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throughput analysis of macro- and micronutrients
in plants†

Frederikke Neergaard Mikkelsted, ab Daniel Adén,b Thomas Nikolajsenb

and Kristian Holst Laursen *a

Laser induced breakdown spectroscopy (LIBS) is an emerging technique for the analysis of elements in plant

tissue. This study reports the validation of a newly developed LIBS instrument and a method for analysis of

plant material. The LIBS setup consists of a press, a searing unit, and an analyser with an Nd:YAG laser with

a pulse energy of 0.15 mJ operating at a central wavelength of 1064 nm in a nitrogen atmosphere. The LIBS

measurements were conducted on 257 plant samples from eight different plant species. The plant samples

were also analysed with inductively coupled plasma optical emission spectroscopy (ICP-OES) to obtain

reference values for phosphorus (P), potassium (K), magnesium (Mg), sulphur (S), calcium (Ca), iron (Fe),

zinc (Zn), manganese (Mn), boron (B), and copper (Cu). Based on the reference values and the LIBS

spectra, partial least squares regression was used to build prediction models for each nutrient. Mixed

models and specific models for wheat and faba bean were made. Specific models for wheat and faba

bean performed better than mixed species models. Prediction models for P, K, Mg, S, Ca, Zn, Fe, B and

Cu from wheat were superior and were sufficiently precise and accurate to enable detection of plant

nutrient deficiencies. However, for Mn the accuracy needs to be improved. The results document the

usefulness of the novel LIBS setup for plant tissue analysis and for detection of plant nutrient deficiencies.
Introduction

Plants require 17 elements to grow and complete a life cycle.
Three of them are acquired from the air or water (carbon (C),
oxygen (O) and hydrogen (H)) and 14 are normally obtained
from the soil. The 14 nutrients are classied as either macro-
nutrients (nitrogen (N), phosphorus (P), potassium (K),
magnesium (Mg), sulphur (S), calcium (Ca)) or micronutrients
(iron (Fe), zinc (Zn), manganese (Mn), boron (B), copper (Cu),
nickel (N), chloride (Cl) and molybdenum (Mo)). It is common
practice to carry out soil analysis before sowing or planting to
get an indication of the soil nutrient status. However, soil
nutrient analysis is oen poorly related to plant availability of
nutrients.1 Visual diagnostics can be used to decide if a plant is
nutrient decient, but in many cases, the deciencies are latent
without distinct symptoms, and especially the early stages of
nutrient deciencies can be difficult to diagnose.2 Plant tissue
analysis is a well-established method for determining nutrient
h Group, Plant and Soil Science Section,

ciences, Faculty of Science, University of

rederiksberg C, Copenhagen, Denmark.

Hillerød, Denmark

tion (ESI) available. See DOI:

39, 2008–2020
status and is oen carried out with atomic spectrometry based
methods such as inductively coupled plasma optical emission
spectroscopy (ICP-OES) or inductively coupled plasma mass
spectrometry (ICP-MS).3 While these methods provide repro-
ducible and reliable results, they are time-consuming and
expensive, which to some degree hinders the widespread
adoption of plant tissue analysis in farming. In addition to the
atomic spectrometry based methods, various fast non-
destructive in situ methods exist.4 Chlorophyll a uorescence
can be measured with a handheld device and used to assess P
and Mn status,5,6 but while this represents a fast and reliable
measure it has recently been shown to be less reliable under
high light intensity.7 Several studies have conrmed the ability
of near infrared spectroscopy (NIRS) to predict N, P, K, S, Ca, Mg
and Fe status in different crops. However, measurements of
dried and homogenized leaves yield more accurate results as
compared to NIRS measurements of fresh leaves.8 Another
useful technique is X-ray uorescence spectrometry (XRF) that
exists both as benchtop and portable instruments. X-ray uo-
rescence spectrometry can be used to quantify a range of plant
nutrients including P, K, Ca, Mg, S, Fe, Zn, Mn and Cu, although
Mg, Cu, Zn and Fe are oen not included in studies or do not
have a limit of detection (LOD) sufficiently low to be t-for-
purpose.9,10 Despite the advantages of these fast and non-
destructive methods, there is still a need for fast and reliable
methods that enable multi-element analysis of plant tissue.
This journal is © The Royal Society of Chemistry 2024
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Laser induced breakdown spectroscopy (LIBS) is a promising
technology for performing multi-element analysis of plant
tissues.9 As compared to ICP-OES that requires a liquid sample,
the LIBS plasma is generated by a high-energy laser pulse that
has the potential to ionize both liquid and solid samples. This
makes LIBS a very versatile technique that can be used for
analysis in a broad range of industries, including agriculture
where soil and crop plants can be analysed.11,12

For diagnosis of plant nutrient deciencies, LIBS measure-
ments must perform well across the entire relevant concentra-
tion span for the given nutrient and be able to deliver accurate
data that allows the farmer to distinguish between nutrient
decient and healthy plants. It is challenging to establish
thresholds for decient, normal, or high concentrations of
a given nutrient in plants. There is considerable variation
between the optimal nutrient concentration between plant
species,9,13,14 and even between different genotypes of the same
species.15 Furthermore, tissue and sampling time affects the
concentration.5,16–18 It is beyond the scope of this paper to fully
cover this rather complicated situation, but for the purpose of
discussing the usefulness of the LIBS data of this study the
values for critical, midrange and high concentrations of wheat
in Fig. 1 will be used. Nitrogen cannot be measured with the
LIBS setup used in this study, since we use nitrogen gas for
optical path purging, and is consequently not included in the
gure.

