid through capillary action.69 While most devices
use colorimetric assays,70 electrochemical,71

chemiluminescence,72 and electrochemiluminescence71

methods can also be employed in paper-based devices.
Techniques such as wax printing,73 inkjet printing,74

photolithography,75 flexographic printing,76 plasma
treatment,77 laser treatment,78 wet etching,79 and screen
printing80 have been utilised for fabricating paper-based
microfluidic devices. Among these, wax printing is the
simplest method.

Mogera et al. introduced a wearable microfluidic system
with plasmonic sensors on paper for continuous monitoring
of sweat loss, sweat rate, and its constituent metabolites.81

This soft, flexible, and stretchable system covers the skin
without causing any physical or chemical irritations. Fig. 2c
shows the conceptual diagram of the device. Similarly,
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Abbasiasl et al. presented an easy-to-fabricate paper-
integrated microfluidic device for sequential analysis of sweat
that eliminates the need for air exits in each reservoir,
thereby reducing the negative effects of sweat evaporation.82

Fig. 2d illustrates the top and bottom views of this device. By
directing liquid sequentially into the chambers using the
high capillary force of filter paper, the device enables further
chemical analysis. Researchers employed colorimetric assays
to demonstrate the device's performance in chrono-analysis
of glucose standard solutions and pH of sweat during
exercise. The findings indicate the potential of this approach
to sequentially analyse the concentration of biomarkers over
a specific period.

Paper-based microfluidic devices have several advantages
over traditional substrates such as glass and PDMS, including
low cost, disposability, and portability.83 However, liquid
transport with patterned channels can be challenging on
paper compared to other substrates due to the fibrous and
porous nature of paper.84 Despite this issue, the affordability
and simplicity of paper-based microfluidic devices make
them an attractive option for developing wearable devices
and other portable diagnostic tools.

2.3. Microneedle-based transdermal microfluidics

Microneedle-based transdermal microfluidics is a
revolutionary technology that combines microneedles and
microfluidics to deliver drugs and therapeutics
transdermally.85 Microneedles, typically smaller than a
millimetre, create tiny channels in the skin that allow for
transdermal drug delivery, while microfluidics involves
microchannels embedded in a patch to transport and deliver
chemicals to the microneedles.86 The integration of
microneedles with microfluidics offers several potential
advantages over traditional drug delivery methods, such as
increased efficiency, reduced side effects, and improved
patient compliance.87

There are four types of microneedles: solid, coated,
polymeric (dissolvable), and hollow microneedles. Fig. 3a shows
the schematic diagram of the different types of microneedles.88

Solid microneedles puncture the skin to create channels for
drug delivery and cause less pain than traditional needles.89

Microneedles can be made from various materials such as
silicon, metals, polymers, or ceramics. Following the insertion,
a drug formulation can be applied to the skin using a patch or a

Fig. 2 a) Schematic illustration showing the operation of a wearable microdevice that uses flexible and soft-contact PDMS for the amplification of
nucleic acids through RPA. b) Exploded view of the sweat collection device by Heo et al., including a cover layer, an indicator dye, a channel layer,
and adhesive. c) Conceptual diagram of a wearable plasmonic paper-based microfluidic device by Mogera et al. d) Schematic illustration of a
paper-integrated microfluidic device for sequential analysis of sweat that eliminates the need for air exits in a reservoir.
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topical cream. Hollow microneedles are used for drug infusion
into the skin and can be present in a microfluidic device either
singularly or in an array.90 Coated microneedles are covered
with a water-soluble formulation of the drug before
administration, which subsequently dissolves into the skin after
puncturing.91 Dissolvable microneedles are made from
polymers that dissolve completely after insertion, releasing the
therapeutic agent.92 They are suitable for delivering thermo-
sensitive drugs such as proteins and antigens and can be
fabricated using micromoulds or in situ polymerization of liquid
monomers.

Kang et al. reported wearable devices utilizing microneedle-
based transdermal microfluidics for drug delivery and analyte
collection.93 Hyaluronic acid (HA) is a particularly advantageous
material due to its human autologous source, biocompatibility,
strong water absorption, and viscoelasticity.94 The devices were
employed for wound healing, targeted therapy, extraction of
interstitial skin fluid (ISF), and drug preservation. Luzuriaga
et al. presented biodegradable 3D printed polymer microneedles
for transdermal drug delivery using polylactic acid, an FDA-
approved biodegradable material.95 The needles have a tip size
as small as 1 μm due to a post-fabrication chemical etching
protocol that improved the feature size of the printed parts.
Near-infrared (NIR) light-responsive microneedle patches have

also been introduced for the on-demand release of
antimicrobial peptides for the treatment of wound biofilms.96

The patch contains dissolvable poly(vinylpyrrolidone) (PVP)
microneedles loaded with IR780 iodide as a photothermal
conversion agent and molecularly engineered peptide W379 as
an antimicrobial agent. Upon exposure to NIR light, IR780
converts light to heat, causing the phase change material
1-tetradecane (TD) to melt, releasing the loaded W379 peptide
from the microneedles into the surrounding regions. The NIR
light-responsive microneedle patches can program the release
of antimicrobial peptides and show high antibacterial efficacy
in vitro compared with traditional microneedle patches. Fig. 3b
provides a schematic illustration of the above-mentioned
microneedle patches.

While microneedles have numerous potential
applications,97,98 only a few products have been so far
commercialized. Safety and efficacy considerations are crucial
when developing microneedles for delivering small and large
molecules. Metallic microneedles may leave metal residues
under the skin, leading to various side effects such as irritation,
swelling, or discolouration. When microneedles are used
repeatedly on the same location of the skin or on areas of the
skin with different levels of thickness, the effectiveness of
delivering substances through these microneedles can be

Fig. 3 a) Schematic diagram showing different types of microneedles. b) Schematic illustration of near-infrared (NIR) light-responsive microneedle
patches. c) Schematic presentation of various biofluids. d) Diagrammatic illustration of a cross section of human skin showing sweat glands.
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influenced. This could lead to problems in how well the
substances are absorbed by the body and potentially result in
various complications or negative outcomes.86,89

3. Biofluids

Biofluids are fluids that can be excreted, secreted, or
obtained through needle aspiration or as a result of
pathological processes in the human body.99 These fluids
contain biochemical components or biomarkers that directly
relate to human health conditions.100 For effective target
analysis, it is essential to collect and process biofluids that
are typically secreted by the human body. Sweat, saliva, urine,
tears, interstitial fluids of the skin, and wound fluids are
examples of biofluids commonly analysed by microfluidics-
based wearable devices.32,101 Fig. 3c provides a schematic
overview of various biofluids.102 The collection and analysis
of biofluid samples such as blood and urine can be time-
consuming and troublesome, when done in a laboratory.
However, microfluidics-based wearable devices can help
overcome these challenges by ensuring that biofluid
collection and analysis are non-invasive, reliable, and
accurate.103 Microfluidic technologies are capable of

collecting biofluids in small amounts, utilizing their
advantages on the microscale.11 This makes microfluidics-
based wearable devices highly relevant in the current era.

The following sections provide a discussion of the
fundamental composition and physiological and pathological
properties of biofluids, as well as the analytes present in
them. Additionally, the latest microfluidics-based wearable
technologies in this field and the potential for integrating
artificial intelligence are addressed. We also discuss the
challenges and prospects associated with each biofluid. For
ease of further reading, Table 1 shows the typical
concentration of analytes in each biofluid along with the
associated health hazards. Table 2 shows various existing
sensing methods used in wearable devices for different
biofluids associated with corresponding limitations.

3.1. Sweat

Sweat is a hypotonic fluid produced by sweat glands as a part
of bodily thermoregulation.104,105 An ordinary human adult
can generate 500 to 700 ml of sweat per day.106 Compared to
other bodily secretions, sweat can be collected non-invasively
and contains a rich composition of biomarkers such as water,

Table 1 The concentration of analytes in each biofluid and the associated health hazards of each analyte

Analytes Concentration Potential health hazards Ref.

Glucose Sweat 0.06 to 0.2 mM Diabetes 126, 144, 179, 200, 232
Saliva 0.5 to 1.00 mg/100 ml
ISF 60 to 90 mg dL−1

Urine 25 mg dL−1

Tears 0.032 mmol L−1

Sodium Sweat 70 mmol L−1 Cystic fibrosis dehydration 118, 119, 188, 197, 233
Saliva 8.7 to 24 mEq L−1

ISF −135–145 mmol L−1

Urine 20 mEq L−1

Tears 120 to 170 mM
Potassium Sweat 10 to 50 mmol L−1 Muscle cramps 115, 186, 196, 234

Saliva 13 to 16 mEq L−1

ISF 3.97 mM
Urine 20 mEq L−1

Tears 20 mEq L−1

Lactate Sweat 2 to 20 mmol L−1 Anaerobic metabolism 125, 149, 194, 301, 234
Saliva 0.1 to 2.5 mM
ISF 1 to 2 mM
Urine 4.5 to 19.8 mg dL−1

Tears 1 to 5 mM
Chloride Sweat 30–59 mmol L−1 Cystic fibrosis dehydration 117, 120, 189, 223

Saliva 5 to 40 mmol L−1

ISF 100–110 mmol L−1

Urine 110 to 250 mEq
Tears IIO and 135 mEq L−1

Uric acid Sweat 24.5 mmol L−1 Renal dysfunction 80, 131, 161
Saliva 199 ± 27 μmol L−1

ISF 0.1 to 0.3 mg dL−1

Urine 250 to 750 mg/24 hours
Tears 25–150 μM

pH Sweat 6.3 Skin disease 134, 168, 191
Saliva 6.6 to 7.1
ISF 7.35 to 7.45
Urine 4.5 to 8
Tears 6.5 to 7.6
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electrolytes (e.g., sodium, potassium, and chloride),
metabolites (e.g., glucose and lactate), trace elements, lactic
and uric acid, and drugs.107–109 The abundance of eccrine
glands throughout the body makes sweat collection relatively
straightforward. Its non-invasive nature and ready availability
make sweat a popular easy-to-access sample.108

Sweat contains a wealth of information that can be used
for diagnosing various ailments and diseases. For instance,
the correlation between glucose levels in blood and sweat
enabled continuous monitoring of diabetes, while the
amount of lactate in perspiration can provide insight into the
severity of ischemia associated with certain diseases.110

Sodium and calcium levels in sweat can be used to identify
and diagnose cystic fibrosis in newborns and other related
conditions.111 Furthermore, skin temperature and sweat
analysis can provide valuable information on the occurrence
and progression of various skin diseases and
conditions.109,112

Sweat is primarily collected from the eccrine glands; each
sweat gland is connected to vascularized tubes that stretch
from the dermis to the skin surface. Sweat is expelled onto
the skin surface with the assistance of myoepithelial
cells.106,113 There are two primary methods for collecting
sweat: the passive approach and the active approach. The
passive approach involves physical exercise or thermal
stimuli, such as running, cycling, sauna, or skipping, while
the active sweat collection method is commonly done
through iontophoresis.114,115 Iontophoresis involves applying
a voltage between two electrodes to stimulate a local area of
the skin.109 However, this technique can be uncomfortable
and is prone to electrode corrosion.

Compared to other biofluids, sweat has a lower
concentration of biomarkers, which makes quantitative
analysis challenging. Conventional sweat analysis devices use
absorbent pads or fabrics, which require additional design
for processing.1 These methods are also prone to low
secretion rates and evaporation challenges. Microfluidics has

emerged as a promising method for preparing and analysing
sweat, as microfluidic devices require only a small volume of
sweat and can be designed to be portable, low-cost, reusable,
and disposable.108 Microfluidic components in wearable
devices allow for transporting sweat in time after its
detection, preventing contamination of sweat for subsequent
analysis. Microchannels in the devices can drive and collect
sweat in a well-designed manner, improving efficiency.11

3.1.1. Wearable microfluidic devices for the analysis of
sweat. Sodium (Na+) and chloride (Cl−) ions are the primary
ions found in sweat and are commonly used as
biomarkers.116 Normal levels of these ions in sweat are
approximately 70 mmol L−1 (Na+) and 55 mmol L−1 (Cl−),
respectively, and are correlated with the sodium levels in the
blood. Sweat ducts that carry sweat from the sweat gland to
the skin surface can reabsorb or recapture Na+ and Cl− ions
through ion channels present in the sweat duct epithelium to
prevent electrolyte loss.104 However, cystic fibrosis can affect
the functioning of these ion channels and ducts, leading to
abnormal regulation of sodium and chloride ions in the
blood. This information can be helpful for the diagnosis of
cystic fibrosis and for monitoring the effectiveness of medical
treatment.117,118

Cystic fibrosis is associated with high levels of chloride
ions in sweat, making them a crucial indicator of the disease.
A potentiometric chloride ion biosensor was developed for
the diagnosis and management of cystic fibrosis as explained
by Grasta et al.119 The sensor uses ion-sensitive field-effect
transistors to detect the presence of chloride ions in sweat.
FEM-based modelling, which includes both semiconductors
and electrochemistry, is used to develop the sensor. However,
these biosensors can be expensive and require calibration,
limiting their widespread adoption in clinical settings.

