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1. Introduction

The application of recombinant DNA technology has rapidly
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Toward microfluidic continuous-flow and
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biopharmaceuticals

Vikas Sharma, ©+2 Amirreza Mottafegh,i® Jeong-Un Joo,? Ji-Ho Kang,?
Lei Wang @°® and Dong-Pyo Kim @ *2

Biopharmaceuticals have emerged as powerful therapeutic agents, revolutionizing the treatment landscape
for various diseases, including cancer, infectious diseases, autoimmune and genetic disorders. These
biotherapeutics pave the way for precision medicine with their unique and targeted capabilities. The
production of high-quality biologics entails intricate manufacturing processes, including cell culture,
fermentation, purification, and formulation, necessitating specialized facilities and expertise. These complex
processes are subject to rigorous regulatory oversight to evaluate the safety, efficacy, and quality of
biotherapeutics prior to clinical approval. Consequently, these drugs undergo extensive purification unit
operations to achieve high purity by effectively removing impurities and contaminants. The field of
personalized precision medicine necessitates the development of novel and highly efficient technologies.
Microfluidic technology addresses unmet needs by enabling precise and compact separation, allowing
rapid, integrated and continuous purification modules. Moreover, the integration of intelligent
biomanufacturing systems with miniaturized devices presents an opportunity to significantly enhance the
robustness of complex downstream processing of biopharmaceuticals, with the benefits of automation
and advanced control. This allows seamless data exchange, real-time monitoring, and synchronization of
purification steps, leading to improved process efficiency, data management, and decision-making.
Integrating autonomous systems into biopharmaceutical purification ensures adherence to regulatory
standards, such as good manufacturing practice (GMP), positioning the industry to effectively address
emerging market demands for personalized precision nano-medicines. This perspective review will
emphasize on the significance, challenges, and prospects associated with the adoption of continuous,
integrated, and intelligent methodologies in small-scale downstream processing for various types of
biologics. By utilizing microfluidic technology and intelligent systems, purification processes can be
enhanced for increased efficiency, cost-effectiveness, and regulatory compliance, shaping the future of
biopharmaceutical production and enabling the development of personalized and targeted therapies.

top-grossing individual products.' There are active licenses for
443 biopharmaceutical products out of a total of 541 licensed
products, since the era of commercial pharmaceutical

and significantly transformed the global pharmaceutical sector.
Biopharmaceuticals, comprising recombinant proteins, cell-
based products, and nucleic acid therapies, exhibit a diverse
landscape, where monoclonal antibodies (mAbs) lead in both
approvals and sales, while COVID-19 vaccine was among the
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biotechnology commenced with the approval of the U.S. Food
and Drug Administration (FDA) on Eli Lilly's recombinant
human insulin in October 1982.> From 2018 to 2022, regulatory
authorities approved 197 products, encompassing mAbs,
hormone-related products, gene therapies, and vaccines.
Mammalian cell systems, predominantly Chinese hamster ovary
(CHO) cells, constitute the dominant platform, contributing to
67% of biopharmaceutical production, while for non-
mammalian platforms, E. coli leads with 36 products.’

In the US, biotech drugs undergo development following
regulations outlined in the Food, Drug & Cosmetic Act and the
Public Health Service (PHS) Act. Clinical trials are overseen by
Investigational New Drug Applications (INDs). Once ready for
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market, they require Biologics License Applications, which also
cover biosimilars under section 351(k) of the PHS Act.’> The
emergence of biosimilars has introduced new dynamics to the
market, shifting the emphasis from innovative products to
efficient bioprocesses. However, two decades ago, the biologics
industry prioritized “quality” with limited drugs and slow
regulatory approvals. Since then, platform manufacturing
processes have become standard, and critical quality attributes
(CQA) for biologics are well-characterized with advanced
analytical technologies. “Quality by design (QbD)” is now the
norm, emphasizing tracking of process parameters and product
attributes across manufacturing. In the competitive biologics
sector, cost reduction and speed to market are critical,
necessitating a shift beyond quality to cost-effectiveness.
Continuous manufacturing offers a clear path for radical cost
improvements. Dr. Janet Woodcock's 2007 call for accelerated
adoption led to the first continuous pharmaceutical process in
2011 and continuous biopharmaceutical processes in 2012,
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marking a pivotal step towards efficient and economical
manufacturing.*™°

Downstream processing is a pivotal stage in the production
of biotherapeutics, representing a significant cost component
and being critical for ensuring the quality. It encompasses
multiple purification steps to obtain a specific target bio-
product with high purity by removing the impurities, and
minimizing the risk of undesired immune response from the
contaminants. High-quality therapeutic bio-products with intact
structure and appropriate modifications ensure the successful
production of biopharmaceuticals. Regulatory agencies, such as
the FDA and the European Medicines Agency (EMA), have
stringent requirements for the quality, safety, and consistency
of biotherapeutics.> Current production strategies require many
purification steps and lack efficiency in many aspects.
Developing efficient downstream processing methods is critical
for streamlining the production of biopharmaceuticals that can
reduce production costs and increase accessibility to novel
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biopharmaceuticals. Furthermore, as the field continues to
diversely evolve, rapid optimization of downstream processing
methods would be important in realizing the full potential of
these therapies. Advancements in science and technology
enable the adoption of continuous bioprocessing, and there is a
need for further development, including hardware-software
interfacing. The implementation of continuous processing can
occur at different points in a drug product's lifecycle, such as
prior to an IND, during development, or after marketing
approval. Continuous-flow microfluidic platforms have shown
great potential in serial process intensification of reaction and
separations, including purification of biomolecules, with its
advantages of mixing efficiency, as well as controlled and
tunable setups with high precision and accuracy.” Achieving a
fully continuous, end-to-end bioprocess for biopharmaceutical
production still remains a challenge. The development of
intensified processes integrated with process analytical
technology (PAT) tools facilitates the production of high-quality
drugs, providing benefits to both industry and patients.®> Smart
biomanufacturing systems streamline the biological processes
by enabling the real-time monitoring, precise control and
optimization of critical process parameters (CPP). These
systems represent the convergence of Al-based systems,
automated platforms, and the generation of self-driving
biomanufacturing systems, offering a comprehensive solution
for the biopharmaceutical industry.®

Hence, this perspective review delves into the pivotal role of
microfluidic approaches in the downstream process of
biopharmaceuticals throughout microscale unit operations to
elevate the efficiency and control of the purification process.
However, there is a scarcity of information availability in this
field of research, and the existing reviews emphasized on the
development of continuous integrated purification processes or
specifically discussed the microfluidic unit operations. In turn,
this comprehensive review offers a collective approach,

Lei Wang received his PhD
Degree from Harbin Institute of
Technology (HIT), China, in
2015, with further studies at the
University of Maryland (College
Park), under the supervision of
Prof. Zhihong Nie and the
University of Leeds, under the
supervision of Prof. Stephen
Evans. After working as a Marie
Curie Fellow in Prof. Samuel
Sanchez's group at IBEC, Spain
(2017-2019), he moved back to
China and was appointed as
Professor at HIT. Currently, his research interest includes the
application of biomaterial self-assembly in the fields of micro/
nanomotors, biosensors, bioenergy, and biomimetics.

Lei Wang

This journal is © The Royal Society of Chemistry 2024

View Article Online

Perspective

exploring the emerging frontier of smart biomanufacturing
systems and their potential, and providing insights into the
synergistic advancements in these interconnected fields. Our
aim is to contribute a holistic perspective that encompasses the
evolving landscape of microfluidics, continuous processing, and
the integration of intelligent biomanufacturing systems,
ultimately paving the way for more efficient and sophisticated
biopharmaceutical purification strategies.

2. Current biomanufacturing
strategies and associated challenges

In the realm of biopharmaceutical manufacturing, the promise
lies in precisely controlled, miniaturized microfluidic platforms.
However, a solid grasp of the foundational unit operations
involved in processing crude biotherapeutic extracts is essential.
This section meticulously examines the steps and challenges of
conventional processing, assessing their adaptability to
microfluidic systems. This exploration serves as the bedrock for
our subsequent discussion on how microfluidics can
revolutionize biopharmaceutical production, particularly for
recombinant proteins and mRNA therapeutics.