Despite a decade long interest in using LIBS for plant analysis,
it is still not adopted as a widely used standard procedure. In
addition to the lack of an automated LIBS system that would
reduce the required labour, another aspect holding back the use
of LIBS is the matrix effects that arise from the laser–sample
interaction. This is affected by laser characteristics, but also by
physical properties, the homogeneity, and the particle size
distribution of the sample.32 Due to the matrix effect, it is not
Fig. 1 Critical, midrange and high concentrations for selected macron
youngest fully developed leaf. The left side in each box represents the de
represent a midrange concentration. Values are based on the findings o

This journal is © The Royal Society of Chemistry 2024
possible to use calibration standards as is common practise in
analytical chemistry. For many analytical procedures, including
ICP-OES, a set of calibration standards consisting of a number of
liquid solutions with known concentrations of the elements of
interest are used to convert the output from the instrument into
a dry matter concentration for an unknown sample. This
approach is not applicable for LIBS analysis since the calibration
standards would need to bematrixmatched, which is a challenge
for plant tissue analysis. Some attempts to create standards for
plant analysis have been made. da Silva Gomes et al.33 used acid
extraction of sugarcane leaves to create a sugarcane powder with
very low concentrations of Ca, Mg, K, P, Cu, Mn and Zn. This
powder was used as a blank standard, and samples consisting of
different ratios of blank and original sugarcane powder were
used as concentration standards. This study achieved a good
correlation with ICP-OES results. It was also stated that this is
a suitable method for determining LOD of LIBS. However, Fe was
not released by the acid extraction, deeming the method
unsuitable for quantifying Fe. Another approach is to build
a calibration curve based on certied reference material. This
approach was applied in a study of 11 plant species, and
reasonably good correlations between ICP-OES and LIBS data
were established. The setup consisted of a 360 mJ pulse Nd:YAG
laser operating at 1064 nm, and an Echelle spectrometer with
ICCD detector. Ten spectra were collected for each sample by
exposing ten different portions of the sample with 8 pulses each.
Certied reference materials were used to construct calibration
curves for P, K, Ca and Mg, and single peak emissions lines were
used to calculate the element concentration in the dried and
powdered leaves. Lines that were free from interference from
other elements were chosen for analysis. The coefficients of
variation were relatively high with values between 5% and 25%.
The authors suggest that one of the main reasons for variance in
this setup is the heterogeneous nature of the samples combined
utrients in mg g−1 (A) and micronutrients in mg g−1 (B) in wheat for
ficiency level and the right side represents a high level. The black dots
f ref. 16, 17, 19–31.
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with the low number of pulses per plant pellet. Increasing the
number of pulses per sample could decrease the uncertainty.34

The same authors subsequently published a study where they
used the same setup to measure the micronutrients Fe, Zn, Mn,
Cu and B. While the LOD was deemed to be satisfactory for plant
analysis, the correlation to ICP-OES data varied considerably.
Repeatability was also a challenge with variation from 4% to
30%. Eleven different plant species were measured, and there
was no clear trend in which plants species yielded a better
correlation between LIBS and ICP-OES.35 Devey et al.36 studied
pasture grass and quantied sodium (Na), K, Mg, Ca, P, S, Mn,
Fe, Cu, Zn and B in 100 samples of dried grass. An Nd:YAG,
1064 nm, 200mJ laser was used in combination with four charge-
coupled device detector chips, with an overall spectral range of
190 to 950 nm, and a resolution of approximately 0.1 nm. No
atmospheric purging was used during analysis. With a partial
least squares (PLS) calibration (multivariate approach), they
achieved strong correlations between LIBS and ICP-OES data for
all elements except S, Cu, and Zn. Several recent studies on LIBS
based plant tissue analysis are only based on a few samples, and
very few quantify 10 nutrients at a time. Boron and S are rarely
quantied when LIBS is adopted for analysis of plant tissue.9,37

Sulphur quantication is oen a challenge for LIBS studies since
strong S emission lines are absorbed by atmospheric oxygen. In
the present study, a newly developed automatic LIBS instrument
and method, with a sample searing procedure and an N purged
atmosphere is tested, and the ability to quantify P, K, Mg, S, Ca,
Fe, Zn, Mn, B and Cu in plant samples is demonstrated.
Furthermore, the usefulness of the method as a tool to diagnose
nutrient deciencies in plants is discussed. The performance
goals for the novel LIBS method are:

� Rapid sample preparation (max 60 seconds per sample).
� Rapid analysis (max 60 seconds per sample).
� Quantication of macro- and micronutrients in plant

tissue with a wide concentration range (from decient to high
concentrations).

� Analytical performance: relative standard deviation <5%
for triplicate measurements.