Similarly, Biswas et al. reported a novel transdermal patch
for cystic fibrosis diagnosis.120 The patch, which looks like a
conventional sticker, absorbs sweat through tiny canals.
Pilocarpine, a drug that stimulates sweat production, is

Table 2 Sensing methods in wearable devices and their limitations

Sensing
method Biofluid Analyte Limitations Ref.

Amperometry
sensors

Blood, interstitial fluid,
saliva

Glucose, lactate • Sensitive to interfering substances present
in the biofluids

126, 154, 180, 193

• Accuracy may decrease over time due to
electrode fouling

Potentiometric
sensors

Blood, sweat, saliva pH, ions • Limited dynamic range 126, 187, 189, 191
• May exhibit slower response times compared
to other sensor types
• pH variations in the biofluid may impact
sensor performance

Voltammetric
sensors

Blood, interstitial fluid Uric acid, vitamin C • Need antifouling strategies 192, 193
• Require sophisticated algorithms or analysis
techniques for accurate information extraction

Colorimetric
sensors

Blood, urine, sweat pH, glucose,
specific ions

• Limited quantitative analysis 120, 127, 128, 147, 168
• Colour changes can be influenced by external factors

Fluorescence
sensors

Blood, saliva, urine,
interstitial fluid

Proteins, ions, pH • Sensitive to environmental conditions 235, 246, 305
• Simultaneous detection of multiple analytes is
challenging due to spectral overlap
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applied to the skin using a mild electric current. The
resulting colour change indicates the presence of cystic
fibrosis. While this approach is simple and non-invasive, the
colorimetric readout can be difficult to interpret in low-light
settings.

To address some of these challenges, a soft, epidermal
microfluidic device (“sweat sticker”) has been designed for
the simple and rapid collection and analysis of sweat.121

Intimate, conformal coupling with the skin supports nearly
perfect efficiency in sweat collection without leakage. Real-
time image analysis of chloride reagents allows for
quantitative assessment of chloride concentrations using a
smartphone camera, without requiring extraction of sweat or
external analysis. However, the wearable microfluidic
technologies and smartphone-based analytics reported here
are still in the experimental stage and may require further
refinement before they can be widely adopted in clinical
settings.

Potassium (K+) is an important electrolyte present in
sweat, along with sodium and chloride. Unlike sodium and
chloride, K+ is independent of the sweat generation rate and
has a strong correlation with blood concentration.116

Measuring K+ levels in sweat can be used as an indicator of

the hydration status, as well as to monitor conditions such as
renal disease and dehydration.122 The normal range of K+ in
sweat is between 10 and 50 mmol L−1, but may vary
depending on the individual.123

Recent advancements in wearable technology have led to
the development of devices that can measure K+ levels in
sweat in real-time. One of such devices is the SwEatch
platform, which uses ion-sensitive electrodes (ISEs) fabricated
and containing either poly(3,4-ethylenedioxythiophene)
(PEDOT) or poly(3-octylthiophene-2,5-diyl) (POT) as a
conductive polymer transducing component. The
microfluidic unit of the device draws sweat from the skin
through a passive capillary reaction and brings it into contact
with the two electrodes. This technology is mainly focused on
sport application and can provide immediate feedback on
hydration levels of athletes. Liang et al. demonstrated an
integrated three-dimensional paper-based microfluidic
electrochemical device (3D-PMED) for real-time monitoring
of sweat potassium.124 Fig. 4a shows the schematic
illustration of the device with channels, an electrode layer,
and a sweat evaporator. The device includes a screen-printed
potassium ion-selective sensor on a PET substrate and a
paper-based microfluidic pad for sweat collection and

Fig. 4 a) Schematic illustration of the 3D-PMED having a layered structure with channels, an electrode layer, and a sweat evaporator. A three-
electrode sensor is affixed to the electrode layer. b) Schematic drawing of the structure and function of the integrated microfluidic check valve. c)
Conceptual diagram of in situ monitoring of human sweat glucose in the microfluidic thread/paper-based analytical device (μTPAD) by Xiao et al.
d) Illustration of a wearable patch for continuous sweat monitoring at rest, which has hydrophilic fillers for rapid sweat uptake into the sensing
channel.
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detection. The 3D-PMED technology offers a detection range
of 1–32 mM and has the potential to address the limitations
of existing sweat monitoring methods.

While K+ as an indicator of the hydration status is a
promising marker, there are limitations to this approach. For
example, factors affecting the level of K+ in sweat are exercise,
medication, and diet. Additionally, the accuracy of K+

measurement can be affected by factors such as skin
temperature and sweat generation rate. To address these
limitations, future research could explore the use of multi-
sensor systems that integrate K+ measurement with other
parameters such as skin temperature and sweat rate. Such
systems could provide a more comprehensive assessment of
an individual's hydration status and help to improve the
accuracy of K+ measurement in sweat.

Lactate. Lactate is a hydrophilic metabolite and analyte
that is present in sweat. During exercise and muscle
activities, glycogen breakdown locally produces lactate in
sweat. There is also a correlation with blood lactate levels.
Typically, the lactate concentration in sweat ranges from 2 to
20 mmol L−1. While lactate is primarily used as a potential
biomarker for exercise analysis in most wearable devices,
lactate sensors are typically integrated with other sensors to
provide multiplex and comprehensive health monitoring.

One example is the epidermal patch developed by
Sempionatto et al., which allows for the simultaneous
monitoring of haemodynamic and metabolic biomarkers.125

This non-invasive device utilises ultrasonic transducers and
electrochemical sensors to monitor blood pressure and heart
rate using multiple biomarkers, including lactate. Another
example is a continuous sweat monitoring system that is
integrated with wireless electronics in the form of wearable
glasses.126 This real-time monitoring system has a chemical
sensing platform capable of sensing electrolytes and
metabolites in sweat such as lactate and potassium ions. The
system includes an amperometry lactate biosensor and a
potentiometric ion-selective electrode on the two nose bridge
pads of the spectacles, with PET stickers used on the glass
nose pads to monitor sweat metabolites and electrolytes. The
entire setup is integrated into the arms of the glass for
wireless electronic communication.

Glucose. Glucose is another crucial substance that is
commonly evaluated in sweat. Though it is typically found in
blood, glucose can also be detected in sweat, albeit at a
much lower concentration. The normal range of glucose in
sweat is between 0.06 and 0.2 mM, compared to 3.3 to 17.3
mM in blood. Factors such as diet, exercise, and stress levels
can affect the concentration of glucose in sweat. The
correlation between glucose in sweat and glucose in the
blood is a subject of ongoing research. However, studies have
shown that there is a strong correlation between the two in
both type 1 and 2 diabetes cases, even during exercise.

The measurement of glucose levels in sweat has potential
applications in monitoring diabetic patients and athletes
during exercise. There is increasing interest in epidermal
wearable devices for tracking sweat glucose. These devices

offer a non-invasive and continuous way of monitoring
glucose levels, which could be more convenient for patients
compared to traditional blood glucose monitoring systems.
Examples of sweat-based glucose monitoring devices include
wristwatches, wearable patches, optical instruments, and
stretchable tattoos. One of such devices is a microfluidics-
based wearable colorimetric sensor designed to detect
glucose in sweat demonstrated by Xiao et al.127 Fig. 4b shows
the schematic of the device. The sensor consists of five
microfluidic channels connected to detection microchambers
with a check valve in each channel to prevent the backflow of
chemical reagents. The microchambers contain pre-
embedded glucose oxidase (GOD)–peroxidase–o-dianisidine
reagents that sense glucose in sweat. The sensor shows a
more sensitive response to glucose than conventional GOD–

peroxidase–KI systems and can perform five parallel
detections simultaneously. The sensor has a linear range for
sweat glucose of 0.1–0.5 mM with a limit of detection of 0.03
mM.

Another wearable device developed for non-invasive,
quantitative, and in situ monitoring of human sweat glucose
is the microfluidic thread/paper-based analytical device
(μTPAD) reported by Xiao et al.128 (Fig. 4c). The device
contains a cotton thread and functionalized filter paper that
achieves high-performance colorimetric sensing of glucose.
The μTPAD is integrated with an arm guard to sensitively
detect glucose in human sweat, making it a low-cost and
easy-to-use wearable device for human sweat analysis. In
addition, a soft and flexible wearable sweat epidermal
microfluidic device capable of simultaneously stimulating,
collecting, and electrochemically analysing sweat was
demonstrated by Bolat et al.129 The device integrates an
iontophoretic pilocarpine delivery system around the inlet
channels of the epidermal polydimethylsiloxane (PDMS)
microfluidic device for sweat collection and analysis. The
device eliminates the need for intense physical exercise as
the freshly generated sweat is naturally pumped into the
fluidic inlet. The on-body performance and layout of the
device were optimized. The device was evaluated for detecting
sweat glucose in several volunteers. Furthermore, the
microfluidic monitoring device was integrated with a real-
time wireless data transmission system using a flexible
printed circuit board conformal with the body surface.

Uric acid. Uric acid is a waste product typically excreted
in urine, but it can also be found in sweat at a measurable
level.130 Monitoring the levels of uric acid in sweat provides
valuable insights into an individual's health status, such as
dehydration, increased physical activity, or hyperuricemia.131

However, the correlation between the levels of uric acid in
sweat and blood is not always direct, and the concentration
of uric acid can vary depending on the individual even
without hyperuricemia.130,132 Despite these challenges,
recent advances in wearable technology have led to the
development of microfluidic-based electrochemical and
plasmonic sensors for accurate and sensitive detection of
uric acid in sweat.

Lab on a Chip Critical review

Pu
bl

is
he

d 
on

 2
8 

Fe
br

ua
ry

 2
02

4.
 D

ow
nl

oa
de

d 
on

 7
/1

9/
20

25
 2

:1
9:

55
 A

M
. 

View Article Online

https://doi.org/10.1039/d4lc00089g


1842 | Lab Chip, 2024, 24, 1833–1866 This journal is © The Royal Society of Chemistry 2024

Mogera et al. introduced a wearable plasmonic paper-based
microfluidic system for continuous and simultaneous
quantitative analysis of sweat loss, sweat rate, and metabolites
in sweat.81 Plasmonic sensors based on label-free surface-
enhanced Raman spectroscopy (SERS) provide chemical
“fingerprint” information for analyte identification, enabling
sensitive detection and quantification of uric acid in sweat at
physiological and pathological concentrations. Xu et al.
proposed a wearable microfluidics-based electrochemical sensor
incorporating a conducting polymer PEDOT:PSS hydrogel for
the accurate and sensitive detection of uric acid in sweat.133 The
prepared flexible sensor shows an ultrahigh sensitivity and a
low limit of detection and is capable of detecting uric acid levels
in real human sweat samples. These microfluidic devices have
promising applications in the construction of high-performance
wearable sensors for monitoring biomarkers, metabolites, and
nutrients. However, further research is required to fully
understand the correlation between the levels of uric acid in
sweat and blood.

Sweat pH. Sweat pH is one of the key parameters to
monitor an individual's health. The pH of human sweat
ranges typically between 4.5 and 7.0. The average pH of sweat
for a healthy human is 6.3. The pH of sweat is influenced by
various factors such as electrolyte concentration and bacterial
activity. An imbalance in pH levels can lead to skin disorders
and medical conditions. To address this, the National
University of Singapore has developed a pH sweat sensor that
offers a flexible and highly responsive method of detecting
and analysing sweat pH-related issues.134 The sensor is made
of polyaniline polymer, a cost-effective, durable, and flexible
material that can change colour based on sweat pH. The
sensor can be integrated with smartwatches or pulse
oximeters to offer continuous monitoring of sweat pH.

A wearable wristband has been developed for collecting
sweat from the skin and has a colour-based pH area for easy
readout.135 Real-time data can be transmitted to smart
applications through a Bluetooth interface. Additionally, a
wearable patch has been developed for continuous sweat
monitoring at rest, which has hydrophilic fillers for rapid
sweat uptake into the sensing channel and is integrated with
an electrochemical sensor for pH, Cl−, and levodopa
monitoring.136 Fig. 4d shows this wearable patch.

In addition to pH, sweat contains a wide range of analytes
such as lipophilic molecules, steroid hormones, and legal
and illicit drugs like heroin, morphine, and methadone.101

Sweat analysis has the potential to offer valuable insights
into an individual's physical condition and health. Over 800
unique proteins and more than 32 000 endogenous peptides
have been discovered in sweat,137 offering a promising
avenue for further research.