A biopharmaceutical manufacturing process comprises two
integral components: upstream processing and downstream
processing. The specific steps within the process are contingent
upon the type of biopharmaceutical under consideration,
categorizing it into cell-based manufacturing and cell-free
manufacturing. Fig. 1 provides a brief overview of
biopharmaceuticals, illustrating production strategies
applications. The production of cell culture-based therapeutics,
including mAbs, therapeutic proteins, and growth hormones,
involves culturing of various cellular systems. In the upstream
phase, suitable cells (primarily mammalian, bacterial, or yeast
cells), cell culture media for nutrient feeds, and bioreactor vessels
of varying volumetric scales are selected to provide optimal
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Fig. 1 Overview of biopharmaceuticals: types, production and therapeutic applications.

conditions (temperature, pH, dissolved oxygen, and CO, levels).
These conditions are essential for sustaining cell growth and
producing the desired product at high yield.’ In cell-free
biotherapeutics production, such as mRNA-based biologics, the
enzymatic in vitro transcription (IVT) process replaces the
fermentation process. Components like the DNA template,
ribonucleotide triphosphates (rNTPs), transcription buffer, and
polymerase enzymes are introduced into a bioreactor with
specific concentrations, followed by temperature maintenance.
The choice of polymerase (T7, SP6, and T3) depends on the DNA
template's promoter type for IVT-based mRNA synthesis.'’ The
absence of cell-derived impurities enhances mRNA
manufacturing feasibility and safety.'”'> DNA templates are
typically obtained by linearizing purified plasmids or amplifying
regions of interest using polymerase chain reaction (PCR).
Incorporating a cap analog and poly-A tail at the 5- and 3"-ends,
respectively, boosts mRNA stability and translation efficiency.
These steps, co-transcriptional or through additional enzymatic
processes post IVT, are being optimized for increased efficiency,
mRNA stability, reduced immunogenicity, and enhanced
translation efficiency.'’

The upstream process generates a complex crude mixture
containing the desired therapeutic product. However, extensive
downstream purification is necessary to isolate the product and
achieve the high purity standards required for a marketable
drug, as mandated by regulatory guidelines. The crude mixture
undergoes downstream processing involving clarification,
capturing, polishing, and formulation steps. Selection of
separation methods depends on the product and impurity
properties, including charge, molecular weight, solubility, and

2864 | Lab Chip, 2024, 24, 2861-2882

stability. This process, typically comprising 8-10 steps,
contributing to increased production costs and inefficient unit
operations, leads to significant loss of the targeted product at
each step. For biopharmaceuticals produced from cell culture
and fermentation processes, the consideration of cellular
location (intracellular or extracellular) is also crucial, where
intracellular products necessitate an additional step of cell
lysis.>**

Clarification, the initial purification step for cell-based
biopharmaceuticals, segregates the desired product from
impurities like cell debris, host cell proteins (HCPs), DNA, and
viral particles. Unit operations, including centrifugation,
membrane filtration, precipitation, and liquid-liquid extraction,
are utilized for this purpose. Controlled centrifugation under
low-temperature conditions and specific rotation speeds
prevents biomolecule degradation and preserves structural
integrity. Membrane filtration serves multiple functions like
dialysis, diafiltration (DF), and upconcentration, considering
factors such as membrane material, molecular weight cut-off,
and crude solution flow direction.”” In protein and enzyme
purification, methods like ammonium sulfate and ethanol
precipitation are common, often followed by dialysis for
impurity removal and buffer exchange.'®'” Aqueous two-phase
systems (ATPS) provide an alternative clarification approach,
efficiently partitioning the desired product into the aqueous
phase while impurities migrate to the other phase. ATPS can be
applied directly to the fermentation broth or crude extract,
potentially eliminating the need for some centrifugation steps.
However, its limited selectivity often hinders ATPS applications
in commercial biopharmaceutical processing.'®"’

This journal is © The Royal Society of Chemistry 2024
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In the capturing step, the unit operation of affinity
chromatography employs specially formulated resins with
immobilized ligands exhibiting high affinity for the target
biomolecule on a solid support. The captured biomolecules can
be selectively eluted based on specific binding interactions,
facilitating the isolation and concentration of the desired
product. For instance, protein A chromatography resins are
extensively used in mAb purification due to protein A's high
affinity for the Fc region of antibodies.>® In IVI-mRNA
capturing, OligodT resins specifically bind to the poly-A tail of
the target mRNA sequence. Impurities incapable of binding to
affinity resins are washed away, and the desired product is
eluted from the resin-packed column using elution buffers,
such as salt gradient solutions.'® Although the capturing step
significantly reduces undesired molecules, some impurities
resembling the desired product may persist in the partially
purified solution. Therefore, polishing steps, involving multiple
chromatography techniques like ion-exchange chromatography,
hydrophobic interaction chromatography, and size-exclusion
chromatography, are necessary for the removal of remaining
impurities, relying on charge, hydrophobicity, and molecular
weight, respectively. The increasing popularity of multi-modal
chromatography-based purification is notable, where resins or
beads possess multiple features, combining ionic and
hydrophobic interactions with the target molecule, thereby
reducing the number of purification steps.>’ However, the low
dynamic binding capacity of resins makes the process
inefficient and costly. Advanced ATPS with higher selectivity,
utilizing novel phase components such as functionalized
polymeric phases and ionic liquid-based phases, have been
reported for biomolecule extraction and purification.>* Thus,
selective ATPS can be employed for the capturing step of
biopharmaceutical purification. Indeed, ATPS hold great
potential for selectively purifying biomolecules. However, their
current application remains confined to lab-scale processes. By
addressing scalability challenges and optimizing their
performance, ATPS could become a valuable tool in large-scale
biomanufacturing.

While delivering purified products of high quality, factors
such as the high expenses associated with individual unit
operations, chromatography resins, product degradation, and
diminished yields contribute to the elevated cost per dose of
biopharmaceuticals. Consequently, research endeavors are
directed towards overcoming these challenges and minimizing
product costs while upholding quality in downstream
processing steps. Continuous manufacturing strategies hold
promise to overcome these challenges.

3. Continuous processing of
biopharmaceutical manufacturing

Continuous processing of biologics has gained tremendous
popularity in recent years due to its high productivity and
reduced costs, while ensuring product quality with real-time
monitoring.>® Major biologic drug manufacturers are actively
involved in developing continuous process platforms for their

This journal is © The Royal Society of Chemistry 2024
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targeted bio-products. As detailed in Table 1, studies have
explored various lab and pilot
processes for downstream processing of biopharmaceuticals
in the macroscale. Individual unit operations (cell disruption,
buffer exchange, capturing, etc.) are combined and fully
integrated with end-to-end processes encompassing capture,
concentration, desalting, and other necessary steps. These
techniques employ macrofluidic channels, typically having
dimensions in millimeters or centimeters.