Materials and methods
Plant material

Eight different plant species were chosen for analysis; faba bean
(Vicia faba, n = 78), wheat (Triticum aestivum, n = 64), oat (Avena
sativa, n = 30), pea (Pisum sativum, n = 29), maize (Zea mays n =

18), tomato (Solanum lycopersicum, n = 12), rapeseed (Brassica
napus, n = 12) and soybean (Glycine max, n = 11). Oat, pea and
30 of the faba bean samples were eld grown in Denmark. To
cover the full range of relevant nutrient concentrations, plant
material with normal or extreme nutrient levels were produced
in a greenhouse. Wheat, faba bean, tomato, soybean, rapeseed,
and maize were grown in either hydroponics or sand. Plants
that were grown in hydroponics were germinated in vermiculite,
and seven days aer germination they were transferred to 5 litre
buckets containing a nutrient solution. The nutrient solution
contained 0.2 mM KH2PO4, 0.2 mM K2SO4, 0.3 mM MgSO4-
$7H2O, 0.1 mM NaCl, 0.3 mM Mg(NO3)2$6H2O, 0.9 mM
2010 | J. Anal. At. Spectrom., 2024, 39, 2008–2020
Ca(NO3)2$4H2O, 0.6 mM KNO3, 0.05 mM Fe(III)-EDTA-Na,
0.001 mM MnCl2$4H2O, 0.0007 mM ZnCl2, 0.0008 mM
CuSO4$5H2O, 0.002 mM H3BO3 and 0.0008 mM Na2MoO4-
$2H2O. The buckets were constantly aerated, and the nutrient
solution was renewed once a week. pH was adjusted to 5.5–6.0
every second day. Nutrient decient plants received a normal
dose of nutrients for 5 weeks, and aer that the nutrient of
interest was omitted from the nutrient solution. Plants grown in
sand were germinated from seeds directly in pots containing 2
litres of sand (four plants per pot). Each pot received 800 ml of
nutrient solution per week. For the rst 4 weeks aer germi-
nation the nutrient solution contained 0.63 mM KH2PO4,
0.63 mM K2SO4, 0.94 mM MgSO4$7H2O, 0.32 mM NaCl,
0.94 mM Mg(NO3)2$6H2O, 2.8 mM Ca(NO3)2$4H2O, 1.9 mM
KNO3, 0.16 mM Fe(III)-EDTA-Na, 0.0032 mM MnCl2$4H2O,
0.0022 mM ZnCl2, 0.0025 mM CuSO4$5H2O, 0.0063 mM H3BO3

and 0.0025 mM Na2MoO4$2H2O. Aer four weeks the concen-
trations were doubled. Nutrient deciencies were induced by
removing the nutrient of interest from the nutrient solution,
and plants with a high concentration of a given nutrient were
produced by doubling the nutrient of interest in the nutrient
solution. All plants were harvested aer three months, and all
the leaves from the plants were sampled.

Sample preparation. To remove dust particles, leaves from
eld-grown plants were washed inMilli-Q water (Milli-Q Element,
Millipore) containing 1% tween and subsequently rinsed with
Milli-Q water. They were then freeze-dried for 48 hours. Plant
samples from the greenhouse were dried for 48 hours at 60
degrees Celsius in a drying oven. The dry plant samples were
milled to a ne powder in a shaker mill using zirconium balls.

ICP-OES analysis. Samples were digested and analysed by the
following procedure: 100 mg of plant sample was transferred to
an acid washed Teon liner. Then 2.5 ml 70% v/v HNO3 and
1.0 ml 15% v/v H2O2 were added. The samples were digested in
a Milestone ultrawave single reaction chamber microwave
digestion system (Milestone Srl) and aerwards diluted to 50 ml
with Milli-Q water (Milli-Q Element, Millipore). The samples were
analysed with ICP-OES (Agilent 5100, Agilent Technologies). The
following emission lines were used: P: 213.62, K: 766.49, Ca:
318.13, Mg: 280.27, S: 180.67, Fe: 259.94, Zn: 202.55, Mn: 259.37,
B: 249.68, Cu: 327.4. Limit of detection was determined as the
average blank value +3 times the standard deviation of 10 blanks.
Limit of quantication (LOQ) was determined as the average
blank value +10 times the standard deviation, and data below
LOQ were rejected. Certied reference material (CRM) (NIST
1515, apple (Malus spp.) leaf, National Institute of Standards and
Technology) was included in every batch (22 samples), and only
elements that were within ±10% of the certied values were
accepted. The samples were analysed in two batches ve months
apart, with the eld grown pea, faba bean and oat samples in the
rst batch and the greenhouse grown wheat, faba bean, tomato,
rapeseed, soybean, and maize in the second batch.

LIBS instrumentation and analysis. The LIBS system (Micral,
FOSS Analytics) consists of three units; an automatic press,
a searing unit, and an analyser (Fig. 2). The automatic press can
pelletize three samples simultaneously with a dwell time of 30
seconds. The searing unit, which can handle three samples at
This journal is © The Royal Society of Chemistry 2024
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a time, sears the sample surface of the pellets. The duration of
the searing process is 15–20 seconds for all three samples. The
analyser is equipped with a sample cassette that can hold 60
sample containers at a time, and it spends ∼one minute for the
analysis of one sample. The analyser houses a microchip
neodymium-doped yttrium aluminium garnet (Nd:YAG) laser
with a pulse energy of 0.15 mJ, 1.5 ns pulse length, and a repe-
tition rate of 200 Hz, operating at 1064 nm. It uses an ultraviolet
(UV) diode array spectrometer and a silica ber optic. Integration
time for the spectrometer is set to 5.7 ms, and the integration
starts simultaneously as every other laser pulse is triggered. Thus,
two full plasma lifetimes are covered by each sub-spectrum. The
spectrometer covers the wavelength range from 174 nm to
430 nm, with a pixel resolution of 0.125 nm resulting in 2048
measured data points. Each sample is hit with 6000 laser pulses
and from each sample 3000 spectra are collected (one LIBS sub-
spectrum covers 2 plasma life cycles). To avoid hitting the same
spot twice the sample is moved in a spiral movement. The full
optical path atmosphere, i.e., from the sample surface to the
spectrometer detector, is purged using nitrogen gas. This ensures
a good LIBS signal for wavelengths shorter than 190 nm, where
the strong sulphur 181 nm emission lines are present.