3.1.2. Challenges and outlook. Sweat analysis with wearable
microfluidic devices has demonstrated great potential for non-
invasive and continuous monitoring of various biomarkers.
These devices allow for real-time data collection, providing
insights into the physical condition and health of the wearer.
However, several challenges are associated with sweat analysis

and must be addressed to maximize the potential of these
devices.

One major challenge is the variation of sweat
composition, which can be influenced by factors such as
temperature, exercise, and the physiological status. This
variation affects the accuracy and reliability of the analysis,
especially in cases where sweat is exposed and contaminated.
In addition, individual differences and variations in
physiological and pathological states, such as gender, diet,
and genetics, can further complicate the analysis and
interpretation of results.

Another challenge is the limited applications of sweat
analysis using microfluidic wearable devices, which are
currently restricted to monitoring cystic fibrosis, diabetes,
and performance of athletes during exercise. Despite
providing valuable information about human physiology
through biomarkers, the potential applications of sweat
analysis remain restricted. Therefore, further research and
development are needed to explore and expand the potential
of these devices.

Overall, the challenges associated with sweat analysis using
wearable microfluidic devices highlight the need for continued
innovation and improvement in this field. Addressing these
challenges will be crucial for reaping the full potential of sweat
analysis as a non-invasive and continuous monitoring tool for
physiological and pathological conditions.

3.2. Saliva

Saliva is a readily accessible biofluid produced by three major
and numerous minor salivary glands, containing biomarkers
similar to sweat.138 The minor glands produce 10% of total
saliva, which contains more blood components, while the
major glands, including the parotid, submandibular, and
sublingual glands, produce 90% of total saliva. The
individual production of saliva is 20%, 65%, and 7–8% for
the respective glands.139 Saliva production varies depending
on factors such as time of day, age, gender, taste, and smell
stimulus. There are two types of saliva, stimulated and
unstimulated. The production rate of saliva is controlled by
the sympathetic and parasympathetic nervous systems. The
saliva's composition includes hormones, proteins,
electrolytes, mucus, enzymes, glycoproteins, inorganic and
organic compounds, and antibacterial compounds, with the
concentration of these components varying between
stimulated and unstimulated saliva.140

Saliva plays a crucial role in the human body by aiding in
digestion, lubricating the mouth, protecting teeth from
decay, and preventing infections.141 Analysing saliva can
provide valuable information about a person's health status,
including the diagnosis and monitoring of various diseases
such as diabetes, autoimmune diseases, infections, and
cancer. It can also be used to monitor drug levels and assess
the effects of medication.142 Salivary analysis is a non-
invasive, easy-to-collect, and cost-effective method compared
to other biofluids such as blood or urine. Due to its potential
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in early disease detection and personalized medicine, the
popularity of salivary analysis has increased in recent
years.101

The concentration of the biomarkers in saliva may vary
depending on the individual's physiological and pathological
state, which makes it necessary to establish a correlation
between salivary biomarkers and data of the human body.143

The analysis of saliva biomarkers can provide useful
information on various physiological and pathological
conditions, such as inflammation, hormone levels, oral
health, and stress levels. Saliva has also been used in sports
medicine to monitor athletes' hydration and electrolyte
balance.144

3.2.1. Wearable microfluidic devices for the analysis of
saliva. Saliva has been shown to contain glucose at
concentrations lower than those found in blood but with a
strong correlation between the two. Typically, the normal
glucose level in saliva ranges from 0.5 to 1.00 mg/100 ml,
which is insufficient for the growth of microorganisms.
Salivary glucose has emerged as a non-invasive alternative to
blood for diagnosing and monitoring diabetes mellitus,
especially in situations where other biofluids like blood or
urine are not easily obtainable, such as with children, the
elderly, and critically ill patients.145

Several studies have explored the development of wearable
salivary biosensors for glucose monitoring. de Castro et al.
introduced a paper microfluidic device for detecting salivary
glucose and nitrate, Fig. 5a.146 This device consists of two
interconnected detection zones through a microfluidic
channel and has been integrated into a silicon mouthguard
using a 3D-printed holder. However, the device has
limitations due to its colorimetric evaluation.147

Arakawa et al. developed a salivary biosensor that
incorporates Pt and Ag/AgCl electrodes on a mouthguard
support with an enzyme membrane, Fig. 5b.148 The electrodes
are formed on the polyethylene terephthalate glycol (PETG)
surface of the mouthguard, and the Pt working electrode is
coated with a glucose oxidase (GOD) membrane. Although the
biosensor seamlessly integrates with a glucose sensor and a
wireless measurement system, the potential disadvantage of this
technology is the form factor of the mouthguard, which may
not be a convenient or comfortable option for some users.

García-Carmona et al. developed a portable saliva-based
sensor for continuous monitoring of glucose levels in
infants.149 The sensor uses a nontoxic polymeric nipple for
saliva collection, making it more practical for infants
compared to invasive methods or wearable devices. The
glucose-oxidase enzyme is immobilized on the electrode
using chitosan, and the resulting oxidation of glucose creates
detectable changes in current that are read by a Prussian
blue electrode transducer. Although the functionality of the
sensor was tested in type I diabetic patients and showed
comparable results to blood tests, the potential disadvantage
of the device is that its response may be affected by changes
in temperature and humidity, requiring frequent
recalibration to maintain its accuracy over time.

Saliva is a promising biofluid for detecting lactate, a
compound that indicates various medical conditions and
physical performance.150 The concentration of lactate in the
saliva is correlated with that in the blood, making it a non-
invasive and convenient alternative to blood sampling. The
normal range of salivary lactate concentration is 0.1 to 2.5
mM, with higher levels indicating metabolic abnormalities or
exercise-induced stress.151

One potential application of salivary lactate measurement
is diabetes management, as lactate and glucose have a close
metabolic relationship.152 Monitoring salivary lactate levels
provides insights into glucose metabolism and helps
optimize treatment strategies. Additionally, athletes can
benefit from salivary lactate measurement as it can help to
determine lactate threshold and adjust their training
intensity accordingly.142,153

Several biosensors have been developed for salivary lactate
measurement, including wearable devices that offer real-time
monitoring. Kim et al. developed a wearable device that uses
lactate oxidase immobilized on a polymeric film for
amperometry measurement.154 However, the field of
microfluidics-based sensors for salivary lactate is still

Fig. 5 a) Conceptual diagram of a 3D-printed paper microfluidic
device for detecting salivary glucose and nitrate. b) Schematic
representation of a salivary biosensor that incorporates Pt and Ag/AgCl
electrodes on a mouthguard support with an enzyme membrane.
Reprinted with permission from ref. 143. Copyright 2020, American
Chemical Society.
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underdeveloped. Existing wearable technologies for saliva
monitoring can be expensive, complex, and not well-suited for
practical use.

Saliva analysis is a promising avenue for detecting various
hormones in the body. Cortisol, the primary hormone
detected in saliva, has a strong correlation with its
concentration in the blood and is commonly studied for
stress and anxiety monitoring.155 Salivary testosterone levels
can also be used to study behaviour and sports endocrinology
in both males and females, while salivary progesterone levels
can be used to monitor menstrual cycles and pregnancy in
females. In addition, salivary dihydroxyphenyl glycol and
melatonin have also been studied for their potential uses in
detecting catecholamine levels and pineal physiology in
newborns, respectively.156–159

Despite the potential benefits of salivary hormone
analysis, there is a lack of wearable devices that can detect
these hormones accurately and conveniently in real time.
Current devices with microfluidic technology are not flexible
or wearable on the human body, and many require additional
components for hormone analysis, making them more
expensive and inconvenient for users. For instance, while a
label-free paper-based electrical biosensor chip has been
developed to quantify salivary cortisol at the point-of-care
level, it still requires a lab-built, miniaturized PCB for
electrical connection and wireless data transmission.160

To fully harness the potential of salivary hormone analysis,
much research is needed to develop microfluidic wearable
devices that can accurately and conveniently detect salivary
hormones in real time without additional components. Such
devices would enable continuous monitoring of hormone levels
in a non-invasive manner, providing valuable insights into the
physiological state of the body. Moreover, they would be
particularly useful in fields such as sports endocrinology, where
monitoring hormone levels can provide valuable information
for optimizing training regimens and performance.

Uric acid is an abundant analyte in saliva, offering a non-
invasive means of detection. Saliva testing is a useful technique
for monitoring hyperuricemia, hypertension, metabolic
syndrome, and cardiovascular risks, as there exists a linear
relationship between blood and salivary uric acid.161 A healthy
individual has a concentration of 199 ± 27 μmol L−1 uric acid in
saliva. Kim et al. developed an instrumented mouthguard
capable of non-invasively monitoring salivary uric acid levels
using an enzyme-modified screen-printed electrode system
integrated onto a mouthguard platform along with
anatomically-miniaturized instrumentation electronics featuring
a potentiometer, a microcontroller, and a Bluetooth Low Energy
(BLE) transceiver.162 However, the device is not wearable
because of the requirement of wearing the bulky mouthguard,
which may be inconvenient and uncomfortable for some. The
absence of microfluidic wearable devices in this field is a
significant limitation toward continuous real-time monitoring
of analytes such as uric acid.

Saliva contains immunoglobulin A (IgA) and immunoglobulin
G (IgG), which are important in fighting pathogens such as

viruses, fungi, bacteria, allergic components and parasite
agents.163 The measurement of these two antibodies is crucial in
assessing mucosal humoral immunity and various intestinal
issues related to worms.164 IgA is actively transported into saliva,
while IgG enters through passive leakage. Mannoor et al.
developed an early wearable platform for detecting bacteria using
saliva as a sample in 2012.165 The team used water-soluble silk
with printed graphene to transfer it onto bovine tooth enamel,
enabling the detection of bacteria even at a single-cell level
through self-assembly of antimicrobial peptides on the graphene
surface. This resonant-circuit-based device functions without
onboard power and could be monitored wirelessly. The team
tested the device on H. pylori, a bacterium that leads to duodenal
ulcers, and demonstrated the detection of a low number of cells
in a 1 μL sample, indicating its sensitivity and potential for
remote monitoring of pathogenic bacteria. However, the semi-
selectivity of the device might limit its application. Furthermore,
since the structure and properties of bovine tooth enamel differ
from those of human tooth enamel, it might not be ideal for
human use as a substrate. In addition, saliva can also be used for
detecting human immunodeficiency virus (HIV), hepatitis C
virus, and SARS-CoV-2 (COVID-19) virus.166

The normal pH level of human saliva is 6.6 to 7.1. Real-
time monitoring of pH in saliva would be beneficial to
understand the health condition of the oral cavity and
digestive system.167 Matzeu et al. developed an edible
colorimetric pH sensor.168 The sensor shows different colours
when exposed to saliva with various pH levels, allowing for
easy observation of salivary pH levels with the naked eye. The
controlled concentration of the pH indicator ensures biosafety
and controlled cost. However, the disadvantage of this sensor
is its inability to provide continuous and real-time monitoring
of the pH changes in saliva, which is crucial for some
applications. A wearable device for wireless real-time
monitoring of salivary pH in patients has been developed by
Mondal et al.,169 which includes a miniaturized battery-less
passive transponder. The transponder consists of an RF front
end with digital modulation circuitry and sensing electrodes
for electrochemical detection and is capable of detecting
changes in pH from 4 to 9. The digital circuitry converts
sensor data into a bit sequence and provides the digital
sensing data over the reflected backscattered signal. Although
the sensor demonstrated a sensitivity of 49.5 mV pH−1, a
potential limitation is the narrow pH range. Nevertheless, this
technology has the potential for monitoring pH in soil, food,
chemicals, and other areas beyond healthcare.

3.2.2. Challenges and outlook. Saliva is a valuable bodily
fluid that can provide insight into human physiology, but
there are limited options for wearable sensors to monitor it
compared to skin. The development of wearable sensors for
saliva faces significant challenges, particularly in terms of the
form factor and user-friendliness.153,162 Current devices are
bulky and uncomfortable for long-term use, whereas users
prefer thin, patch-like or tattoo-like wearables. Integrating 5G
technologies and microfluidics into wearables could be a
potential solution to these challenges.
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Saliva is a complex fluid that contains impurities, such as
charged ions, enzymes, and microorganisms, which can
interfere with or damage oral wearable sensors.155,156,167 Despite
efforts to improve their reliability, current oral wearable sensors
still struggle to meet user demands in this regard.113 The oral
cavity is also home to numerous physiological activities that
affect the accuracy of the sensor. Although patch or sticker-like
oral cavity devices can help mitigate these issues, their removal
and washability for hygiene purposes must also be considered.
Nanotechnology and materials science may be leveraged to
achieve biocompatibility and avoid toxicity.170

Despite the above challenges, wearable devices for
analysing saliva are expected to advance to detect viruses like
HIV and SARS-CoV-2. Wearable sensors are predicted to play
a critical role in disease diagnosis and prevention by
integrating with microfluidics and AI, ultimately leading to
the diagnosis of future pandemics.