In spite of great potential, the path toward continuous
integrated bioprocessing remains unclear for the biologics
industry due to legacy infrastructure, process integration
challenges, vague regulatory guidelines, and a diverging focus
toward novel therapies (Rathore et al. 2023).° The potential
benefits of developed continuous downstream processes,
coupled with the acknowledged Ilimitations of current
methods, underscore the imperative for research and
implementation of innovative approaches. In this context,
the intrinsic advantages of microfluidic platforms, including
efficient mixing, tunable device design and fabrication,
precise control and process intensification, have emerged as
a promising and innovative approach to solving challenges
associated with continuous downstream processing of
biopharmaceuticals. This can provide optimized production
efficiency by making the manufacturing process more
simplified, robust and cost-effective.

scale continuous-flow

4. Harnessing microfluidic technology
for enhanced bioprocesses

Microfluidic systems have garnered substantial attention across
various domains, encompassing chemical synthesis, materials
science, biotechnology, and biopharmaceutical manufacturing,
for both upstream and downstream processes.*>*
Distinguished by their reduced channel dimensions (diameter
< 1 mm), microfluidic modules display augmented surface-to-
volume ratios, resulting in enhanced efficiency of mass and
heat transfer as compared to conventional batch modules.>
Furthermore, the strategic placement of microstructures (as
passive mixers) within microfluidic channels promotes vortex
flow, leading to increased mixing efficiency within a shorter
timeframe in comparison to batch-scale modules with
significant dead volume.”>> Consequently, the utilization of
microfluidic systems enables the attainment of swift and highly
efficient synthesis and separation, surpassing traditional
methods, and concurrently ensures enhanced flexibility and
reproducibility.”* Additionally, microfluidic systems offer the
capability to precisely adjust multiple process variables to
achieve optimized conditions.>® In addition to this, microfluidic
single-cell analysis offers unparalleled resolution, enabling
precise examination of individual cells. It plays a crucial role in
upstream drug development by providing insights into cellular
responses. Deciphering cellular heterogeneity is a critical
challenge, and microfluidics allows manipulation of minute
fluid volumes and individual cells. Interrogating individual cells

unveils population variations, aiding efficient analysis.

Lab Chip, 2024, 24, 2861-2882 | 2865
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Table 1 Macroscale continuous-flow unit operations for biomolecule downstream processing: applications and limitations
Continuous process
(macroscale) Application Challenges/limitations Ref.
Focused acoustics based homogenization Recovery of antibody fragments, Possibility of degradation 24, 25
cell disruption of biomolecules
Filtration Buffer exchange and upconcentration Fouling 26, 27
(microfiltration/ultrafiltration)
Three stage countercurrent Buffer exchange, antibody formulation Fouling 28
diafiltration
Precipitation Upconcentration and solubility based Inefficient mixing and time 29
impurity removal consuming
ZnCl, based precipitation Capturing of mAbs Low yield (70%) 30
Precipitation (coiled flow Impurity removal from cell culture Loss of product (10%) 31
inversion reactor) supernatant, high productivity
Tabular plug-flow crystallizer Protein crystallization — 32
Integrated precipitation and Upconcentration and washing of Loss of product (5%) 33
tangential flow filtration antibodies, virus inactivation
(antibody purity 97%)
ATPS Partitioning of biomolecules Inefficient phase mixing and time 34, 35
consuming phase separation
ATPS - packed differential Extraction of human IgG from CHO Low recovery yield 36
contactor (pilot scale) cells supernatant
Combination of functionalized Affinity-partitioning of proteins Low extraction efficiency (70%) 37
magnetic nanoparticles and (antibody fragment) from
aqueous micellar two-phase crude extract
system (15 L scale)
Coiled flow inverter Low pH viral inactivation (14.5 min) — 38
Chromatography (affinity, Selective purification of biomolecules, High cost, low dynamic binding 23
ion-exchange, hydrophobic high feasibility for continuous capacity, require repeated multiple
interaction and size-exclusion) operation steps for high purity
Periodic counter-current Capturing of proteins (enzymes and — 39, 40
chromatography antibodies), cost reduction, low
buffer consumption
Anion and cation exchange Desalting of refolded protein solution, High cost 41
chromatography (staggered enhance performance of subsequent
cycle operation) purification steps
Multi-column protein A based Model based study, effect of particle Require additional experimental 42
chromatography size on protein capture validation
Monolithic anion exchange Purification of cell culture derived Require additional steps of 43
chromatography (SMB-based) influenza virus (vaccine purification) subsequent removal of DNA
contamination
Twin-column multi-column Isolation of charge isoform of mAbs, Loss of product (10%) 44
countercurrent solvent gradient removal of multiple impurities
purification (MCSGP)
Integrated multistep End-to-end monoclonal antibody Some steps are semi-continuous 45
lab-scale process production
Twin-column counter-current mAb capture, high productivity — 46
chromatography
Countercurrent tangential Capture and polishing of mAbs, — 47
chromatography system high productivity
Activated carbon and cation Purification of mAbs Low yield (80%) 48
exchange resin based
integrated process
Combination of inclusion body High throughput and productivity, Semi-continuous 26

solubilization and SMB-SEC
(lab scale)

low buffer consumption

Microfluidic platforms integrate functionalities like cell sorting
and analysis on a single chip. Microraft arrays (MRAs) enable
high-throughput analysis of stem cell-niche interactions and
CAR-T cell functions. Laser-induced selective detachment,
cloning, and spatiotemporal profiling are also valuable
approaches.”®®°

Efficient processing of small-volume samples, including the
preparation or/and analysis of limited quantities of

2866 | Lab Chip, 2024, 24, 2861-2882

biopharmaceuticals such as recombinant proteins, is a crucial
need. Operating at a reduced scale is also imperative for space-
and cost-effective screening of protein activity and for evaluating
the conditions required for larger-scale manufacture, including
expression, purification, and assay conditions.®® Laboratory-
scale research has extensively explored microfluidic unit
operations for bioprocessing. These operations encompass cell
lysis, cell sorting, extraction, partitioning, buffer exchange, and

This journal is © The Royal Society of Chemistry 2024
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Microfluidic process Application Advantages Ref.
Microscale cell lysis methods
NH,Cl mediated micro scale Erythrocyte lysis and removal, Rapid, ~100% recovery of leukocytes 64
cell lysis device (theoretically leukocyte isolation and reduced duration of exposure
milliliter scale) to isotonic solution
Nanowire-mediated cell lysis Bacterial and yeast cell Non-penetrating approach, 65
membrane disruption, contamination free
identification of cells
Ultra-sharp silicon nano-blade Intracellular protein extraction Rapid lysis, simple and cost-effective, 66
arrays for (cell lysis chip) does not require additional reagents,
low dead volume
Silicon nanospike membrane Extraction of intracellular proteins Rapid and high throughput 67
for cell lysis (electrochemical and nucleic acids
etching)
Nanostructured barbs with Accessibility of intracellular proteins Simple method, chemical free 68
deep reactive ion etching
Multi-turn serpentine Release of intracellular nucleic acids Portable, rapid and low cost, 69
microchannel with an and proteins controlled exposure to heat
attached resistive heater
Silicon-diamond Thermal lysis of fibroblast and Uniform temperature distribution, 70
microcantilever heaters bacterial cells rapid lysis in shorter duration
of 15 s (93 °C)
Microscale filtration techniques
Polydimethylsiloxane (PDMS) Viral separation and concentration Nearly 100% permeation 77
tangential flow microfiltration of viral particles
device
Polymethylmethacrylate Purification of exosomes, removal Fast, enhanced efficiency 78
(PMMA) tangential flow of proteins and recovery
microfiltration device
(serpentine channels)
Ultrathin nanoporous Processing concentrating protein Low membrane fouling and possibility 82
silicon nitride based solutions, capturing of of extension to macroscale process
tangential flow extracellular vesicles
filtration system
Two membrane Upconcentration and buffer Salt reduction to 47%, simple yet 83
ultrafiltration/diafiltration exchange simultaneous process
(UF/DF) module (lab scale)
Microscale aqueous two
phase system (ATPS)
Three inlet and single Partitioning of FITC tagged Low stabilization time, compatible for 85
microchannel based ATPS biomolecules wide range of biomolecules with
differences in molecular weight and pI
Three inlet, serpentine channel Purification of tagged proteins Automated, rapid and high throughput 86
with two outlets based ATPS (glutathione S-transferase)
(microscale) from E. coli lysates
Combined ATPS and ionic-liquid Separation of light sensitive Integrated purification and 87
two phase system bacteriorhodopsin followed dialysis steps
by desalting
PDMS-device for ATPS Extraction of tagged IgG Reduction in operation time, suitable 88
for process optimization
Co-axial capillary device for Separation of bovine serum Rapid and controlled mass transfer area 89
co-laminar flow ATPS albumin (BSA) and time, enhanced recovery
Two module based aqueous Matrix extraction and analyte On-chip sample preparation, matrix 90
two phase extraction pre-concentration cleaning, concentration and identification
for immunoassay
Y-shaped pressure driven Separation of BSA High efficiency due to low dynamic viscosity 91
ionic liquid based ATPS of ionic liquid rich phase
Mixer-settler design based Recovery of human IgG from Multi-stage, high recovery of antibodies 92
ATPS (microscale to bench scale) cell supernatant
Glass chip with Y- and o-Amylase extraction High efficiency, faster equilibrium 93
Y-branched ATPS
ATPS Purification of membrane Faster extraction with high efficiency, 94
proteins from crude minimal emulsification
cell extract
Glass structured device for ATPS BSA recovery Parallel flow pattern and enhanced recovery 74