For each sample measurement, 1.5 ml of powdered plant
sample was transferred to a 14 mm diameter pellet container
and pelletized with the press at 2000 kg cm−2. Aer pelletiza-
tion, the sample surface was seared in the searing unit. Next, the
pellet was pressed again to ensure a at surface. Total prepa-
ration time for 3 samples is ∼150 seconds. Fig. 2 shows
a schematic overview of the steps for the sample preparation.
One out of seven samples were analysed in triplicates and the
Fig. 2 Schematic overview of sample preparation and analysis with the
scale).

This journal is © The Royal Society of Chemistry 2024
rest were analysed as single samples. In every run (60 samples)
triplicates of an internal standard sample consisting of a mix of
oat, pea and faba bean were included (referred to as internal
standard).

Partial least squares regression models. All data analysis was
carried out in MatLab R2022a (MathWorks, Inc., Natick, MA,
USA) and PLS Toolbox 8.9 soware.

PLS-regression (PLSR) is a multivariate data analysis method
that is useful for relating two data matrices. It can be used to
predict Y from X and is able to handle data with many noisy
variables. For eachmodel, the optimal number of latent variables
(LVs) was selected to minimize the risk of overtting. The selec-
tion of optimal LVs was determined by inspecting the root mean
square error (RMSE) versus the number of latent variables, then
selecting the number of latent variables where the minimum
RMSE was achieved without increasing the distance between the
RMSE for the calibration (RMSEC) and RMSE for the cross-
validation (RMSECV). PLS-regression is thus well suited for
nding correlation between LIBS derived spectra and reference
data obtained with ICP-OES or other similar methods.38,39

PLS-regression was applied with ICP-OES reference data as
the Ymatrix and the pre-processed LIBS spectra as the Xmatrix.
For each nutrient three types of models were built. A mixed
model based on all the sample types (n= 257), one based on the
faba bean samples (n = 78), and one based on the wheat
samples (n = 64). The rest of the plant species did not consist of
enough samples to build individual models.

Prior to prediction modelling, all of the LIBS spectra were
corrected for dark signal and wavelength calibrated. The wave-
length calibration was based on the spectrum from a calcium
LIBS and ICP-OES setup used in the present study (illustrations not to

J. Anal. At. Spectrom., 2024, 39, 2008–2020 | 2011
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lactate (C6H10CaO6) sample that is rich in Ca and C. This allows
for a wavelength calibration for the full wavelength range covered
by the spectrometer. The nal LIBS spectra were the mean of the
3000 sub-spectra from each sample.

For most of the models, mean-centering (MC) of the data, as
a pre-processing method, resulted in the most accurate models.
The only exceptions were the mixed S model and all Fe models
where multivariate scatter correction (MSC) and MC resulted in
the best models, and the P models where standard normal
variate (SNV) and MC resulted in the best models (see ESI Table
1†). Outliers were removed based on the Hotelling T2 versus
residual Q plot. Random subsets were used as cross validation
and the dataset was split in 5 with 20 iterations. To avoid over-
tting, root mean square error of calibration (RMSEC), and root
mean square error of cross-validation (RMSECV), were used to
estimate the most appropriate number of latent variables (LVs).
Typically, the number of LVs where RMSECV was no longer
improving was chosen. For the mixed models the data was split
into a calibration and a validation set (Kennard-Stone, 66%
calibration set and 34% validation set). The root mean square
error of prediction (RMSEP) was used to evaluate prediction
model accuracy. The faba bean and wheat sample sets did not
contain enough samples to be split into a calibration and
a validation set.

The RMSECV and RMSEP (mixed models) and the coefficient
of determination (R2) was used to evaluate model performance.
Considering that the evaluation of the RMSECV value is abso-
lute, and that there is a concentration range difference between
the different data sets, a new parameter was dened that allows
for a performance comparison between the data sets. The
relative uncertainty (relRMSECV) is here dened as the RMSECV
divided by the 50th percentile value for the reference concen-
trations and presented in percent:

relRMSECV ¼ RMSECV

50th percentile value
� 100
Results
Plant material and ICP-OES data quality

Nutrient concentration range in plant samples. The plant
material obtained from the greenhouse and the eld proved to
Table 1 Nutrient range for the eight different plant species as determin