3.3. Interstitial fluid (ISF)

Interstitial fluid (ISF) is an increasingly popular biofluid for
wearable medical devices due to its accessibility and
similarity to blood composition.171,172 ISF is a colourless fluid
found in the spaces between cells, and it can be sampled
non-invasively through techniques such as microneedles. ISF
is formed by the exchange of fluids and solutes between
capillaries and cells through various types of diffusion.173

The accessibility of ISF makes it ideal for monitoring
metabolic disorders, therapy assessments, and organ failure,
among other medical conditions.101

ISF analysis has been challenging in the past due to the
difficulty in collecting and analysing samples. ISF is formed
from capillaries, its composition is very similar to that of blood,
with the highest correlation among all the biofluids in terms of
concentration of analytes.174 ISF is found in many parts of the
body, including the epidermis, around the salivary and sweat
glands, and in other tissues. As a result, ISF is accessible
through minimally invasive techniques such as
microneedles.175 Recent advances in microfluidic technology
have made it possible to develop wearable devices that can
monitor ISF in real-time. Microneedle patches emerged as a
useful analytical tool to address this information gap. These
devices measure glucose levels, electrolytes, and other
important biomarkers, providing continuous and non-invasive
health monitoring.176 This breakthrough has the potential to
transform medical technology, allowing healthcare providers to
obtain valuable information about a patient's health status
without invasive procedures. The following section presents
details about each analyte, including their concentration in
blood and associated disorders, along with the respective
wearable devices.

3.3.1. Wearable microfluidic devices for the analysis of
ISF. Interstitial fluid (ISF) is a biofluid used to measure glucose
concentration, especially in individuals with diabetes who need
to monitor their blood sugar levels regularly.177 Continuous
glucose monitoring is essential for people with diabetes to

maintain optimal glucose levels and avoid complications.178

Although blood glucose and ISF glucose levels are closely related,
ISF glucose levels are typically 10 to 15% lower. While fasting,
the average blood glucose level ranges between 70 and 100 mg
dL−1, whereas in ISF, it ranges between 60 and 90 mg dL−1.179

Traditionally, measuring blood glucose levels requires a
needle inserted into a vein or a finger prick, which can be
uncomfortable and painful. Wearable devices that use ISF for
continuous glucose monitoring are more practical and less
intrusive for diabetic individuals who require frequent
glucose monitoring. Takeuchi et al. developed a microfluidic
chip with porous microneedles (MNs) to collect ISF.176 Fig. 6a

Fig. 6 a) Conceptual illustration of a microfluidic chip with porous
microneedles (MNs) to collect ISF. b) Graphical representation of the
MIMN patch. c) Microneedle sensing platform for continuous and
minimally invasive monitoring of levodopa.
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shows a conceptual illustration of the microfluidic chip with
porous microneedles. The microfluidic chip with an interface
for the MN array enabled liquid flow through the entire
microfluidic structure. The team also designed a Na+ sensor
and correction model to eliminate the effect of individual
differences that cause fluctuations in the amount of ISF
extracted. Additionally, they designed an electrochemical
sensor with a 3D nanostructured working electrode surface to
enable precise in situ glucose measurement.

A skin-worn, disposable, wireless electrochemical
biosensor for extended non-invasive monitoring of glucose in
interstitial fluid (ISF) has been developed, integrating a
screen-printed iontophoretic electrode system for ISF
extraction by reverse iontophoresis (RI), a printed three-
electrode amperometry glucose biosensor, and an electronic
interface for control and wireless communication.180

However, it is important to note that prolonged wear of these
devices may cause skin irritation or allergic reactions, and
frequent replacement of disposable components may
increase the overall cost of long-term operation.

Currently, several options for continuous glucose
monitoring using ISF are available in the market, including
Freestyle Libre by Abbott,181 Dexcom G6 by Dexcom,182

Eversense by Senseonics,183 and Guardian Connect by
Medtronic.184 These diagnostic systems use a small needle-
like sensor and transmitter to measure glucose levels in the
subcutaneous interstitial space. Some of these systems, such
as MiniMed185 and Paradigm Revel by Medtronic and t:slim
X2 by Tandem, are integrated with insulin pumps that can
adjust insulin doses automatically based on glucose levels.

Potassium is one of the electrolytes found in ISF along with
sodium, chloride and bicarbonates. As mentioned in sweat and
saliva, the concentration of electrolytes such as potassium is
important for the well-being of the human body.186 Potassium
was found to be 4.37 mM in plasma and 3.97 mM in ISF. A new
analytical all-solid-state platform for intradermal
potentiometric detection of potassium in interstitial fluid is
presented by Parrilla et al.187 This epidermal patch showed
good analytical performance and the cell also demonstrated
fast response time, selectivity, and reproducibility, making it
appropriate for potassium analysis in ISF at both clinical and
harmful levels. Miller et al. developed a microfluidic-
microneedle platform that combines a hollow microneedle
with a microfluidic chip to analyse the potassium content in
interstitial fluid.188 To extract fluid through a channel, this
system additionally contains a solid-state ion-selective electrode
downstream.

Electrolytes such as sodium, chloride, and calcium are
essential for maintaining human health, along with potassium.
Therefore, it is imperative to monitor their levels throughout
the body. Microneedle sensors present a promising avenue for
decentralized clinical analyses, allowing for real-time, on-body
monitoring of multiple ions simultaneously.

To this end, Molinero-Fernández et al. demonstrated the
potential of membrane-based microneedles for achieving
transdermal multiplexed tracing of pH, Na+, K+, Ca2+, Li+,

and Cl−.189 Fig. 6b shows a graphical representation of the
device. The device features an array of seven solid
microneedles, externally modified to provide six indicator
electrodes – each selective for a different ion – and a
common reference electrode, all integrated into a wearable
patch that can be read in potentiometric mode. The accuracy
is assessed by benchmarking with gold standard techniques
used to characterize collected dermal fluid, blood, and
serum. The ability to detect multiple ions simultaneously is
relevant for a more comprehensive and reliable assessment
of the clinical status of a subject concerning electrolyte
disorders and other related conditions.

Another system is a minimally invasive micro-needle-based
potentiometric sensing system for continuous monitoring of
Na+ and K+ levels in the interstitial fluid (ISF) of the skin.189 Li
et al. designed this system with a miniaturized stainless steel
hollow microneedle to prevent delamination and a set of
microneedle electrodes for multiple monitoring. However, the
accuracy of the measurements is affected by factors such as
tissue heterogeneity, depth of insertion, and calibration
difficulties. Thus, it is crucial to conduct a thorough evaluation
and verification of the accuracy and dependability of these
systems before employing them for clinical purposes.

Maintaining the pH level of interstitial fluid (ISF) is
crucial for the proper functioning of cells.190 The pH levels in
the blood and ISF are closely related to each other, and any
changes in the blood pH level reflect in the ISF pH level.
Normal ISF pH ranges between 7.35 and 7.45 levels.191

However, if the pH level becomes too acidic or alkaline, it
can negatively affect cell functions such as cell division and
protein synthesis. Therefore, it is important to monitor and
maintain the pH level of ISF. García-Guzmán et al. developed
microneedle (MN) potentiometric sensors for pH transdermal
measurements.191 The initial assessment of the MN sensors
demonstrated good analytical performance with a response
range of 8.5 to 5.0 and a fast response time in both buffer
media and artificial interstitial fluid (ISF). The MN sensors
were also evaluated for their ability to resist skin insertions
in ex vivo setups using animal skins. Researchers are
currently in the early stages of studying ISF pH and there are
only a few wearable technologies available that can monitor
pH levels in vivo.

ISF-based monitoring of therapeutic and illicit drugs is an
area of growing interest. Research has demonstrated a strong
correlation between blood and concentrations of small drug
molecules in ISF, making ISF a potential alternative for
therapeutic drug monitoring.101 In a recent research study,
Mishra et al. introduced a wearable microneedle sensor array
capable of continuous electrochemical detection of opioid and
organophosphate nerve agents on a single patch platform. The
sensor array utilizes unmodified and organophosphorus
hydrolase (OPH), enzyme-modified carbon paste (CP), and
microneedle electrodes for square wave voltammetric (SWV)
detection of fentanyl and nerve agent targets, respectively.192

The management of Parkinson's disease can be challenging, as
the effectiveness of the most commonly used medication,
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levodopa, is currently assessed based on the patient's self-
report of symptoms. Goud et al. developed a new microneedle
sensing platform for continuous and minimally invasive
monitoring of levodopa.193 Fig. 6c shows the schematic
illustration of the levodopa sensing device. The platform uses
multiple microneedles on a single sensor array patch to
simultaneously and independently detect levodopa through
enzymatic-amperometry and nonenzymatic voltammetric
methods. This technology has the potential to improve the
monitoring and detection of drugs of abuse, as well as the
exposure to chemical weapons in military and civilian settings.
However, current studies in this area are limited.

3.3.2. Challenges and outlook. Wearable devices that use
interstitial fluid (ISF) have gained popularity for continuous
glucose monitoring and drug delivery. However, these devices
face various challenges such as slow extraction time, low
extraction volume, and limited options for analyte analysis,
which affect the accuracy and reliability of the data.101 Glucose
measurement in ISF is particularly delayed by 20–35 minutes
due to the slow transport rate of glucose molecules, taking up
to 1 mm to travel.194 As such, an improved sensing platform is
necessary to reduce measurement delays. Although ISF
contains many analytes, including hormones and electrolytes,
wearable devices for monitoring these markers have yet to be
introduced in the market. Furthermore, there have been
concerns regarding device safety due to reported cases of skin
burning, allergic reactions, and scarring when inserting or
placing new sensors.

To overcome these challenges, researchers are exploring
the use of biodegradable and non-toxic materials in
designing micro-needles for ISF extraction. They are also
seeking to improve the durability and reusability of the
devices to minimize frequent skin penetration. Incorporating
multiplexed sensors into the device to measure multiple
analytes, including glucose, hormones, and electrolytes, is
another solution to broaden the scope of monitoring and
provide more comprehensive data. Microfluidic technology
combined with ISF detection can address most of these
challenges and lead to significant progress in this field.

3.4. Tears

Tears are a clear, watery fluid that is secreted by the lacrimal
glands, conjunctival goblet cells, or para lacrimal glands.195

Tears serve the purpose of lubricating and sterilizing the eyes
and contain various components such as lysozyme,
immunoglobulin, sugar, and inorganic salts, including
numerous salts, proteins, enzymes, and lipids.196 Tears play
an essential role in maintaining an individual's health, and a
relationship exists between the concentration of glucose,
sodium, potassium, and other analytes in blood and tears.197

Changes in the chemical composition of tears can predict or
diagnose various health conditions or diseases, making it a
valuable diagnostic tool.198 A significant breakthrough in tear
analysis is its role in detecting breast cancer.199 Furthermore,
changes in tear composition can predict diseases, such as

diabetes and ocular diseases. Tear glucose concentration can
also be used in the adjuvant treatment of diabetes.200

Since tears are similar to sweat, they can be used for
therapeutic drug monitoring. Drugs such as acetaminophen,
lithium, anticonvulsants, methotrexate, minocycline, etc. can
be analysed using tears.201 In addition, tears have unique
merits for diagnostic purposes. Tears can be collected in a
non-invasive manner, which is especially important for
patients, who may be uncomfortable with drawing blood or
other invasive procedures.197 Tear collection can also be
performed quickly and easily, making it a practical and
convenient method for screening and monitoring diseases.
Moreover, tears for diagnosis are an emerging research field,
and researchers are exploring tear biomarkers for a variety of
applications, including the diagnosis and monitoring of
cancer, infectious diseases, and neurodegenerative disorders.
The following section discusses in detail each analyte in
tears, including the corresponding concentration in blood
and associated disorders, along with the respective wearable
devices and challenges.

3.4.1. Wearable microfluidic devices for the analysis of
tears. Glucose is one of the primary analytes that can be
measured in tears for diagnostic purposes, including
continuous monitoring of glucose levels in diabetic
patients.202 Wearable devices that incorporate microfluidics
have shown promise for monitoring tear glucose levels in a
non-invasive and continuous manner. These devices typically
use a small sensor that is placed on the eye, which is then
connected to a wearable device that analyses the tear fluid
and measures glucose levels. Kudo et al. developed a
wearable glucose sensor for detecting glucose in tears that
uses functional polymers with soft-MEMS techniques.203 The
device is a strip-based sensor that immobilizes glucose
oxidase on a flexible hydrogen peroxide electrode. However,
applying the strip over the eye may be difficult for some
individuals and can irritate if misplaced. In contrast, Chu
et al. reported a soft contact-lens biosensor for non-invasive
biomonitoring of tear fluids, Fig. 7a.204 This biosensor has
an enzyme-immobilized electrode on the surface of a PDMS
contact lens and shows a strong correlation between the
output current and glucose concentration. Yang et al. also
developed a flexible, wearable microfluidic contact lens with
capillary networks for tear diagnostics, Fig. 7b.205 The lens
allows tears to flow through capillary networks and
reservoirs, where chemical substrates respond to biomarkers
in the tears by changing colour. The concentration range of
the biomarkers can be obtained by taking pictures and
reading the red–green–blue (RGB) values in the photos using
an external device. The lens was demonstrated to be reliable
and convenient to use through in vitro tests using an artificial
microfluidic hydrogel eyeball device.