with double interface
Microscale chromatography
modules

This journal is © The Royal Society of Chemistry 2024
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Table 2 (continued)
Microfluidic process Application Advantages Ref.
Three chambered bead Screening of various multimodal Faster purification along with parallel 76
packed chromatography ligands, purification of labelled analysis of multiple conditions
system IgG and BSA
Miniaturized ion exchange, Purification of recombinant Highly efficient integrated 61
size exclusion and affinity proteins purification system
chromatography modules
PDMS chip packed with Investigation of binding Rapid separation process 101
methacrylate monolithic capacity for purification
polymers (weak anion-exchange) of proteins
Copolymeric immobilized metal Capturing of histidine tagged High throughput and in-process 106
affinity (IMA) adsorbent packed recombinant fusion proteins, monitoring, selective product capture
microfluidic device development of sensing tools
(microgram capacity)
Ion exchange chromatography Dynamic binding capacity 75
with packed polydispersed measurements
porous agarose beads
(microscale glass chip)
Microfluidic size exclusion Isolation of extracellular vesicles Automated, integrated and 95
chromatography (LSEC) from endogenous proteins in rapid process
(nano-liter scale) biological samples

65-68

purification of diverse biological products—ranging from
enzymes and proteins to antibodies, nucleic acids, and viruses
(see Table 2). Our perspective aims to harness the potential of
microfluidics and continuous processing to create a
miniaturized, integrated downstream processing platform

(Fig. 2).

4.1 Microfluidic modules in biopharmaceutical downstream
processing

Fig. 3 demonstrates lab scale microfluidic based unit operations
documented for the processing of various biomacromolecules.
These reported microfluidic systems investigate different
methods of cell lysis, filtration techniques, ATPS and
chromatographic separations. Grigorov et al. and Islam et al
described various microscale and milli scale cell lysis methods
that are based on chemical, mechanical, electrical, thermal, and
laser approaches, specifically designed to release intracellular
components of the cell.*®® The reports indicate that
microfluidic reactors substantially decrease the necessary time
for lysis, scaling down to the minute level owing to their high
mass transfer efficiency, without affecting the structural
integrity of the desired components such as DNA or RNA. This
approach  has also demonstrated cost-effectiveness,
characterized by affordable instrument pricing, ease of
handling, and high efficiency. A representative microfluidic
chemical lysis scheme is illustrated in Fig. 3(a), which has the
ability to process milliliters of whole blood for the isolation of
leukocytes. The developed microfluidic device lyses and
removes erythrocytes from whole blood to achieve nearly 100%
recovery of leukocytes that were promptly retuned to
physiological conditions.®* Moreover, nano-structure arrays are
reported to enable cell lysis without the need for additional
reagents or external forces, utilizing approaches such as
engineered nanowires, ultra-sharp silicon nano-blades, silicon

2868 | Lab Chip, 2024, 24, 2861-2882

nanospike membrane and nanoscale barbs. Compared to
other lysis methods, using nanoscale barbs increased the
accessibility of total protein and hemoglobin as measured by
absorption, from 1.9% and 3.2% to 4.8% and 7.5%, respectively.
Microfluidic systems excel in thermal cell lysis, boasting high
heat transfer efficiency for precise temperature control,
preventing damage to target proteins.®® Privorotskaya et al.
utilized silicon-diamond based microcantilever heaters for rapid
lysis of bacterial and fibroblast cells.”® A notable study utilized a
magnetic field for wireless induction heating in microfluidic
channels for the extraction of DNA and RNA from E. coli cells.”*
However, microfluidic-based cell lysis, primarily designed for
single-cell analysis and diagnostics, faces challenges for long-
term continuous operation due to potential clogging issues in
small channels.®*”> Moreover, mechanical and thermal lysis
methods, while offering continuous operation, suffer from high
power consumption and expensive system setups.®® Existing
microfluidic devices for cell lysis often function as standalone
units, highlighting the need for a comprehensive approach that
not only lysates cells to eliminate unwanted substances but also
separates target products with minimal contamination.
Achieving these objectives requires integration with additional
purification techniques like tangential flow filtration, while
minimizing cell debris adhesion to enable continuous
purification.

Various microfluidic-based membrane filtration processes
play a crucial role in the separation and purification of
biological products (Table 2). Notably, microfiltration (MF),
with a pore size larger than 0.1 um, was employed for the
separation of large biomaterials such as cells, bacteria, and
colloids. Additionally, ultrafiltration (UF), with a pore size
ranging from 10 nm to 100 nm, is a fundamental unit
operation in biopharmaceutical production downstream
processes, facilitating protein concentration, virus removal,
and buffer exchange.”””’® In a microfluidic system, small

This journal is © The Royal Society of Chemistry 2024
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Fig. 2 Conceptual schematic transition from conventional biopharmaceutical purification unit operations towards microfluidic integrated and
continuous unit operations: (a) cell-based biomanufacturing, specifically employed to production of plasmid DNA, therapeutic proteins,
monoclonal antibodies and enzymes; (b) cell-free biomanufacturing, describing the steps for mRNA therapeutics production.

molecules like ibuprofen racemate undergo simultaneous
enzymatic esterification and chiral-specific separation in a
triple-laminar flow of organic, ionic liquid, and aqueous
phases as a pseudo-membrane.”” In several studies, TFF was
demonstrated as an alternative to dead-end filtration,
facilitating the sustained maintenance of high flux by
minimizing concentration polarization and cake formation.*’
In a study, a modular reactor and in-line TFF microscale
system has demonstrated complete substrate conversion,
complete enzyme retention and prevention of macromolecule
buildup on the membrane.®® A highly efficient size
dependent capturing of circulating tumor cells from a blood
sample was demonstrated using an integrated microfluidic
system equipped with microfilters of conical-shaped holes, as
presented in Fig. 3(b).”® Ultrathin nanoporous silicon nitride
membranes (NPN) are reported to exhibit high critical flux in
concentrated protein solutions, making them ideal for

This journal is © The Royal Society of Chemistry 2024

microfluidic TFF, whereas micron-thick membranes perform
poorly in this context. The study showcases that NPN with an
average 60 nm pore size can process highly concentrated BSA
solutions (up to 60 mg mL™") at 30 pL min™' without
fouling.®” The elevated flow speed in the UF/DF system
resulted in minimal concentration effects, requiring frequent
recirculation in a loop, increased energy consumption and
risking temperature fluctuations. Additionally, the high flow
speed and frequent recirculation may induce elevated shear
stress on dissolved substances, potentially leading to foaming
issues and damage or denaturation of sensitive
biomolecules.** The 3D printed single pass UF/DF module
allows continuous concentration of biomolecules and
simultaneous reduction of salt buffer, demonstrating a factor
of 4.6 protein concentration while reducing salt content to
47%. Despite concentration polarization effects in higher
factors, the module's simple design and simultaneous UF/DF

Lab Chip, 2024, 24, 2861-2882 | 2869


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3lc01097j

Open Access Article. Published on 09 May 2024. Downloaded on 2/15/2026 11:53:25 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

[{ec

View Article Online

Perspective Lab on a Chip

(a) (c)
r e 8 io\/sto,u Polyethyiene giycol

Q
A
S e,
o om

<.