Nutrient All Maize Faba bean Wheat

P (mg g−1) 0.6–11 0.7–7.0 0.9–5.9 1.7–7.7
K (mg g−1) 2.2–62 6.9–43 12–53 12–52
Ca (mg g−1) 0.1–45 0.1–6.6 4.3–23 2.0–14
Mg (mg g−1) 0.3–11 0.3–5.6 1.5–11 2.3–7.7
S (mg g−1) 0.4–22 0.4–4.3 1.1–5.9 2.9–6.7
Zn (mg g−1) 5.5–170 12–86 15–91 14–67
Fe (mg g−1) 23–942 28–105 67–942 38–99
Mn (mg g−1) 2.0–278 2.0–81 17–130 9.7–229
B (mg g−1) 1.7–80 5.2–21 15–73 7.6–64
Cu (mg g−1) 0.8–33 2.9–13 3.0–17 4.7–13

2012 | J. Anal. At. Spectrom., 2024, 39, 2008–2020
be suitable for building prediction models that span the bio-
logically relevant nutrient ranges. Nutrient concentrations
ranged from decient too high for all nutrients (Table 1).
However, for individual plant species, this was not always the
case. As a result, the wheat and faba beanmodels did not always
cover the entire nutrient concentration range.
ICP-OES data quality

The predened required accuracy of a maximal relative differ-
ence of ±10% from the certied reference value was achieved
for all elements of interest (Table 2). Thus, the ICP-OES data
quality was acceptable, and data was further used for estab-
lishment of LIBS prediction models.
Analytical performance of the LIBS instrument

The LIBS spectra had element emission lines for all nutrients
considered in this study, and Fig. 3 shows the mean spectrum
for all LIBS sample measurements with the most pronounced
emission lines indicated.

To evaluate the effect of pellet surface quality on spectral
repeatability for the LIBS measurements, three replicates were
measured for multiple samples from each plant species. Spec-
tral repeatability was calculated as relative standard deviation
(RSD) of emission line strengths (baseline subtracted), across
measurements of the same sample for element emission lines C
193.0 nm, Zn 202.6 nm, Ca 317.9 nm, and K 404.5 nm. Pooled
RSD for the different emission lines is shown in Table 3. The
maize samples were the only samples with a poor pellet quality.
This was due to a large particle size that led to an uneven pellet
surface. The maize sample measured in triplicate had an RSD of
3.7% for the C emission line, which was considerably higher
than the corresponding RSD for the other plant species. For Zn,
Ca and K the maize sample had RSD values that were compa-
rable to the other plant species. This suggests that the quality of
the pellet surface affects the analysis of different nutrients
differently.

To test if the spectral repeatability was affected by the
concentration of the nutrient of interest, the RSD was calculated
for nine wheat samples that were measured in triplicates.
Calcium, K and Mn emission lines were chosen because these
nutrients represented the widest concentration range in the
available samples that were measured in triplicates. There was
ed with ICP-OES

Rapeseed Oat Tomato Soybean Pea

0.6–11 3.1–4.6 0.8–6.2 1.1–7.1 4.2–5.5
3.4–62 24–34 6.4–34 6.0–34 18–28
10–45 5.1–10 8.0–25 9.0–31 6.8–13
0.4–11 1.1–2.0 0.5–7.3 0.8–11 1.6–2.4
1.2–22 4.0–7.8 0.7–10 1.4–3.1 2.2–3.0
5.5–70 21–62 12–54 7.1–170 31–50
23–144 82–125 78–432 35–480 74–104
3.6–118 30–187 5.8–59 11–183 22–44
1.7–70 6.9–22 10–64 7.1–80 12–18
0.8–28 5.4–8.6 4.8–18 1.5–33 5.6–12

This journal is © The Royal Society of Chemistry 2024

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ja00105b


Table 2 ICP-OES analysis of CRM NIST 1515 (n = 17). Column 1: the nutrient, column 2: the certified value ± STDEV for the CRM, column 3: the
mean concentrations± STDEV based on ICP-OES analysis, column 4: the relative standard deviation (RSD), column 5: the accuracy calculated as

the average deviation from CRM values in percentage, and column 6: the root mean square error (RMSE) calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðYpred � YrefÞ2=n

q

where Ypred is the concentration from the ICP-OES analysis and Yref is the certified concentration

Nutrient CRM (mg g−1) Mean (mg g−1) RSD% Accuracy% RMSE (mg g−1)

P 1590 � 0.110 1577 � 0.044 2.8 102 42
K 16 100 � 0.200 16 145 � 0.658 4.1 100 620
Ca 15 260 � 0.150 15 513 � 0.414 2.7 98 460
Mg 2710 � 0.080 2652 � 0.081 3.1 102 95
S 1800 1844 � 0.065 3.5 98 75
Zn 12.5 � 0.3 12 � 0.9 7.6 103 3.2
Fe 83 � 5 77 � 4.3 5.6 107 7.0
Mn 54 � 3 53 � 2.2 4.1 101 2.2
B 27 � 2 29 � 0.9 3.1 94 1.7
Cu 5.6 � 0.24 5.1 � 0.4 8.4 109 0.63

Fig. 3 Mean LIBS spectrum from 557 spectra from plant samples (257
individual samples) as observed in the 174 to 430 nm wavelength
range. Relevant emission lines are marked with the corresponding
element.
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View Article Online
no clear correlation between concentration and RSD (ESI
Fig. 1†).