Other than glucose, monitoring the intraocular pressure
(IOP) is crucial for maintaining good eye health as it aids in the
detection and management of various eye disorders such as
glaucoma,206 ocular hypertension, and other related
conditions. IOP is the pressure inside the eye that is influenced
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by the equilibrium between the production and drainage of
fluid in the eye.207 Elevated IOP can result in damage to the
optic nerve, causing vision loss or blindness. The conventional
method of measuring IOP involves using tonometry to measure
the pressure on the eye's surface.208 However, this method has
some limitations, such as being uncomfortable for patients
and being influenced by the corneal thickness and other eye
conditions. Tear-analysing biosensors, on the other hand, are a
promising technology that offers a non-invasive and potentially
more precise method of IOP measurement.209 These biosensors
detect changes in specific proteins and biomarkers found in
tears that are correlated with changes in IOP.210 As a result,
tear-analysed biosensors have the potential to provide an
accurate and convenient way of monitoring IOP, particularly
for individuals with glaucoma or ocular hypertension who need

regular IOP measurements.211 Yang et al. developed a
microfluidic contact lens with a notched-ring structure that
monitors intraocular pressure continuously. The lens employs
a folding technique that enables the transformation of a planar
microchannel from 2D to 3D.212 Fig. 7c provides a conceptual
illustration of the device. To ensure high sensitivity, the folding
method is combined with an ultra-sensitive serpentine
microchannel in a notched-ring configuration. An et al.
reported a microfluidic contact lens sensor, which has the
potential to continuously monitor intraocular pressure without
the need for a power source or invasive procedures.213 The
sensor consists of a micropatterned soft-elastomer sensing
layer and a hard plastic reference layer. The device includes an
annular sensing chamber filled with dyed liquid and a sensing
microchannel that serves as the IOP transducer. When a
pressure is applied, the deformation of the sensing layer causes
a change in the volume of the sensing chamber, resulting in a
displacement of the dyed liquid's interface in the sensing
channel. This displacement can be optically observed using a
smartphone camera, providing a non-invasive means for
monitoring IOP.

A common problem for contact lens wearers is contact lens-
induced dry eye (CLIDE), which occurs due to reduced tear
volume, tear film instability, and increased tear osmolarity
leading to inflammation and discomfort. Zhu et al. addressed
this issue by developing an eye-blink mimicking system using a
microfluidic hydrogel with integrated microchannels.214 Their
in vitro study demonstrated that the system could enhance tear
transport from the pre-lens tear film to the post-lens tear film
by simulating the motion of an artificial eyelid in a pressure
range similar to that of human eyelid pressure. The
microchannels were made of poly(2-hydroxyethyl methacrylate)
(poly(HEMA)). This study provides a proof of concept for the
potential of the system to alleviate CLIDE.

Tear devices demonstrated utility beyond monitoring ocular
health by enabling drug detection and delivery. The presence of
various biomarkers and small molecules in tears makes them a
suitable medium for detecting drugs in the body. Additionally,
tears have been explored as a non-invasive means for drug
delivery, which offers the advantages of bypassing the
gastrointestinal and hepatic first-pass metabolism and yielding
a more rapid onset of action. In a study by Sempionatto et al., a
wearable platform for tear bioelectronics was developed.215 The
platform integrates a microfluidic electrochemical detector into
the nose-bridge pad of eyeglasses to monitor key tear
biomarkers non-invasively. The biosensing fluidic system uses
alcohol-oxidase (AOx) to collect and measure alcohol in real
time from stimulated tears, making it the first wearable
platform for tear alcohol monitoring. The platform is placed
outside the eye region, addressing the limitations of sensor
systems that require direct contact with the eye, such as contact
lens. The wireless electronic circuitry is integrated into the
eyeglasses frame, making it fully portable, convenient, and
fashionable to use.

3.4.2. Challenges and outlook. Tear-based wearable
devices have demonstrated great potential for personalized

Fig. 7 a) Structure of the SCL biosensor on the surface of a PDMS
contact lens. b) Schematic diagram of the microfluidic contact lens. c)
Schematic illustration of folding of the 2D planar notched ring into a
3D spherical ring.
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health monitoring, with the ability to detect various
biomarkers and small molecules in tears. These devices are
also cost-effective. Tear analysing wearable devices are
virtually invisible, making the users more comfortable while
wearing them. This is particularly advantageous for people
who may feel self-conscious about wearing a visible device
for monitoring their health. However, challenges such as
variability in tear composition, sample collection, and
interference from other substances need to be addressed.
Diagnosis during the production of reflex tears (tears
produced by emotional or mechanical stimulation) is also a
considerable issue. While a lot of research has been focused
on developing tear-based wearable devices for glucose
monitoring, there is also great potential for detecting drugs
and other small molecules in tears. However, compared to
glucose monitoring, the development of devices for drug
detection is still in its infancy, and currently only a few
devices are available. One of the challenges in developing
such devices is ensuring that the sensors are specific and
sensitive enough to detect the target molecules in a complex
mixture like tears. Incorporating microfluidic systems,
developing specific biosensors for multiple analytes, and
optimizing the design for user comfort and convenience can
be a solution. Additionally, advances in miniaturization,
electronic interfaces, and power sources are expected to
improve the functionality of tear-based wearable devices.
Comfort and easy material selection are important factors,
with patches underlying the eye being a reasonable solution
for those who find contact lenses invasive.216

3.5. Urine

Urine is a complex and dynamic biofluid that contains a
variety of chemical and biological analytes, including glucose,
electrolytes, and hormones. The information provided by
these analytes can be invaluable for monitoring an
individual's health and detecting the presence of diseases or
imbalances in the body.217 In addition, when a drug is
consumed, it is metabolized by the body and excreted
through urine. Therefore, urine can be analysed to identify
the presence of drugs or their metabolites.201 Due to its non-
invasive and painless collection process, as well as its
abundance, urine is an attractive biofluid for wearable
devices.

Urinalysis is a technique that has been used for decades
to analyse urine, and it involves examining the physical,
chemical, and microscopic properties of the sample.
Traditional methods of urinalysis include a urine culture,
microscopy, and dipstick tests, which can provide
information on the presence of bacteria, cells, proteins, and
other substances.218 However, these methods have their
limitations, including the need for subjective interpretation
and the potential for inaccuracies in test results.

Emerging technologies such as biosensing and
microfluidics have the potential to overcome these limitations
and improve the accuracy and precision of urinalysis for

wearable devices.217 Biosensing technologies involve biological
receptors such as enzymes or antibodies to detect specific
analytes in urine.219 Microfluidic technologies, on the other
hand, involve the manipulation of small volumes of urine
through microchannels and microreactors to perform analyses.
A well-known application of microfluidics in urine is the use of
paper-based devices for home pregnancy tests. These tests
detect the concentration of the human chorionic gonadotropin
(hCG) hormone in urine, which is a reliable indicator of
pregnancy.220 Overall, the use of urine as a biofluid in wearable
devices has significant potential for improving health outcomes
by enabling real-time monitoring and early detection of
diseases. While there are limitations to current urinalysis
techniques, ongoing advancements in biosensing,
microfluidics, and alternative specimen collection methods are
paving the way for improved analysis of this valuable biofluid.

3.5.1. Wearable microfluidic devices for the analysis of
urine. Urine is rich in analytes. Glucose is one of them. The
level of glucose in urine is correlated to blood glucose
levels.221 Normally, the kidneys filter out excess glucose in
blood and return it to circulation. However, if blood glucose
levels are consistently high, the kidneys may not be able to
reabsorb all excess glucose, which then will be excreted in
urine. Therefore, the presence of glucose in urine can
indicate elevated blood glucose levels, which can be a sign of
diabetes or other health conditions. Glucose levels in urine
may not always correlate directly with blood glucose levels.
Hydration and kidney function may also affect urine glucose
levels.222

Sodium and potassium are two electrolytes that are
commonly measured in urine. The balance of sodium and
potassium in the body is important for the regulation of
blood pressure and fluid balance.223 Typically, the kidneys
regulate the amount of sodium and potassium excreted in
urine to maintain a healthy balance in the body. However,
certain medical conditions or medications can cause
imbalances in sodium and potassium levels in urine, which
can be determined through urine analysis. Urine also
contains various hormones that can provide valuable
information about a person's health.224 As mentioned earlier,
human chorionic gonadotropin (hCG) is a hormone
produced during pregnancy,220 and its presence in urine can
confirm pregnancy. Similarly, luteinizing hormone (LH) and
follicle-stimulating hormone (FSH) are hormones that are
involved in reproductive health, and their levels in urine can
be used to monitor fertility.225,226 Cortisol, which is a stress
hormone, and aldosterone, which regulates salt and water
balance in the body, can also be detected in urine.227,228

Despite the presence of valuable analytes in urine, there
are few wearable devices capable of detecting them. While
portable urine analysis devices do exist,229–233 the number of
continuous monitoring devices utilizing microfluidic
technology is limited. Li et al. developed a flexible electrode
array that can detect various biomarkers such as potassium
ions, sodium ions, hydrogen peroxide, uric acid, and glucose,
which are indicative of certain conditions, in urine
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samples.234 The array, which is about the size of a U.S.
quarter, was connected to a circuit board with a Bluetooth
module and a lithium-ion battery power source. When
exposed to urine samples from volunteers, the device
performed comparably to a commercial urine test system.
The team then incorporated the array into a diaper and
found that it could detect the biomarkers in the presence of
urine. However, it should be noted that in a real-time setting,
where dry diapers gradually become saturated with urine, the
electrode array would require multiple measurements to
obtain stable readings. Couto et al. introduced a microfluidic
paper-based device that enables the screening and analysis of
multiple biomarkers from urine samples on diapers.37 The
device allows for testing five different biomarkers with the
same sample by distributing the urine sample into multiple
spatially segregated regions through capillary action, without
the need for external pumps. The device includes a “self-
locking” mechanism that closes the sample inlet in
approximately four minutes to prevent contamination and
continuous entrance of fluids. Moreover, the device provides
comfort by maintaining a total thickness of 5.3 mm.

Another device was reported by Cho et al. A microfluidic
paper analytical device (μPAD) was created to detect urinary
tract infections (UTIs) caused by E. coli and sexually
transmitted diseases (STDs) caused by Neisseria
gonorrhoeae.235 The device consisted of paper microfluidic
channels, with anti-E. coli or anti-N. gonorrhoeae antibodies
conjugated to submicron particles, preloaded and dried in
the centre of each channel. Undiluted human urine samples
spiked with E. coli or N. gonorrhoeae were mixed with 1%
Tween 80 for 5 minutes before being introduced into the
μPAD, which then flowed through the channel via capillary
force. The μPAD successfully filtered out urobilin, which is
responsible for the yellow colour and green fluorescence of
urine, reducing false-positive signals. Antibody-conjugated
particles were then detected by angle-specific Mie scattering,
which was quantified using a smartphone camera as a
detector. The entire μPAD assay took less than 30 seconds to
complete. However, the performance in detecting two specific
pathogens in urine samples and the effectiveness for
detecting other biomarkers or conditions may vary.

3.5.2. Challenges and outlook. Urine as a biofluid in
wearable devices requires careful consideration of sample
collection, storage, and analysis due to its discrete volume
collection and varying composition. Although urine can be
used for wearable devices, it is not a common or practical
approach because it is not continuously produced like other
biofluids such as blood, sweat, or interstitial fluid.236 Its
challenging composition containing waste products and
bacteria that can interfere with sensor measurements makes
urine difficult to work with. The collection, storage, and
handling of urine samples can introduce additional
uncertainties.

Moreover, urine is not easily accessible for continuous
monitoring using wearable devices, as traditional methods for
point-of-care urinalysis such as dipstick tests and microscopy

are often inaccurate and time-consuming. Developing more
affordable and accessible diagnostic solutions, such as
combining electrochemical biosensors with microfluidics,
could greatly improve access to urinalysis and enable earlier
detection and diagnosis of diseases. Microfluidic biosensors
could detect even low levels of biomarkers in urine and can
lead to earlier cancer diagnosis and improved monitoring of
chronic diseases, giving an increasing understanding of the
pathophysiology of various diseases. However, the success of
these devices requires further research and validation of
reference concentrations of biomarkers in urine.