Sodium citrate

g

is Whole S
sis 80um
Quenching pyfrer Plood o

solution l l * _”b"\

Channel dimensions

)

s i B T
PDMS 00 O30 odn © S Mo R 5 00

e

o, Muin Channel
Va
1ecm
Leng/k” Pure /
(15-30 cm) leukocyte PEG
( ) Syringe pump Sample reservoir ( ) Inlet Packing Inlet Outlet
= 1.5mm (diameter) 1.5mm (diameter) 1.5mm (diameter)
e il
z
Outlet 2| Outlet 1 Inlet 2 0.2mm (width%“ - B 2 ~-I1 .0mm (height of chip)
. 15.0mm (tength) » " 15.0mm (length) ,
% (LOmn(-r ()Ieng ) 43*
h S a s

]
]
[ .
Y ’
Y I
Y .
Y I
[ I
[} .

CTCs @ wecs @ RBCs ®

Inlet Packing Inlet

(e) Artificial Mixture ()

Beads IN
Flow Rate

25 pg/mL Liquid IN 10 pL/min
\]r
IlgG-BODIPYFL W = 200 pm / g Beads IN

(Ex/Em = 503/512 nm) H =20 pm

W = 400 pm
H = 100 um

250 pg/mL

O' Beads IN

BSA-BODIPY TMR

(Ex/Em = 544/570 nm) p Liquid OUT

Fig. 3 The representative concepts of the microfluidic-based bioprocessing module. (a) Chemical cell lysis: device design and construction to
perform rapid lysis of whole blood to obtain pure leukocyte populations, adapted from ref. 64 with permission from American Chemical Society,
Copyright 2004; (b) tangential flow filtration (TFF): schematic diagram of the TFF module integrated with a conical-hole filter and experimental
setup for capturing circulating tumor cells, adapted from ref. 73 with permission from Springer Nature, Copyright 2014; (c) aqueous two phase
system (APTS): schematic diagram of double interface laminar flow in a microfluidic device for the recovery of BSA, adapted from ref. 74 with
permission from Elsevier B.V., Copyright 2021; (d) ion-exchange (IEX) chromatography: schematic diagram of a single microfluidic column.
Photograph shows the four parallelized columns in a single chip, adapted from ref. 75 with permission from American Institute of Chemical
Engineers, Copyright 2009; (e) multimodal chromatography (MMC): schematic illustration of the microfluidic device with three different types of
chromatography beads, labelled as I-1ll (MabSelect SuRe, Capto MMC and MEP HyperCel) packed in series to purify IgG-BODIPY and BSA-BODIPY
TMR. Microscopy image of SU-8 mold of microfluidic structure (top of right side) and polydimethylsiloxane (PDMS) structure showing the beads
packed well inside the chamber (bottom of right side), adapted from ref. 76 with permission from Wiley-VCH Verlag GmbH & Co. KGaA, Copyright
2019.
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capabilities make it economically feasible for small-scale
applications.®> Hence, the development of microfluidic or
miniaturized SPTFF modules is suggested to offer economic
advantages for future downstream processes.

The benefits of precise control in microfluidic platforms and
their high mass and heat transfer characteristics have been
widely employed in ATPS, as listed in Table 2, for the separation
and purification of biomolecules.” In a microfluidic ATPS,
phase components which include polymers (PEG, dextran, etc.),
salts (phosphate, sulphate, etc.) or ionic liquids are supplied
into the micro-scale inlet channels along with the mixture of
biomolecules such as crude extract, in a laminar or serpentine
flow. Several efficient extractions have been reported so far,
where successfully purification of proteins such as bovine
serum albumin (BSA), lipase, a-amylase, bacteriorhodopsin,
antibodies and nucleic acids has been demonstrated.**** A
schematic diagram of the ATPS with double interface laminar
flow in a microfluidic device is displayed in Fig. 3(c) for the
recovery of BSA. The results suggested that increasing the
channel length from 4 cm to 8 cm enhances the BSA recovery
from 41.8% to 71.3%.”* However, most of the microfluidic
based ATPS were applied for analytical purposes, rather than
the continuous purification of targeted bio-products. This
method demonstrates rapid extraction efficiency compared to
traditional batch-based ATPS, attributed to the high material
transfer efficiency between the two phases. As the two phases
are inherently well-separated, the need for an additional phase
separation process is eliminated. The expeditious and highly
efficient purification of membrane proteins, with an extraction
efficiency of 90%, was achieved in 7 s through the utilization of
a microfluidic continuous-flow ATPS.** However, maintaining
laminar flow poses limitations on increasing the flow rate,
necessitating precise flow control due to the substantial
viscosity difference between polymeric solutions and salt
solutions.” Hence, to enhance processing capacity and achieve
practically feasible continuous purification, it is imperative to
develop scalable numbering-up microfluidic systems capable of
conducting continuous extraction and phase separation under
diverse flow conditions, bypassing the need for a separate phase
separation process. Successfully accomplishing this necessitates
an in-depth investigation into phase and
emulsification phenomena, and the development of precise
microfluidic systems capable of inducing mixing without relying
on these phenomena.

Chromatography typically serves as the primary
purification step to enhance purity and decrease volume, but
it entails high costs, constituting a substantial portion of
total  production costs for therapeutic  proteins.
Chromatographic process development can be time-
consuming and involves large resin quantities. Consequently,
there is a growing interest in identifying cost-effective
techniques for chromatographic process development
without compromising accuracy.”® Leveraging microfluidic
devices can facilitate efficient chromatography processes,
although numerous challenges remain to transition from
mere analysis and diagnosis to practical purification. To

inversion
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achieve continuous purification, the applicability of
multicolumn chromatography methods such as SMB and
PCC requires evaluation.”® Furthermore, for the swift
purification of large volumes, membrane chromatography
could be a promising approach.””®® Meanwhile the
development of microfluidic multimodal chromatography
strategies is suggested to be considered to further minimize
the number of chromatography processes.”” Recent
advancements involve the integration of microfluidic systems
with automation technology, enabling high-throughput
screening for the analysis of various process parameters and
product quality.>>'®® In various reports (Table 2), several
efficient microfluidic chromatographic platforms have been
developed for the separation of biomacromolecules which

include ion-exchange chromatography,®'°* hydrophobic
interaction chromatography'%>"%* and affinity
chromatography.'®* "%  The investigations showed a

noteworthy impact on reagent consumption and sample
requirements.”®*®” To enhance comprehension, the concept
of ion exchange chromatography in microfluidics is depicted
in Fig. 3(d). The device possesses a 1 cm length column
filled with 70 pm mean diameter porous agarose beads, with
the aim of measuring the dynamic binding capacities.””> A
multiplex three chambered (8 nL) microfluidic device for
multimodal chromatography has been reported as shown in
Fig. 3(e), incorporating chromatography ligands with
multiple types of interactions into a single chip. The
developed system successfully purified IgG from a BSA rich
solution in <3 min.”® Microfluidic chromatography is highly
considerable for automated flow operations, leading to a
substantial increase in purification of the target biomolecule,
analysis speed and throughput compared to benchtop
methods. This technique has the potential to enhance
capabilities such as size fractionation and the removal of
high-abundance proteins, steps that are often necessary
before on-chip, point-of-care, and mass spectrometric
analyses.” An integrated microscale affinity and size-

exclusion chromatographic purification module was
developed for the separation of enhanced green fluorescent
protein (eGFP) from E. coli lysates. Quantitative

measurements indicated an average elution of 650 + 162 g
eGFP in ~35 uL of 2 M NaCl®" The biopharmaceutical
industry has recognized the potential of innovative
microfluidic designs and their performance. This has led to
the adoption of microfluidics for small-scale purification,
testing, and data generation, enabling the production of tens
to hundreds of thousands of data points per day.'*
Furthermore, the uniform distribution of substances within
microfluidic channels enhances the reliability of real-time
analytical monitoring results and facilitates the application
of PAT for biopharmaceutical downstream processes.'®
Fouling poses a significant challenge in micro-scale reactors,
particularly impacting membrane separation units. Despite
ongoing research, fouling remains unsolved, and
microfluidics is instrumental in understanding the complex
mechanisms governing its progression, offering insights into
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fundamental interactions and serving as a key tool for
dynamic investigation techniques."*®