Model parameters and model performance

Parameters included in models. For each nutrient one or
more specic emission lines were chosen. The choice of
Table 3 Baseline subtracted RSD values for selected emission lines for d
and presented as the pooled RSD ± STDEV for C, Zn, Ca and K. The numb

Plant RSD C 193.0 nm (%) RSD Zn 20

Maize (n = 1) 3.7 2.2
Faba bean (n = 13) 0.9 � 0.5 2.3 � 1.2
Wheat (n = 9) 0.8 � 0.4 1.5 � 1.0
Rapeseed (n = 1) 1.3 2.3
Oat (n = 17) 0.9 � 0.3 4.0 � 2.2
Tomato (n = 3) 0.6 � 0.4 0.9 � 0.6
Soybean (n = 1) 0.4 0.2
Pea (n = 7) 0.8 � 0.5 3.0 � 1.7
Internal standard (n = 8) 0.6 � 0.3 3.0 � 1.5

This journal is © The Royal Society of Chemistry 2024
emission lines to include in the models was based on known
LIBS emission lines (NIST LIBS database, National Institute of
Standards and Technology). The spectrometer used in this
setup covers the wavelength range from 174 nm to 430 nm. For
Ca, Mg, S, P, Fe, Cu, Mn, B and Zn there is an abundance of
strong emission lines in this range. However, for K this is not
the case and instead the weaker emission line at 404.5 nm was
chosen. For some nutrients there are overlapping spectral
emission lines. This is especially the case for Fe, where several
emission lines had to be excluded from themodels because they
overlapped with emission lines from other nutrients. Due to
this, only 3 emission lines could be included, despite the exis-
tence of numerous Fe emission lines. For P and S, the best
models were achieved by including a broader range of wave-
lengths. The wavelength ranges included in the PLS models are
shown in the ESI Table 1,† together with the pre-processing
method.
Model performance

For all nutrients the plant specic models had better perfor-
mance, although the degree of improvement differed between
nutrients. In Fig. 4 an example of how the sample matrix affects
prediction model accuracy can be seen. The faba bean samples,
when included in a model for all sample types (Fig. 4A), tend to
gain an offset such that the concentration is underestimated for
ifferent plant species and the internal standard measured in triplicates
er of triplicate measurements for each plant species is indicated with n

2.6 nm (%) RSD Ca 317.9 nm (%) RSD K 404.5 nm (%)

2.0 1.7
1.7 � 0.8 2.9 � 1.1
1.7 � 0.9 2.8 � 1.5
1.9 3.1
1.9 � 1.2 2.7 � 1.5
1.5 � 0.6 4.3 � 1.5
0.9 1.7
2.1 � 1.0 2.8 � 2.0
1.9 � 0.8 3.1 � 1.2

J. Anal. At. Spectrom., 2024, 39, 2008–2020 | 2013
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Fig. 4 PLS-regression calibrations models for the relationship between ICP-OES reference values and LIBS predictions for the K mixed model
(A), K faba bean model (B), and S mixed model (C). Different plant species are indicated, and the dotted line represents the 1 : 1 fit between ICP-
OES references and LIBS predictions. The solid line represents the actual best fit between ICP-OES references and LIBS predictions.
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K. When a specic faba bean model was built, the accuracy
improved signicantly (Fig. 4B). The mixed S model (Fig. 4C)
was not affected by the matrix effect to the same extent as the
mixed K model. However, a small improvement for RMSECV
was observed when plant specic models were explored
(Table 4).

Relative standard deviation for predicted values

The internal standard sample was measured 24 times in eight
triplicate measurements. For these measurements, concentra-
tions for all 10 elements considered in this study were predicted
using the PLS models based on all samples (mixed models).
2014 | J. Anal. At. Spectrom., 2024, 39, 2008–2020
Table 5 shows the mean concentration with the standard devi-
ation, the pooled standard deviation for triplicate measure-
ments and nally the pooled RSD for triplicate measurements.
The Fe and B models had the highest RSD for predicted
concentrations, and except for Mn all the micronutrients had
higher RSD as compared to the macronutrients.

Wheat model performance in relation to nutrient deciency
levels for wheat

To evaluate how the RMSECV for each prediction model affects
the ability to correctly identify a plant nutrient concentration as
either decient or sufficient with the LIBS setup, a Monte-Carlo
This journal is © The Royal Society of Chemistry 2024
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Table 4 Summary of all PLS model results. Column 1: the nutrient, column 2: the number of samples included in the calibration set after outlier
removal, column 3: the concentration range included in the model after outlier removal, column 4: the number of latent variables (LV), column 5
through 9: parameters related to the prediction model performance

Nutrient Model
Range
(mg g−1) LV R2

RMSEC
(mg g−1)

RMSECV
(mg g−1)

RMSEP
(mg g−1)

relRMSECV

(%)

P Mixed (n = 161) 0.64–7.7 7 0.88 0.49 0.54 0.49 13.8
Wheat (n = 64) 1.7–7.7 6 0.96 0.25 0.31 5.2
Faba (n = 74) 0.9–5.9 8 0.94 0.22 0.3 8.3

K Mixed (n = 161) 3.4–51 3 0.81 4.3 4.4 4.1 16.7
Wheat (n = 63) 12–51 5 0.92 2.0 2.5 6.5
Faba (n = 73) 12–42 2 0.87 2.5 2.6 11.0