3.6. Wound fluid

Wound fluid is a biofluid that is produced by the body in
response to an injury. Wound fluid plays an important role in
the wound-healing process. It is composed of a complex
mixture of water, electrolytes, proteins, and cellular
components. Wound fluid can be analysed to gain insight
into the wound healing process and to monitor the
effectiveness of treatments.237 It helps to remove debris,
bacteria, and other foreign particles from the wound site,
and it provides a moist environment that is necessary for
tissue repair and regeneration. Additionally, wound fluid
contains growth factors and cytokines.238 The presence of
certain cytokines in wound fluid can indicate the presence of
inflammation or infection and can provide information about
the repair and regeneration of the tissues. Analysing the
composition of wound fluid will help to choose the suitable
dressing technique, the need for antibiotics, etc. The exact
composition of wound fluid can vary depending on the type
and stage of the wound.239

Conventional wound dressing involves several steps,
beginning with the use of a saline solution or wound cleanser
to remove debris and bacteria from the wound.240 Next, dead
tissue may be removed using surgical debridement or
debriding agents. Based on the wound type and stage, an
appropriate dressing is selected and applied to the wound to
promote healing and protect it from further injury. This
dressing is typically changed every few days or as directed by
a healthcare provider. To supplement the dressing, additional
treatments such as antibiotics or growth factors may be used,
and the dressing is secured with bandages or tape to
maintain a sterile environment. While conventional wound
dressing is still commonly used, newer technologies such as
smart bandages and microfluidics-based devices offer
additional benefits for wound healing. Microfluidics-based
devices for wound healing have advantages over traditional
wound healing methods and dressing techniques.241 These
devices can deliver drugs in a targeted and controlled
manner, monitor wound parameters in real time, can be
customized to individual patient needs, reduce the risk of
infection, and promote faster healing.

The following section provides insights into various
analytes found in wound fluid, as well as their relevance in
smart wearable devices and bandages for wound healing. The
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section also addresses some of the challenges associated with
these devices.

3.6.1. Wearable microfluidic devices for the analysis of
wound fluid. Wound fluid contains various biochemical
molecules and parameters such as C-reactive protein, pH,
glucose, uric acid, etc. As mentioned in the previous sections,
these analytes have a dynamic balance in the normal skin.
When an injury occurs, the healthy balance of these analytes
will get disturbed and the corresponding changes can provide
reliable information for evaluating wound healing. Acute-
phase proteins such as C-reactive protein (CRP) are produced
by the liver in response to inflammation or infection in the
body.242 When there is an infection in a wound, the
concentration of CRP in the blood and local tissue increases.
As the infection is resolved, the concentration of CRP in the
blood and local tissue typically decreases. CRP can be a
useful marker for assessing the presence and severity of
wound infections.241,243 The pH of chronic wounds is a
crucial parameter for determining their condition and
potential for infection. Generally, a healthy wound has a pH
that is slightly acidic ranging between 5.5 and 6.5. However,
if the wound becomes infected, bacterial enzymes can break
down the surrounding tissue, leading to a more alkaline pH.
This shift in pH indicates that the wound is deteriorating,
and may require more extensive treatment. Thus, it is
important to monitor the pH of chronic wounds to identify
those that are at a higher risk of infection and require
immediate attention. Mostafalu et al. developed a smart and
flexible wound dressing that integrates temperature and pH
sensors into the bandages, enabling real-time monitoring of
the wound healing status.244 Additionally, the dressing
features a drug-releasing system that is responsive to stimuli
and comprises a hydrogel that contains thermo-responsive
drug carriers, as well as an electronically controlled flexible
heater that releases drugs on demand.

The wound dressing also includes a microcontroller that
processes the data obtained from the sensors and programs
the drug release protocol for personalized treatment. This
technology has the potential to revolutionize wound care by
allowing for timely and individualized treatment to promote
faster healing and improved outcomes. P. Rajput et al.
developed a prototype of a smart bandage and tested it for its
effectiveness in accelerating wound healing.245 It is capable
of monitoring the wound status using pH and moisture
sensors. The smart bandage consists of various components
such as microchannels, electroosmotic mixers, drug
reservoirs that release medication in response to heat stimuli,
a DC motor mechanism, a porous material, and small sinks
to collect used drugs. A recent study involved the
development of a smart wound dressing using a hydrogel
that can detect bacterial infections by monitoring pH
changes.246 This is done through a fluorescence resonance
energy transfer (FRET) transition between two dyes, Cyanine3
(Cy3) and Cyanine5 (Cy5), in the presence of bacteria.
Additionally, the smart dressing is capable of treating
bacterial infections through the release of antibiotics

triggered by near-infrared (NIR) light. However, pH may not
always be indicative of infection. Other factors, such as
inflammation or tissue damage, can also affect wound pH
levels, leading to false positives and unnecessary treatments.

The delivery of oxygen to a wound can accelerate and
improve wound healing. Oxygen is required for the
production of reactive oxygen species (ROS), which are
involved in clearing debris and fighting off infections during
the inflammatory phase of wound healing. Additionally,
oxygen is necessary for angiogenesis and collagen synthesis,
which are essential steps in the formation of new blood
vessels and tissues. Insufficient oxygen supply can lead to
delayed or impaired wound healing, causing chronic wounds
or non-healing ulcers. By providing a sufficient supply of
oxygen to the wound site, an oxygen delivery device can
enhance cellular processes, resulting in faster wound closure
and reduced complications. Oxygen delivery devices may be
especially beneficial for patients with underlying health
conditions that impair their ability to transport oxygen to the
wound site.

Ochoa et al. developed a low-cost alternative for
continuous delivery and sensing of oxygen. The platform was
made of an inexpensive, biocompatible, and flexible paper-
based substrate that generates and measures oxygen in a
wound region. The system takes advantage of recent
developments in flexible microsystems and inkjet printing
technology. The platform was able to increase oxygen
concentration in a gel substrate by 13% (5 ppm) in 1 hour
and was capable of sensing oxygen in a range of 5–26 ppm.
On the other hand, Lo et al. developed a new type of wound
dressing that uses microfluidic diffusion to deliver oxygen.247

This bandage not only controls the amount of oxygen
delivered but also creates a seal that conforms to the wound.
When 100% oxygen is delivered, it enters the wound tissues
and increases the oxygen levels at the site, thereby promoting
healing.

Microfluidic platforms are utilized for delivering therapeutic
agents such as drugs and growth factors directly to the wound
site. As mentioned earlier, these platforms also help in
studying cellular responses to mechanical and chemical stimuli
under controlled conditions. The application of microfluidics
in wound healing research has resulted in the creation of
innovative techniques to facilitate wound closure and tissue
regeneration.248 This includes the targeted delivery of oxygen
and nutrients to the wound area and the generation of
gradients of signalling molecules to direct cell migration and
differentiation.248–251 Huang et al. developed a new method for
creating fibres using microfluidic spinning technology that can
carry two different types of cargo and release them when
needed.252 Fig. 8a provides an illustration of microfluidic
spinning and collection of dual-cargo-loaded microfibers. This
is achieved by combining biomaterials with hydrophobic and
hydrophilic properties to form a bead-on-string microfibre
structure. The team reported successful loading of bovine
serum albumin (BSA) in the sodium alginate phase and
ibuprofen in the polylactic acid (PLA) phase. The resulting
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fibres are biocompatible and can stop bleeding in live animals.
When woven into a skin scaffold and loaded with antibacterial
and anti-inflammatory agents, the fibres have the potential to
promote faster wound healing. Fig. 8b shows a schematic
representation of the oxygen sensing and delivery patch for foot
ulcers along with a cross-sectional area of the wound.253 While
microfluidic devices and smart bandages offer several
advantages in wound healing, they may still require the
supervision of a medical expert.

3.6.2. Challenges and outlook. Smart bandages face
several obstacles in wound healing, such as the high costs
and intricate procedures involved in integrating sensors and
electronics into the bandage material. Moreover, ensuring
the dependable and precise collection of data and resolving
potential concerns related to power supply and data
transmission are also challenges that must be addressed.
Furthermore, incorporating multiple functionalities like drug
delivery and wound monitoring can increase the complexity
and expenses of smart bandages. To ensure their safety and
long-term use, materials used in the bandage need to be
biocompatible. The complexity of the wound environment,
which varies depending on the type and extent of the injury,
presents another challenge that must be addressed by

designing microfluidic devices that can accommodate this
variability and offer personalized treatment. While
microfluidic devices have the potential to significantly
enhance wound healing, they must be affordable and
accessible to patients and healthcare providers to be widely
adopted. And also, a customized approach may be needed for
optimal healing. This is because the wound environment can
be complex and variable.

4. Smart wearable microfluidic
devices

Following the introduction of digital hearing aids in the
1980s, wearables have undergone significant transformations,
evolving in form and functionality.254 One area that has seen
substantial growth is the integration of microfluidics into
healthcare wearables. However, the development of wearable
microfluidic devices for commercialization faces challenges
related to miniaturization, integration, and intelligence.
Recent advancements in microfluidics have explored the
fusion of artificial intelligence (AI) technologies, leading to
the emergence of intelligent microfluidic devices.255 Fig. 9a
illustrates examples of typical advanced wearable devices.102

The healthcare industry has been benefitting from the
rapid growth of cutting-edge technologies such as the
Internet of Things (IoT),256 artificial intelligence (AI),257 and
the Internet of Medical Things (IoMT).258 These technologies,
once confined to the realm of science fiction, have become a
tangible reality, affecting various aspects of our lives. Their
integration has expanded the capabilities and functionalities
of wearable devices. AI and IoT offer robust high-
dimensional data processing capabilities, particularly in
disease diagnostics and fatigue monitoring, paving the way
for personalized medicine and improved patient outcomes.
AI enables real-time analysis and decision-making, while IoT
and IoMT facilitate seamless data exchange and remote
monitoring. The integration of IoT into microfluidic devices
has gained momentum, driven by the rapid growth of
automation and wireless networks. This advancement
enables the creation of remotely controlled and monitored
microfluidic devices, facilitating on-site analysis and
monitoring.259,260

The increasing dependence on AI in the healthcare sector
is evident in the projected growth of global artificial
intelligence in the healthcare market, which is expected to
reach USD 31.3 billion by 2025, with a remarkable CAGR of
41.5% (according to Grand View Research, Inc.).261 This
substantial growth reflects the expanding scope and potential
of AI in improving healthcare outcomes and transforming
the industry.

The following sections explore the recent developments in
the integration of AI, IoT, IoMT and IoP in microfluidic
wearable devices for on-site performance, address the
challenges and limitations faced, and discuss potential future
directions. By examining the convergence of these
technologies, we can gain valuable insights into their impact

Fig. 8 a) Illustration of microfluidic spinning and collection of dual-
cargo-loaded microfibers. These biocompatible fibres are used for
quick haemostasis and wound healing. b) Schematic representation of
the oxygen sensing and delivery patch for foot ulcers and cross-
sectional view of the smart patch and wound area.
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on the development of intelligent, connected, and user-
centric microfluidic-based wearable devices. For ease of
reference, advantages of the intelligent wearable devices are
illustrated in Fig. 9b.102

4.1. Artificial intelligence and microfluidic wearable devices

Artificial intelligence (AI) is the simulation of human
intelligence processes by computer systems. These processes
include learning (the acquisition of information and rules for
using the information), reasoning (using the rules to reach
approximate or definite conclusions), and self-correction.262

Artificial intelligence (AI) techniques, including machine
learning and deep learning algorithms, have gained
significant attention in recent years due to their ability to
analyse complex data, recognize patterns, and make real-time
decisions. In the context of microfluidics-based wearable
devices, AI empowers these devices with intelligent data
processing, predictive modelling, and adaptive control
capabilities. By harnessing AI algorithms, these devices can
extract valuable insights from the vast amount of data
generated by microfluidic systems, leading to improved

diagnostics, personalized treatment strategies, and real-time
monitoring of health conditions.255,263

AI in wearable microfluidic devices offers valuable
applications in data analysis and decision-making. AI
algorithms excel at extracting meaningful patterns and
interpreting complex data, enabling precise diagnostics,
continuous monitoring, and personalized treatment
recommendations.264 Furthermore, AI's predictive analytics
capabilities enable early disease detection, prognosis
assessment, and preventive interventions based on historical
data. Intelligent control and automation represent another
area where AI enhances wearable devices, driving significant
advancements in healthcare.265

In microfluidic wearable devices, conventional control
systems typically operate using fixed algorithms and
predetermined rules.266 These systems adhere to predefined
instructions for tasks like drug release or parameter
monitoring. While functional, they exhibit a lack of
adaptability to dynamically changing conditions. In contrast,
AI-based control systems introduce a transformative
approach to microfluidic wearables. Rather than relying on
static rules, these systems depend on machine learning
algorithms to analyze real-time data.267 This empowers them

Fig. 9 a) Conceptual diagram of an intelligent wearable microfluidic device. b) Representation of the advantages of intelligent wearable devices.
c) Schematic representation of thread-based microfluidic networks that establish close connections with biological tissues in a three-dimensional
manner. d) Illustration of an IoT-based microfluidic cellulose-based wearable patch.
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to make decisions based on the current context, learning and
adapting over time.268

AI-based control systems offer considerable advantages in
the design of drug delivery devices, especially in the context of
diabetes management. In comparison to conventional control
systems that administer insulin at predetermined intervals,
regardless of the wearer's immediate blood glucose levels, AI-
based systems can dynamically adjust the insulin dosage based
on real-time glucose monitoring.269 However, AI-based systems
present a more sophisticated and responsive approach.270

These AI-driven systems can continuously monitor glucose
levels, assimilate patterns over time, and dynamically adjust
insulin dosages accordingly. This dynamic response ensures
more effective blood sugar control, significantly reducing the
risks associated with hypoglycemia or hyperglycemia. The
benefits of AI-based control extend beyond adaptability,
demonstrating notable strengths in personalization. These
systems excel at tailoring responses based on individual user
data, providing a level of customization that is challenging for
conventional systems to achieve.