Therefore, microfluidic processes offer a host of advantages
and integrated applications. Leveraging these benefits, they can
significantly advance continuous downstream processing of
biopharmaceuticals, specifically tailored for GMP grade
production. Fig. 2 illustrates the conceptual transition from
conventional biopharmaceutical downstream unit operations to
an integrated microfluidic platform suitable for both cell-based
and cell-free biologics production. In cellular-based approaches,
automated  single-use  microfluidic =~ devices  include
microbioreactors, reagent-free cell lysis units, selective ATPS,
mixed-mode chromatography, and TFF units. Microfluidics
enables continuous-flow production of bio-products with fewer
unit operations. Parallel microscale viral inactivation and
removal enhances downstream processing for mammalian cell-
based biomanufacturing. In cell-free systems (e.g, mRNA
vaccine production), integrated microfluidic devices employ
microbioreactors for co-transcriptional mMRNA synthesis,
capping, poly-A tailing, linked with template digestion units,
TFF, mixed-mode chromatography, and upconcentration
filtration, achieving continuous-flow purification of mRNA.

These integrated systems offer enhanced control and
performance compared to conventional methods. Additionally,
the integration of PAT-based sensors at appropriate unit
operations, an automated platform, and Al-based optimization
ensures  the  robustness of  microfluidic  based
biomanufacturing. Meanwhile, single wuse technology
enhances the safety and faster production of biologics by
reducing the need for sterilization steps, and specific design
requirements for a particular manufacturing process. These
integrated platforms prove ideal for the production of
personalized medicines, particularly for small patient
populations. The existing industrial manufacturing
infrastructure primarily caters to large-scale production,
limiting the production of bio-medicines tailored to individual
patients based on their genetic profiles and disorders. In
organic synthesis processes using microfluidic platforms, the
‘numbering-up’ method that parallelizes  multiple
microreactors has been used as an effective approach to
increase productivity while maintaining high mass and heat
transfer efficiency."'®'" To evenly inject the reactant solution
into each microreactor, a baffle disc or a bifurcation type flow
distributor was manufactured through 3D printing or
lamination of a patterned film and used as a core structure.
Using this numbering-up reaction platform, effective scale-up
of heterogeneous catalysis, photocatalysis, and ultrafast
synthesis was achieved to afford synthetic drugs and their
scaffolds."">™"* In a study, the productivity of the letrozole
scaffold synthesis using ultrafast synthesis was improved by
almost 16-fold from 123.7 g min™" to 2068.9 ¢ min™" through
the numbering method.""* The successful implementation of
the “numbering-up” approach in chemical synthesis can be
strategically extended and applied to microfluidic
bioprocessing techniques. This approach has the potential to
significantly enhance the scalability of these processes.
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5. Emergence of intelligent
biomanufacturing processes

Continuous bioprocessing holds immense promise for the
biopharmaceutical industry. However, its true potential lies
in seamless integration with intelligent technologies such as
artificial intelligence (AI), automation, and real-time PAT. AI
processes vast data volumes, revealing complex patterns and
adapting parameters in real time. Superior process outcomes
and reduced human intervention result from AI's agility.
Manual batch processes hinder efficiency and continuity.
Labor-intensive sampling, limited analytics, and time-
consuming operations persist.

Hence, next-generation bioprocessing aims for fully
automated, integrated continuous manufacturing with compact,
flexible equipment. Advanced PAT tools, multivariate analytics,
and adaptive Al control algorithms are essential. Enhanced real-
time optimization improves productivity, reduces footprint, and
minimizes waste. Automation ensures process robustness and
mitigates contamination risks. Key innovations nee rapid at-line
analytics, microfluidic technologies (integrated with Al), and
single-use components. Intelligent process simulation tools will
further revolutionize biopharmaceutical production. The overall
schematic comparison of the current and next generation of
downstream processing can be seen in Fig. 4.

The development of an intelligent continuous bioprocessing
system relies heavily on the implementation of advanced real-
time monitoring and PAT. This technology is crucial for
improving control mechanisms and data acquisition efficiency
in the bioprocessing workflow. In this context, the use of
innovative analytical tools becomes paramount. For instance,
spectroscopic techniques such as UV, IR, Raman, and online
High-Performance Liquid Chromatography (HPLC) are
employed for real-time monitoring of biopharmaceutical
attributes. These tools provide immediate, accurate data on the
bioprocess, enabling swift adjustments to maintain optimal
conditions and ensure product quality."*®

The integration of AI and automation in upstream
bioprocessing has been a focal point of extensive research.
This integration has led to the emergence of Bioprocessing
4.0,""7711% a significant advancement that reshapes the field
by combining state-of-the-art AI models and automation. In
this case, supervised machine learning (ML) models as well
as unsupervised models have been successfully applied to
upstream bioprocessing showcasing the potential of Al
algorithms in this field. As some successful examples,
supervised ML models have been used in predicting and
influencing the CPP and product CQAs."® Additionally, the
concept of digital twins, also known as the digitalization of
bioprocessing, has been employed via supervised ML models
leading to creation of a digital replica of the physical
bioprocessing system, allowing for real-time monitoring and
predictive maintenance, thereby enhancing the efficiency
and reliability of the bioprocessing operations.'*’"*
Supervised ML models have also been utilized as predictive
tools for better understanding the underlying factors in the

This journal is © The Royal Society of Chemistry 2024
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Fig. 4 Schematic comparison of current and next-generation downstream processing workflows for biopharmaceutical manufacturing. The
contemporary batch process (top) relies heavily on manual operation, whereas smart continuous processing (bottom) will implement integrated,
automated, and self-regulating systems for end-to-end production. Key advances highlighted include PAT tools, multivariate data processing,
adaptive Al, modular and single-use components, and distributed manufacturing capabilities.

manufacturing of biopharmaceuticals. These models have
been applied applications, including the
manufacturing of mAbs, enzymes,'>” and mammalian
cells,"® among others. Aside from the use of supervised ML
techniques, a study by Treloar et al. demonstrated the use
of deep reinforcement learning as an unsupervised ML
method, combined with an automated bioreactor, for
controlling microbial co-cultures for the span of around 96
replicate runs.'* The work showed that reinforcement
learning effectively maintains target population levels in
continuous bioreactors, outperforming traditional control
methods. This approach has the potential to optimize
microbial community bioprocesses, despite the challenges
in assembling such communities for biomanufacturing. The
use of continuous integrated microfluidic systems combined
with AI and automation can potentially address these
challenges. Microfluidic systems can handle small volumes
of fluids, allowing for precise control over biological
processes and reducing the consumption of expensive
reagents.

in various
125,126

This journal is © The Royal Society of Chemistry 2024

In the quest to establish intelligent bioprocessing units, it is
not only the upstream manufacturing of biopharmaceuticals
that needs to evolve as discussed above, but also the
downstream processing. The transition towards a more
integrated and automated approach in downstream processing
is equally crucial for the successful implementation of smart
bioprocessing units. To achieve this, several elements need to
work in harmony. These include the use of soft sensors, ML
algorithms, and automated platforms. Soft sensors, which
utilize data-driven or model-based approaches, enable real-time
monitoring and control of critical parameters such as
concentrations, pH, and conductivities. They provide a bridge
between the virtual models and actual processes, enhancing the
efficiency and reliability of chromatography and other unit
operations. By offering insights into adsorption kinetics, fluid
dynamics, and overall process performance, soft sensors
facilitate informed decision-making, reduce the necessity for
extensive laboratory testing, and significantly contribute to the
rapid and cost-effective development of downstream processing

units.”*® In addition to soft sensors, ML algorithms are also

Lab Chip, 2024, 24, 2861-2882 | 2873
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Elsevier B.V, Copyright 2019. (b) Use of automated liquid handlers (ALHs) to streamline the purification and buffer exchange processes in
biopharmaceutical research, adapted from ref. 144 with permission from integrated micro-chromatography systems, Inc. Published by Elsevier
Inc., Copyright 2023. (c) Automatic quality analysis system (QAS) for small-scale biopharmaceutical downstream processes, integrating an AKTA
Explorer chromatography system and an HPLC system, adapted from ref. 145 with permission from Elsevier B.V, Copyright 2023.