Ca Mixed (n = 156) 0.47–21 10 0.95 0.91 1.1 0.71 13.8
Wheat (n = 61) 2.0–13 7 0.97 0.39 0.51 8.2
Faba (n = 72) 4.9–21 4 0.93 0.98 1.1 8.9

Mg Mixed (n = 160) 0.26–7.8 10 0.94 0.43 0.49 0.36 14.5
Wheat (n = 64) 2.3–7.7 3 0.94 0.27 0.29 6.6
Faba (n = 76) 1.5–9.2 10 0.98 0.28 0.37 7.9

S Mixed (n = 161) 0.43–8.1 12 0.92 0.35 0.41 0.37 13.8
Wheat (n = 58) 2.9–4.4 12 0.74 0.11 0.18 5.1
Faba (n = 76) 1.4–3.6 3 0.47 0.27 0.29 11.2

Nutrient Model
Range
(mg g−1) LV R2

RMSEC
(mg g−1)

RMSECV
(mg g−1)

RMSEP
(mg g−1)

relRMSECV

(%)

Zn Mixed (n = 157) 5.5–75 8 0.82 5.8 6.3 5.5 16.0
Wheat (n = 56) 14–63 7 0.86 3.0 3.9 11.7
Faba (n = 71) 15–78 7 0.89 4.1 4.8 9.3

Fe Mixed (n = 148) 23–189 6 0.78 13.8 15.5 15.0 18.2
Wheat (n = 63) 38–99 6 0.62 5.0 6.8 9.4
Faba (n = 62) 67–159 6 0.81 7.3 11.0 9.8

Mn Mixed (n = 165) 2.0–229 3 0.94 11.7 12.1 12.6 18.9
Wheat (n = 64) 9.7–229 3 0.96 8.23 8.8 7.1
Faba (n = 70) 23–101 4 0.77 7.69 8.5 12.1

B Mixed (n = 166) 1.7–73 3 0.89 5.66 5.8 5.2 29
Wheat (n = 61) 7.6–64 3 0.96 2.63 2.9 13.6
Faba (n = 77) 15–73 3 0.96 3.43 3.7 9.3

Cu Mixed (n = 161) 1.5–18 4 0.76 1.41 1.5 1.3 17.2
Wheat (n = 64) 4.7–13 4 0.90 0.52 0.6 6.3
Faba (n = 77) 3.0–17 3 0.92 0.90 0.97 10.5

Table 5 Predictions of internal standard sample based on the mixed
models. Column 1: the nutrient, column 2: the mean values ± STDEV
for all 24 predictions, column 3: the pooled STDEV for predictions of
triplicate measurements of the internal standard sample (n = 8), and
column 4: the pooled RSD ± STDEV for predictions of triplicate
measurements of the internal standard sample

Nutrient
Mean
(mg g−1)

Pooled STDEV
(mg g−1)

Pooled RSD
(%)

P 4 � 0.15 0.11 2.6 � 0.95
K 30 � 1.1 0.64 2.2 � 1.4
Ca 10 � 0.5 0.23 2.2 � 1.1
Mg 2.3 � 0.22 0.07 3.2 � 1.4
S 4.6 � 0.27 0.09 1.9 � 1.1

Nutrient
Mean
(mg g−1)

Pooled STDEV
(mg g−1)

Pooled RSD
(%)

Zn 48 � 4.3 2.8 5.9 � 4.1
Fe 112 � 16 7.4 6.6 � 2.8
Mn 79 � 5.6 1.9 2.4 � 1.7
B 13 � 2.2 0.76 6.3 � 3.5
Cu 7.7 � 0.71 0.42 5.4 � 2.2

This journal is © The Royal Society of Chemistry 2024
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View Article Online
approach was adopted.40 For each nutrient, and for a given
“true” nutrient concentration that was lower than the deciency
limit, 10 000 virtual measurements from a normal distribution
with a standard deviation equal to the RMSECV was drawn. The
probability to detect deciency was dened as the ratio between
values lower than the deciency limit and values above the
limit. The above given procedure was repeated for a plenitude of
different concentrations on both sides of the deciency limit.
To allow for comparison with ICP-OES performance, the same
approach was used to construct probabilities based on the
RMSE value from the ICP-OES analysis. As can be seen in Fig. 5
the range in which the diagnosis is uncertain differs consider-
ably between nutrients and analytical method. The ICP-OES
analysis generally had lower RMSE values for the macronutri-
ents as compared to the LIBS RMSECV values for macronutri-
ents. For micronutrients the difference was less pronounced.
When considering the LIBS analysis for P, K, Mg, S, Ca, Fe, Zn
and Cu predictions, the decient plants that were misclassied
as not being decient were generally close to the actual de-
ciency limit, but for Mn and B the risk of misclassifying
J. Anal. At. Spectrom., 2024, 39, 2008–2020 | 2015
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Fig. 5 Monte-Carlo distribution of probability for correctly or erroneously diagnosing deficiency at different nutrient concentrations based on
RMSEC values from the wheat models or RMSE values from ICP-OES analysis of 17 CRM samples. The horizontal black dotted lines represent the
respective deficiency limits, and the vertical grey lines represent midrange concentrations. Yellow triangles represent simulated samples with
a concentration below the deficiency limit for LIBS predictions, and blue circles represent samples with concentrations above the deficiency level
for LIBS predictions. Green squares represent simulated samples with a concentration below the deficiency limit for ICP analysis and red crosses
represent samples with concentrations above the deficiency level for ICP analysis. Position on the y-axis is the probability of being diagnosed as
a deficient plant.
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a decient plant as non-decient was present even in plants
with very low concentrations. For Mn, even if a simulated
sample had no Mn present at all, the probability to detect Mn
deciency was only 93%. For the P, K, Mg, S, Ca, Zn, Mn and Cu
models the uncertainties were low enough to ensure that a plant
with a midrange concentration would not be erroneously clas-
sied as a decient plant, however for Fe and B the concen-
trations that could be erroneously classied as decient was
close to the midrange concentration. This was also the case
when ICP-OES analysis was used to quantify Fe and B concen-
trations. It should be noted that the above given procedure
assumes that the RMSECV and RMSE are constant for all
concentrations, which in reality is not the case.
Discussion
Sample preparation and analysis time