Moreover, the significance of AI-based control systems
extends to critical tasks such as fluid mixing within microfluidic
devices, where precise combinations of fluids are paramount.265

Traditional systems may encounter challenges in adapting to
variations in fluid properties, concentrations, or environmental
factors. Conversely, AI-driven microfluidic systems excel at
optimizing mixing ratios, ensuring the achievement of accurate
and consistent results. Similarly, in the context of flow control,
AI-based systems demonstrate a heightened level of
sophistication and responsiveness.271,272 These systems can
dynamically regulate flow rates based on real-time data, adapting
seamlessly to changes in fluid viscosity or external environmental
conditions.273 This heightened adaptability contributes to the
overall efficiency and performance of microfluidic wearables,
offering a level of precision that is particularly crucial in
processes such as drug delivery or diagnostic procedures.270 The
dynamic adjustment of flow rates ensures that the microfluidic
processes remain finely tuned, providing a more accurate and
personalized experience within the wearable device.274

AI significantly contributes to personalized medicine as well
by analysing patient-specific data, including genetic
information, biomarker profiles, and physiological parameters.
AI algorithms can develop tailored treatment plans.275 These
plans consider individual characteristics, allowing for
personalized therapies, precise dosages, and targeted
interventions, ultimately leading to improved healthcare
outcomes. Furthermore, they have the potential to revolutionize
disease monitoring and management. Through continuous
monitoring and real-time feedback, these devices detect
changes in biomarkers, track disease progression, and trigger
timely interventions. This proactive approach to healthcare
management reduces the risk of complications and empowers
both patients and healthcare providers with actionable insights.
Moreover, AI facilitates the fusion and integration of data within
wearable devices.265 These devices seamlessly integrate data
from various sources, such as physiological measurements,

genetic data, and environmental factors. By combining these
diverse data streams, AI algorithms uncover hidden
relationships and provide a comprehensive understanding of an
individual's health. This comprehensive understanding enables
healthcare professionals to make more informed decisions.

The integration of artificial intelligence (AI) with point-of-
care microfluidic devices has indeed seen notable
progress.270 However, the extension of this synergy to
microfluidic wearable devices within the same domain faces
certain limitations. Several factors contribute to the current
absence of widespread AI-driven wearable microfluidic
devices. The challenges lie in the complexity of merging AI
algorithms with the miniaturized and portable nature of
wearable microfluidic devices. While microfluidic devices at
point-of-care settings benefit from integrated AI for improved
diagnostics or treatment optimization, scaling down these
capabilities for wearables introduces additional technical
hurdles. In Table 3, various examples of microfluidic devices
associated with AI-based control systems are likely presented.
These could encompass devices designed for tasks such as
flow control, mixing and particle manipulation. These devices
leverage AI algorithms to process the data obtained from
microfluidic components, allowing for more sophisticated
and adaptive functionality.23

4.2. Machine learning and deep learning in microfluidics

Machine Learning (ML) is an integral part of artificial
intelligence and serves as its core. ML algorithms construct
models using sample data, known as training data, enabling
them to make predictions or decisions without explicit
programming.276 The fundamental elements of ML are data,
algorithms (models), and computational power. ML
particularly excels in tasks involving high-dimensional data,
such as classification, regression, and clustering.277 ML
proves to be highly useful, as it learns from past
computations and extracts patterns from extensive databases,
resulting in reliable and consistent decision-making. The
field of machine learning has seen remarkable progress in
recent years, particularly in the context of wearable devices
that collect high-dimensional data on users' health.278

Machine learning algorithms are capable of processing these
data to extract insights and make predictions about an
individual's health.

Machine learning (ML) encompasses two primary
approaches: supervised learning and unsupervised learning.
Supervised learning involves training ML algorithms using
labelled data, where each data point is accompanied by its
corresponding target or outcome.279 The algorithm learns to
map input variables to the desired output based on labelled
training data. With this knowledge, ML can then make
predictions or decisions for new, unseen data. Supervised
learning is highly useful for tasks like classification and
regression, where the goal is to predict a specific outcome.
The advantage of supervised learning is that it can provide
accurate predictions and make well-informed decisions based
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on labelled training data. On the other hand, unsupervised
learning deals with unlabelled data, meaning that the input
data does not come with predefined outcomes. Instead, the
algorithm aims to find patterns, structures, or relationships
within the data on its own. It does so by grouping similar
data points or identifying underlying patterns that may exist.
Unsupervised learning is often employed in tasks such as
clustering or anomaly detection. One of the key advantages
of unsupervised learning is its ability to discover hidden
insights and uncover previously unknown patterns within
data, providing valuable insights for further analysis.280–282

Both supervised and unsupervised learning methods have
their respective advantages and use cases in machine
learning.282 Supervised learning allows for accurate
predictions and decision-making based on labelled data,
which is particularly valuable in scenarios with known
desired outcomes. Unsupervised learning, on the other hand,
can uncover hidden patterns and relationships in unlabelled
data, providing valuable insights and opportunities for
further exploration.

Deep learning is a subfield of artificial intelligence (AI)
that focuses on training artificial neural networks to learn
and make predictions or decisions without explicit
programming.283 The process involves training deep neural
networks with multiple layers to extract and understand
complex patterns and representations from large datasets. In
the context of microfluidic wearable devices, deep learning
can be utilized for various tasks such as data analysis,
decision-making, and control. The training process involves
feeding the neural network with labelled or unlabelled data,
depending on whether it's supervised or unsupervised
learning.284

Deep neural networks find significant applications in
medical diagnostics, where the pivotal role of supervised
learning becomes evident.285 In the context of wearable

devices, supervised learning is harnessed to train deep
learning models using labelled datasets. These datasets
comprise input samples such as physiological measurements
and environmental factors, paired with corresponding output
labels indicating specific health conditions or disease states.
Through this process, the deep learning model learns to
associate input data with their respective labels, enabling
accurate predictions or classifications on new, unseen data.

A critical element in supervised deep learning is the
definition and utilization of a loss function.286 This function
serves as a metric for the disparity between the model's
predictions and the true labels in the dataset.286 The
minimization of this loss involves backpropagation, a
technique where the computed loss is systematically
propagated backwards through the neural network,
influencing the model's parameters.287 This iterative
refinement allows the model to learn and enhance its
performance over time. The ultimate objective is to update
the model's parameters iteratively, improving its ability to
make accurate predictions on unseen data.276

Microfluidic platforms, when coupled with deep learning
algorithms, provide a versatile framework for simulating
physiological conditions and studying various disorders. The
application of deep learning in microfluidics allows for
efficient data analysis and pattern recognition in dynamic
biological systems. Comparative analyses of various deep
learning architectures, including baseline convolutional
neural networks (CNNs), SimpleNet, and CapsNet, reveal
insights into their strengths and weaknesses.288 Recurrent
neural networks (RNNs), known for their sequential data
processing capabilities, find application in microchip design
for diagnostics.289 Utilizing RNNs, particularly variants like
long short-term memory (LSTM), allows for real-time
processing of time-series data, showcasing the flexibility of
deep learning in handling dynamic information.

Table 3 Microfluidic devices utilizing artificial intelligence for various biofluids

Device Biofluid Technique used Advantages Ref.

μTPAD and 3D μPAD for
glucose analysis

Artificial urine Artificial neural network (ANN
trained on CMYK colour data)

1. High accuracy in classifying samples
(94.4% for μTPAD, 91.2% for μPAD)

265

Rare hereditary hemolytic
anemia (RHHA) study
using microfluidics

Blood Deep learning (DL) 1. Enables user-independent, automatic
analysis with image analysis modules

284

2. Supports continuous monitoring using
low-cost time-lapse microscopy (TLM) equipment

Microfluidic chip for
T-cell and B-cell isolation
and detection

Blood Support Vector Machine (SVM)
with Histogram of Oriented
Gradients (HOG)

1. Efficient separation of T-cells and B-cells from
sub-microliter blood samples

267

2. Utilizes SVM with HOG and colour distribution
features for fast and robust cell detection
3. Achieves high accuracy (94% for detection, 96% with
cross-validation) in distinguishing T-cells and B-cells

Enhanced immunoassay
system

Serum Convolutional neural
network (CNN)

1. Simultaneous detection of six cytokines with
high sensitivity

287

2. Short processing time
3. Rapid and accurate machine-learning-based image
processing using CNN

Soft microfluidic patch Sweat Guided image capture and
automated analysis

1. Real-time monitoring of sweat profiles 273
2. Personalized fluid intake recommendations
3. Usable in a broad range of fitness levels and conditions
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On the other hand, unsupervised learning involves
training the deep learning model using unlabelled data.
Without explicit labels, the model focuses on discovering
hidden patterns or structures within the data. Unsupervised
learning is useful for tasks such as clustering, anomaly
detection, and dimensionality reduction. In microfluidics,
unsupervised learning can help to identify distinct groups or
clusters of samples based on their characteristics or detect
unusual patterns that may indicate abnormalities or outliers
in the data.290,291

Both supervised and unsupervised learning methods have
their advantages in wearable microfluidic devices. Supervised
learning allows for targeted predictions or classifications
based on known labels, which can be beneficial for specific
diagnostic or monitoring applications. Unsupervised
learning, on the other hand, provides a data-driven approach
to uncovering patterns and relationships within complex
microfluidic datasets, enabling researchers to gain insights
and discover novel information without prior knowledge or
assumptions.

Baker et al. present an updated wearable microfluidic
sweat testing system for recreational athletes that includes a
microfluidic patch and a smartphone app that can analyse
sweat in real time using digital image processing algorithms
(ML).292 The microfluidic patch can accommodate a broad
range of sweating rates, and the smartphone app can analyse
the sweat under different lighting conditions and patch
orientations. In another study, Ning et al. reported a rapid
segmentation and sensitive analysis of CRP with a paper-
based microfluidic device using machine learning.293 The
study involves the fabrication of multi-layer μPADs using the
imprinting method for colorimetric detection of C-reactive
protein (CRP). The detection-related performance of the
μPADs is enhanced by utilizing a machine learning
algorithm, specifically, the You Only Look Once (YOLO)
model,294 which is capable of identifying the reaction areas
in the μPADs under different lighting conditions and
shooting angles of scenes. The YOLO model was trained in
the study and was able to quickly and accurately identify all
reaction areas without error. The reaction areas were then
characterized by classification algorithms to determine the
risk level of CRP concentration. A microfluidic ultrafine
particle dosimeter using an electrical detection method with
a machine-learning-aided algorithm for real-time monitoring
of particle density and size distribution was also reported.
Mostafalu et al. developed thread-based microfluidic
networks that establish close connections with biological
tissues in a three-dimensional manner, Fig. 9c.295 The
research also involves the creation of a range of physical and
chemical sensors, which are seamlessly integrated into these
microfluidic networks. These sensors are fabricated using
conductive threads infused with nanomaterials and are
interconnected with electronic circuitry through flexible
thread-based interconnects. This setup allows for the
measurement and monitoring of physiochemical tissue
properties, facilitating direct integration with tissues and

enabling the implementation of a thread-based diagnostic
device (TDD) platform.295 To showcase the capabilities of our
integrated sensor suite, we conducted experiments using
TDD platforms to measure parameters such as strain, gastric
pH, and subcutaneous pH both in vitro and in vivo.