crucial components for constructing smart downstream
processing platforms. ML models have vastly been employed to
create accurate predictive models for mechanistic modeling™**
and parameter optimization'*>"*® in the chromatography
process, for enhancing efficiency and product quality while
reducing experimentation time and cost. ML models have also

2874 | Lab Chip, 2024, 24, 2861-2882

been intensively used for development of membranes for
UF136,137 and AP,TS'1387140

In addition to integrating ML models in downstream
processing, the construction of an automated platform capable
of smooth coordination with AI algorithms and digitalized
processes is of utmost significance. So far, a few studies of fully

This journal is © The Royal Society of Chemistry 2024
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automated downstream processing platforms have been
reported, indicating a lack of comprehensive understanding
regarding these platforms. In one study by Winters et al., the
authors modified a chromatography system to enable in-line
dilution, enhancing the efficiency of automated two-column
protein purification."*' This modification allows for the direct
loading of a second column from a first column elution, with
the pH and ionic strength adjusted for optimal binding
enabling the purifications for up to six samples of 1 L volume
through two columns without human intervention. In a more
extended study by Gomis-Fons et al., as shown in Fig. 5(a), an
automated downstream process for the purification and
formulation of a recombinant protein at the lab scale in a single
chromatography unit was developed."** This process, which
included three bind-and-elute chromatography columns, a flow-
through membrane chromatography step, and a final UF-DF
step, increased productivity up to 1.09 mg mL™* h™" and
reproducibility while reducing process time and manual work
from almost 2 working days to 1 working day. Another
important aspect of the development of an automated small-
scale continuous downstream bioprocessing was the buffer
management system involving the construction of an
automated platform.'** In this work, the authors developed an
automated buffer management system for continuous lab-scale
bioprocessing, which was able to process 34 and deliver 55 L of
buffers, corresponding to 20% of its capacity. The system,
integrated with an AKTA™ explorer chromatography system
and controlled by Orbit software, handled buffer formulation,
monitoring, and delivery, demonstrating robust performance
and consistency. In another recent study, the authors
demonstrated the use of automated liquid handlers (ALHs) to
streamline the purification and buffer exchange processes in
biopharmaceutical research as shown in Fig. 5(b)."** The
authors successfully automated two purification methods,
achieving high-quality biologics rapidly without manual
intervention, reaching percent recoveries for the three different
purified recombinant proteins ranging from 51% to 86%. In
addition to the aforementioned studies, Tallvod et al. developed
an automatic quality analysis system (QAS) for small-scale
biopharmaceutical downstream processes, integrating an AKTA
Explorer chromatography system and an HPLC system as
depicted in Fig. 5(c)."*> The QAS was demonstrated in a
continuous capture chromatography process, enabling
consistent data acquisition without human intervention, thus
paving the way for automated process monitoring and control.
Despite the promising advancements in automated
downstream processing platforms, several challenges and
limitations remain to be addressed. One major challenge is the
lack of real-time analysis, which hinders the ability to make
immediate adjustments and optimizations during the process.
Additionally, the absence of a decision-making policy and
limitations in developing an Al-based self-driving system
restricts the platform's adaptability and responsiveness to
changing conditions. Furthermore, the controlling software's
lack of flexibility, being a closed source and difficult to extend,
poses challenges for researchers and engineers seeking to
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customize and improve the system. Lastly, integrating the
platform with other independent modules presents challenges
in terms of compatibility and seamless communication between
different components. Overcoming these challenges will be
crucial for the successful implementation and widespread
adoption of automated downstream processing platforms in the
biopharmaceutical industry, demanding the need for
standardization of the systems.

5.1 Toward self-driving downstream processing platforms

Although successful utilization of the previously discussed
intelligent system with the use of real-time analytical
instruments, ML models, and automated platforms seemed
to be promising in further development of bioprocessing in
upstream and specifically downstream processing of
biopharmaceuticals, the next critical steps to fully harness
the potential of intelligent systems are the construction of Al-
based self-driving downstream processing platforms and
high-throughput experimentation automated platforms.
These innovations can generate big data to develop models
and share within the community to advance processes. The
success of self-driving platforms for organic molecule and
material synthesis suggests that similar systems could excel
when applied to microfluidic-based continuous downstream
processing systems for biopharmaceuticals. Constructing
these Al-enabled autonomous platforms and leveraging high-

throughput automated experimentation will catalyze
breakthroughs in bioprocessing efficiency, precision, and
productivity.

The recent success of self-driving Al-based platforms in the
field of organic synthetic chemistry provides a compelling
proof-of-concept and model for the development of similar
autonomous systems for biopharmaceutical downstream
processing. In organic synthesis, Al-driven robotic platforms
have demonstrated capabilities in reaction prediction,
optimization, and automation of laboratory procedures.’**'*”
Of particular relevance is the integration of these platforms with
flow and microfluidic systems, enabling real-time monitoring,
feedback, and enhanced efficiency compared to batch
processes. This parallels the proposed utilization of self-driving
units in  microfluidic-based continuous  bioprocessing
platforms, which can precisely control critical parameters like
flow rates, mixing, and separation. Such an approach would
minimize human intervention and variability while ensuring
long-term continuous processing. Additionally, the complex
optimization required in organic synthesis, which involves
navigating many connected variables, is similar to the
complexity in bioprocessing and downstream processing. This
underscores the utility of autonomous platforms in both
domains. In short, the recent advancements in self-driving
organic synthetic platforms provide an optimistic outlook on
the potential for similar transformative technologies to be
extended to biopharmaceutical downstream processing in the
near future."*® The success in organic synthesis highlights the
viability of constructing Al-powered autonomous microfluidic
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platforms to bring enhanced efficiency, consistency, and
productivity to biopharmaceutical downstream processing.

The entire self-driving and self-optimized process can be
distilled into four crucial phases. As can be seen in Fig. 6, the
process commences with real-time experimentation, where
automated exploration of various targets for biopharmaceuticals
and downstream processing units takes place. During this stage,
the system continually adapts and fine-tunes parameters such
as chromatography conditions, filtration rates, and separation
techniques to optimize efficiency and product yield.
Subsequently, a comprehensive qualification and performance
evaluation is undertaken, drawing upon data obtained from
real-time analysis such as various spectroscopy techniques (IR,
UV-vis, Raman), HPLC, dynamic light scattering (DLS), etc. This
includes a variety of sources, including advanced soft sensors'*’
that computationally estimate critical process variables, and the
integration of the internet of things (IoT),"** which facilitates
seamless data collection and transmission by interconnecting
equipment and devices. The collected data is then rigorously
processed through diverse methods, incorporating statistical
analysis and data fusion. These techniques cleanse, transform,
and extract valuable insights from raw data, serving as the
foundation for informed decision-making. In the final phase, Al
algorithms come into play as decision-making strategies,

2876 | Lab Chip, 2024, 24, 2861-2882

aiming to steer the entire microfluidic biopharmaceutical
manufacturing process towards an optimal state. These Al
algorithms fall into distinct categories, including single-
objective’®" algorithms that specialize in optimizing specific
parameters, multi-objective algorithms'** that balance multiple
goals concurrently, and reinforcement learning’*® algorithms
that introduce adaptability through ongoing interaction and
feedback. These Al-driven strategies collectively empower the
active learning self-driving self-optimized process, optimizing
biopharmaceutical production, and ensuring adaptability to the
evolving demands and challenges.

This concept can be applied to various types of microfluidic
downstream processing units. In ion exchange chromatography,
self-driving AI systems can continuously analyze the binding
kinetics of target biomolecules to the ion exchange resin. They
can adjust the gradient elution rate based on real-time
measurements, optimizing the separation of different proteins
with distinct charge properties, integrating a total of 12 different
columns and 24 mobile phases that were sequentially operated
in a straightforward automated fashion."* For instance, when
purifying mAbs, the Al algorithm can dynamically control the
salt concentration in the elution buffer, ensuring that each
antibody variant is eluted at the desired point in the
chromatogram. In gel filtration chromatography, the Al-driven

This journal is © The Royal Society of Chemistry 2024
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platform can adapt to variations in sample composition and
size. For instance, when purifying VLPs of varying sizes, the Al-
assisted system can autonomously select the appropriate
column and elution conditions to achieve effective separation.
It can also detect changes in sample concentration and adjust
the flow rate or sample injection volume in real-time, ensuring
that VLPs are consistently purified to meet the required
standards. The SEC also can benefit from the discussed
methodology by automating the analysis of elution profiles.'>®
When purifying protein aggregates or viral vectors, the system
can identify peak positions and shapes, facilitating the
detection of impurities or changes in the product's quality. If
anomalies are detected, the AI system can take corrective
actions, such as modifying column temperature or flow rate to
improve separation or purity.

Aside from chromatography, self-driving membrane-based
microfluidic processes can also be considered extremely
beneficial in this context. In UF and DF, Al systems monitor the
membrane's fouling'*® and adjust the transmembrane pressure
or flow rate to maintain consistent flux rates and ensure the
effective concentration or DF of biomolecules, like mAbs. In
TFF also, self-driving processes can bring a high level of
precision and automation to the purification of biomolecules.'>”
A self-driven microfluidic TFF system can continuously adapt
and control the filtration parameters in real time to achieve the
desired product purity and concentration. This system can
monitor the feed flow rate, transmembrane pressure, and
filtration flux rate. Based on this data, it can make instant
adjustments to the filtration parameters. For instance, if the
feed flow rate decreases due to changing characteristics of the
feed stream, the Al can increase the transmembrane pressure to
maintain a constant flux rate. This ensures that the protein is
effectively concentrated without fouling the membrane or
risking product loss. Furthermore, advanced AI algorithms,
such as recurrent neural networks (RNNs), can predict and
mitigate membrane fouling by analyzing historical data and
real-time measurements. When the system detects early signs of
fouling, it can initiate backflushing or adjust the flow rates to
mitigate fouling effects,'*® ultimately extending the run time,
and improving the overall efficiency of the TFF process. In
terms of differential centrifugation, self-driving systems can
dynamically adjust the rotor speed, temperature, and
centrifugation time to achieve precise fractionation. For
instance, when isolating cellular organelles such as
mitochondria from a cell lysate, the system can continuously
monitor the pellet formation and adjust the centrifugation
parameters to ensure optimal organelle recovery. The predictive
AT algorithm can analyze real-time data from the centrifuge,
detecting the sedimentation rates of different components and
adapting the centrifugation conditions accordingly. By doing so,
it minimizes the risk of cross-contamination between
organelles, ultimately resulting in higher purity and yield of the
isolated biomolecules. Additional to the discussed techniques,
in ATPS, an Al-driven system can optimize the partitioning of
biomolecules between two immiscible aqueous phases. For
instance, when isolating a specific enzyme from a cell lysate,
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the AI can continuously adjust the composition of the two
phases, ensuring that the enzyme preferentially partitions into
one of them. It can analyze real-time data on the biomolecule's
distribution and adapt the phase conditions to maximize the
yield and purity of the enzyme, simplifying the purification
process and reducing manual intervention.

The closed-loop active learning enables dynamic adaptation
to changing constraints and objectives, allowing for
optimization over time. With its inherent capability for
continuous self-improvement, this framework represents a
significant evolutionary leap in bioprocessing. It provides a
glimpse into a future characterized by more agile, efficient, and
intelligent bio-production processes. The true innovation in
constructing this platform lies in the integration of multiple
components to achieve a self-driving intelligent system, rather
than simply the choice of optimization algorithm (whether
classical DoE or Al-based). While advanced algorithms like
Bayesian optimization significantly enhance performance, they
represent only one element of a breakthrough self-driving
platform. This platform's practical success depends on the
seamless integration of automated robotic experimentation
units, real-time analysis, and robust data processing
capabilities.

The future of biopharmaceutical processing lies in a cutting-
edge data-sharing platform designed specifically for automated
continuous downstream processing. This platform transcends
mere data storage; it drives predictive modeling, process
development, and performance forecasting. Similar platforms
in organic chemistry have revolutionized chemical reaction
evaluation.”® While biopharmaceutical predictions may be less
complex, this system will fundamentally transform process
development, especially for interconnected steps like
chromatography. The platform functionality can be broken
down into four key stages. First, automated microfluidic
experiments: real-time data generation on downstream
operations informs bioprocessing trends. Secondly, centralized
bioprocessing repository: structured data-sharing foundation.
Thirdly, sophisticated ML models: leveraging platform data for
accurate outcome prediction.’®®  Fourthly, empowering
researchers and engineers: accelerating process development
and modeling complex scenarios. Fig. 7 visualizes the proposed
cloud-based platform, illustrating data flow from microfluidic
experiments to the centralized dataset, enabling informed
decision-making in smart biopharmaceutical downstream
processing.

The future of this field is poised to generate advanced ML
models that align with the industry's latest trends. These
models, including few-shot learning, address the industry's “big
data” challenges, which have traditionally limited the broad
applications of ML models in pharmaceutical sciences.
Furthermore, the creation of a userfriendly web-based
application will democratize access to pre-trained models,
making data-driven tools available to a wider range of groups.
While the primary focus of self-driving downstream processing
units is biopharmaceuticals, the foundational workflows and
models developed can be applied in various sectors where
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formulation is critical, such as agriculture, cosmetics, and
paints and coatings. This interdisciplinary potential highlights
the broad societal impact of such technological advancements.
Hence, automated, integrated continuous-flow microfluidic
platforms would be suitable for various applications, such as
faster generation of high-accuracy R&D data to facilitate rapid

process optimization through DoE methodologies and
development timelines, streamlined clinical trials and
manufacturing of emergency-use biopharmaceuticals. This

technology has the potential to enable the on-demand
production of high quality biologics for pandemics and niche
patient populations, particularly those suffering from rare
genetic and metabolic disorders. Furthermore, it could pave the
way for the application of data-driven autonomous systems in
the manufacturing of personalized and precision medicines,
ultimately improving cost-effectiveness and accessibility.

6. Concluding remarks

The significance of microfluidic technology in the development
of continuous downstream processing for biopharmaceuticals
is evident in its ability to enhance control, miniaturization,
separation techniques, and process integration while

2878 | Lab Chip, 2024, 24, 2861-2882

minimizing reagent consumption. The integration of functional
microfluidic modules offers a promising avenue for advancing
downstream  processing in  biopharmaceuticals.  This
combination presents an opportunity for increased robustness,
automation, and advanced control, allowing for seamless data
exchange, real-time monitoring, and synchronization of
purification steps. The resulting improvements in process
efficiency, data management, and decision-making contribute
to the reliable and streamlined production of high-quality
biopharmaceutical products. By emphasizing small-scale
continuous, integrated, and autonomous systems, this
perspective review underscores the importance, opportunities,
and challenges in shaping the future of biopharmaceutical
production. Leveraging microfluidic technology and Al-driven
autonomous systems not only improves the efficiency and cost-
effectiveness of purification processes but also ensures
compliance with regulatory standards, paving the way for the
development of targeted therapies with enhanced efficacy and
fewer side effects. In the context of personalized medicine, the
deployment of self-driving downstream processing units and
similar autonomous lab technologies can significantly enhance
the formulation development process and improve the
translation of innovative precision nano-medicines. This

This journal is © The Royal Society of Chemistry 2024
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provides hope for patients with life-threatening diseases
worldwide, underscoring the potential societal benefits of these
advancements.
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