While the field of wearable devices incorporating
microfluidics and artificial intelligence holds immense
promise, the limited prevalence of such devices prompts a
closer examination of the challenges impeding their
widespread adoption. Within the complex landscape of AI
and data science, a series of nuanced challenges must be
navigated before these innovative devices can proliferate.270

One pivotal challenge lies in ensuring the generalizability of
the AI models across diverse user populations. The ability of
these models to adapt and perform effectively across various
demographic and physiological characteristics is essential for
their practical application.283 Achieving this requires a
thorough understanding of the complexities associated with
different user contexts and the development of robust
algorithms that can accommodate these variations.

Model complexity considerations represent another
significant hurdle. Striking the right balance in model
complexity is crucial to prevent issues such as overfitting or
underfitting.263 The intricacies of microfluidic data and the
diverse nature of physiological measurements necessitate AI
models that are sophisticated enough to capture relevant
patterns yet not overly complex to hinder practical
deployment. Ethical considerations add an additional layer of
complexity.296,297 The deployment of AI in wearable devices
raises concerns related to data privacy, bias detection, and
transparency in decision-making processes. Safeguarding
user data, ensuring fairness in algorithmic outcomes, and
maintaining transparency are paramount for responsible AI
deployment in healthcare.

4.3. Internet of Things and wearable microfluidic devices

The Internet of Things (IoT) is a network of physical devices,
objects, and appliances equipped with sensors, software, and
connectivity.298 The IoT enables them to collect and exchange
data over the internet, creating a seamless connection
between the physical and digital worlds. In IoT, devices use
sensors to gather data about their surroundings or
interactions. These data include temperature, motion, and
biometrics.299 The devices process the data using internal
processors, often in real time. IoT devices connect to the
internet, allowing them to transmit data to cloud platforms
or other devices. Communication occurs through protocols
such as Wi-Fi, Bluetooth, or specialized IoT protocols.
Advanced analytics and algorithms analyse data, generating
valuable insights, detecting patterns, and triggering
automated actions. Security is vital in IoT to protect data
integrity and privacy.300 Encryption, authentication, and
access control mechanisms ensure that data are secured. The
IoT has diverse applications, including smart homes,
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industrial automation, agriculture, transportation systems,
and healthcare monitoring.

The integration of IoT technology with microfluidic
wearable devices is transforming the healthcare industry.301

This combination of microfluidics and IoT connectivity
brings new possibilities for diagnostics, monitoring, and
personalized medicine. By connecting to the internet,
microfluidic wearables can transmit real-time data, enabling
remote monitoring of a patient's health.11 Equipped with
sensors, these wearables capture vital health parameters like
biomarkers or fluid flow rates. The data are wirelessly sent to
healthcare providers or cloud-based platforms for in-depth
analysis using advanced analytics.

Real-time monitoring becomes a reality as healthcare
professionals receive continuous updates on patients'
conditions. Immediate alerts can be triggered for critical
events or abnormal readings, facilitating timely interventions
that can potentially save lives.302 Remote monitoring is
particularly beneficial for individuals with chronic conditions
or those in remote areas.

The integration of IoT also brings data-driven insights and
personalized healthcare. Advanced analytics algorithms
process the collected data, identifying trends, patterns, and
potential health issues.303 This information empowers
healthcare providers to make accurate diagnoses, create
personalized treatment plans, and deliver proactive care.
Patients can actively engage in their healthcare by accessing
health data through mobile applications, setting goals, and
receiving tailored recommendations.304

Additionally, the integration of microfluidic wearables
with IoT offers scalability and interoperability.305 These
devices can be easily deployed across various healthcare
settings, seamlessly integrating with existing systems,
electronic health records, and other medical devices. The
smooth exchange of data ensures a comprehensive
understanding of a patient's health history and enables
collaboration among healthcare professionals.306

Despite the numerous advantages and benefits of
integrating IoT with microfluidic wearable devices, the
availability of IoT-based microfluidic wearables is currently
limited. However, Ardalan et al. have made significant
progress in this area. The team developed a cellulose-based
wearable patch, combined with a smartphone-based
fluorescence imaging module and a custom smartphone app.
This system allows for non-invasive and in situ multi-sensing
of sweat biomarkers such as glucose, lactate, pH, chloride,
and volume.307 Fig. 9d shows the schematic illustration of
the device. Their smart wearable sweat patch (SWSP) sensor
consists of highly fluorescent sensing probes embedded in
paper substrates, along with microfluidic channels made of
cotton threads. These channels effectively collect sweat from
the skin surface and transport it to the paper-based sensing
probes. To capture digital images of the sensors, an imaging
module was fabricated using a 3D printer and equipped with
UV-LED lamps and an optical filter. These images are
captured via a smartphone, which also features a specially

designed app with a detection algorithm to quantify the
concentration of the biomarkers. Furthermore, the
researchers proposed an IoT-based model for their SWSP
sensor, envisioning its potential applications in the future.
Field studies involving human subjects were conducted to
assess the feasibility of the developed SWSP sensor for
analysing sweat biomarkers.

In addition to wearability, integrated Internet of Things
(IoT) will enhance the functionality of microfluidic devices.
For instance, Yuan et al. discussed the design, fabrication,
and implementation of an IoT-based electrochemical
microfluidic system, utilizing 3D printing technology, for
detecting free calcium concentration.308 This system is
capable of accurately measuring free calcium solutions
within the desired concentration range of 0 to 40 μM and
transmitting signals to the cloud for data sharing.
Consequently, this system offers a precise and real-time
monitoring solution for various biomedical samples.

4.4. Other smart technologies

Alongside artificial intelligence and the Internet of Things,
there are other technologies with the potential to
revolutionize healthcare when integrated with microfluidic
wearable devices. Two notable examples include the Internet
of Medical Things (IoMT) and the Internet of People (IoP).
These technologies hold immense capabilities for
transforming healthcare by connecting medical devices and
individuals, respectively.

The Internet of Medical Things (IoMT) facilitates the
connection and communication between medical devices,
sensors, and systems through the internet.258 When
combined with microfluidic wearable devices, the IoMT
enables seamless real-time monitoring and data collection.
This integration allows healthcare professionals to
continuously track vital signs, analyse biofluids, and monitor
various health parameters remotely. By harnessing the power
of IoMT, medical practitioners gain access to accurate and
up-to-date information, leading to enhanced diagnostics,
personalized treatments, and proactive preventive care.309 On
the other hand, the Internet of People (IoP) focuses on
interconnectivity between individuals and their surrounding
devices. When merged with microfluidic wearable devices,
the IoP empowers individuals to actively participate in
managing their health.310 Through wearable devices
integrated with IoP, users can effortlessly track their health
metrics, receive personalized health recommendations, and
even share their data with healthcare providers.311 This
collaborative approach promotes proactive healthcare
management, early detection of potential health issues, and
seamless communication between patients and medical
professionals.

4.5. Challenges and outlook

The integration of microfluidic technology with advanced
technologies such as AI, IoT, IoMT, and IoP in wearable
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devices is an emerging and complex field that faces several
challenges.312 As a result, the number of commercially
available microfluidic wearable devices integrated with these
technologies is currently limited. One key challenge is the
complexity of integration. Microfluidic devices are intricate
systems that require precise fabrication and assembly of
fluidic channels, sensors, and actuators. Incorporating AI,
IoT, IoMT, and IoP into these devices adds a layer of
complexity in terms of hardware, software, and connectivity
requirements.11 Developing reliable and robust integration
methods necessitates extensive research and development
efforts.

Moreover, there are significant technological hurdles to
overcome. One significant challenge revolves around power
consumption, as these devices must operate efficiently within
limited power constraints to ensure prolonged usability without
frequent recharging. Achieving a balance between
computational power and energy efficiency is imperative for the
success of such wearable devices. Another crucial aspect is the
miniaturization and seamless integration of AI components into
the microfluidic platform. Given the restricted physical space
available, designing and incorporating compact AI hardware
without compromising overall device performance is a non-
trivial task.287 The quality and quantity of data present
additional hurdles. Gathering representative data from
microfluidic experiments, while maintaining accuracy and
relevance, is vital for training robust AI models. Optimization of
algorithms specific to microfluidic data characteristics is also
essential for effective model performance. Interdisciplinary
collaboration is fundamental, as the development of AI-
integrated microfluidic wearable devices requires expertise in
microfluidics, AI, materials science, and other fields.264

Bridging the interdisciplinary gap is crucial for a comprehensive
understanding and successful device development.

Security and privacy concerns must not be overlooked. The
integration of various technologies, including ML, IoT, and AI,
into microfluidic devices introduces a spectrum of ethical
considerations and social security challenges. These
multifaceted issues require careful examination to ensure
responsible and equitable deployment.296 From an ethical
standpoint, obtaining informed consent for data collection and
addressing concerns related to data ownership and control are
paramount.313 Transparency in ML algorithms, regardless of
whether they involve AI, is crucial to build trust and mitigate
biases that may affect medical diagnostics. Privacy standards
must be rigorously upheld to protect sensitive health
information collected by IoT-enabled microfluidic devices.
Security measures become even more critical when considering
the interconnected nature of IoT. Safeguarding against cyber
threats and unauthorized access to data and devices is essential
to maintain the integrity and confidentiality of information.314

Ensuring fairness in ML algorithms and preventing
discrimination are an ethical imperative, especially when these
technologies are applied in healthcare settings.

Additionally, regulatory and standard considerations play
a vital role in the development and commercialization of

medical devices, including microfluidic wearables. Adhering
to regulatory guidelines and obtaining necessary
certifications can be a time-consuming and resource-
intensive process, further delaying the introduction of
integrated microfluidic wearable devices to the market.
Moreover, future research should focus on investigating
potential biases that may arise from measurement sources,
particularly considering the variability in fluid compositions
among diverse user populations. Understanding how
different demographic and physiological factors can
introduce bias in microfluidic measurements is crucial for
developing robust and unbiased AI algorithms. This
exploration is essential not only for enhancing the accuracy
and reliability of AI-integrated microfluidic devices but also
for ensuring equitable and unbiased healthcare solutions
across various user demographics.

Despite these challenges, ongoing research and
technological advancements continue to pave the way for the
future development and commercialization of microfluidic
wearable devices integrated with AI, IoT, IoMT, and IoP. As
the field progresses, we can anticipate increased innovation,
improved integration methods, and a broader range of
microfluidic wearable devices that leverage these advanced
technologies to enhance healthcare outcomes.

5. Conclusion

Microfluidics has emerged as a truly exciting and promising
technology that holds great potential in the field of healthcare.
Its unique ability to handle small sample volumes, perform
rapid reactions, and achieve high sensitivity and throughput
data has opened up a world of possibilities across diverse
fields.11

The integration of microfluidics with advanced
technologies like microelectronics, biosensors, soft materials,
and artificial intelligence (AI) has led to the development of
wearable microfluidics, a groundbreaking innovation with
immense promise in the realm of medical diagnosis and
personalized healthcare.254 By combining the power of
microfluidics with AI-driven data analytics and machine
learning (ML), we can now envision wearable devices that
provide real-time diagnostic information to patients. This
remarkable combination allows for high-throughput analysis
of small sample volumes and advanced data processing,
unlocking potential breakthroughs in cell sorting,
biomolecular analysis, and many more.

Looking towards the future, the potential of microfluidics
lies in the region of intelligent systems. As we venture into an
interconnected era where energy, electronics, communication,
computers, and sensors converge, intelligent microfluidic
systems will serve as powerful platforms for biomedical analysis.
Moreover, the integration of microfluidics with other cutting-
edge technologies such as the Internet of Things (IoT), Internet
of Medical Things (IoMT), and Internet of People (IoP) amplifies
the transformative capabilities of these wearable devices.
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While the integration of these advanced technologies with
wearable microfluidic devices brings tremendous promise, it
is crucial to acknowledge the challenges that lie ahead.
Technical complexities, standardization efforts, regulatory
considerations, and user acceptance all demand further
attention and refinement to ensure successful
implementation.

Looking ahead, we anticipate that intelligent microfluidics
will play an increasingly crucial role in both research and
industry. These integrated wearable devices offer the
potential to revolutionize healthcare and personalized
medicine, empowering individuals with accurate biofluid
analysis, remote monitoring capabilities, and personalized
treatments. As research progresses and we continue to push
the boundaries, we can expect the development of even more
sophisticated and interconnected wearable microfluidic
devices. Ultimately, this progress will pave the way for
improved healthcare outcomes, preventive care, and a better
quality of life for individuals around the globe.

In summary, the integration of microfluidics with
wearable technology and intelligence technologies such as AI,
IoT, IoMT, and IoP represents an exciting frontier in
healthcare and personalized medicine. By combining the
elegance of microfluidics with these advanced technologies,
we embark on a journey of innovation and transformation.
The possibilities are vast, and as we advance, we move closer
to a future where microfluidic wearable devices bring about
tangible improvements in healthcare, revolutionizing the way
we diagnose, monitor, and treat medical conditions.
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