It is oen stated that LIBS analysis requires little to no sample
preparation. However, this statement is being disputed and
there is now an understanding that sample preparation can
signicantly improve results for some sample types, including
plant samples.41,42 A study from 2018 showed that LIBS analysis
of dried plant samples provides more accurate data as
compared to LIBS analysis of fresh plant samples.43 Another
recent study showed that there can be a benet from removing
C from plant samples by dry ashing before LIBS analysis.44 In
our study, a novel and relatively extensive sample preparation
procedure was employed to minimize sample-to-sample varia-
tion and to increase the signal. Plants were dried, homogenized,
pressed, seared, and pressed again to ensure an even pellet
2016 | J. Anal. At. Spectrom., 2024, 39, 2008–2020
surface. The even pellet surface is important since it ensures
that the lens to sample distance variation for all 6000 laser
pulses is minimized. A prerequisite to an even surface is
a homogenised sample, but due to differences in bre content,
some plants species are more difficult to homogenize than
others. In this study all the plant samples, except for the maize
samples, were easy to homogenize to a ne powder that could
be pressed into pellets with a at surface. The maize samples
contained coarser ground material, and aer the second press
they were more uneven than the other samples. While the maize
sample had a higher RSD for the C emission line, RSD for the
Zn, Ca and K line were comparable to that of the other plant
species (Table 3). Although this does to some degree conrm
the theoretically better performance of a at pellet surface, the
spectral repeatability was still acceptable, and the system was
robust enough to handle more uneven samples. However, when
possible, it is always better to use nely ground samples. This is
in line with the ndings from other studies, where it is seen that
a smaller particle size results in a lower coefficient of variation
of measurements and an increase in signal intensity.45,46 A nely
homogenized sample is also important for ICP-OES analysis,
since it is a prerequisite in attaining a representative sample.3

The rst step in sample preparation is therefore similar for LIBS
and ICP based analyses. However, from here the complexity and
time consumption differs considerably. Fig. 1 shows the
required steps and estimated time consumption for the LIBS
and ICP-OES analyses conducted in this study. The required
sample preparation steps before ICP analysis are considerably
more time-consuming than the required steps for LIBS analysis.
The three main benets of LIBS analysis are: (i) sample
This journal is © The Royal Society of Chemistry 2024
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weighing is not required, (ii) it is not necessary to digest the
sample into a liquid, and (iii) no hazardous chemicals are
needed. Instead, the required sample portion can be measured
out with a measuring spoon, and the press and searing step
requires no chemicals. This results in a sample preparation
time of ∼60 seconds per sample for LIBS compared to ∼90
minutes from powder to liquid for 22 samples for ICP. With
regards to the analysis time, the LIBS analysis is also faster than
ICP analysis. The LIBS instrument requires 15 minutes of
purging with N gas before analysis can start. Aer that it can
analyse one sample in 60 seconds. The ICP-OES requires the
preparation of standards (∼15 minutes) and a start-up proce-
dure that takes ∼60 minutes. Aer that it can analyse one
sample in ve minutes. With a combined sample preparation
and analysis time of two minutes per sample the novel LIBS
system used in this study is considerably faster and less labour
intense, as compared to ICP-OES analysis.

Analytical performance

To judge the analytical performance of LIBS with regards to
repeatability (same day triplicate measurements), the pooled
RSD for measurements carried out on the same day were
calculated for the internal standard. The RSD for emission line
strengths from triplicate measurements for the C emission line,
the Zn emission line, the Ca emission line and the K emission
line were 0.6 ± 0.3%, 3.0 ± 1.5%, 1.9 ± 0.8% and 3.1 ± 1.2%,
respectively. Trevizan et al.35 found that when one pellet was
exposed by eight laser shots in ten different locations, the ten
resulting test portions had coefficients of variations between 4
and 30% for peak height intensity depending on the analyte and
on the reference material that was analysed. This suggest that
there was a clear benet of collecting 3000 spectra per sample
since it resulted in lower coefficient of variation. No correlation
between the RSD for three replicates of wheat and the concen-
tration of the nutrients Ca, K and Mn was observed (ESI Fig. 1†).
This suggests that the repeatability is unaffected by concentra-
tion, and that the method can be applied across a wide range of
concentrations.

Performance of prediction models

Reference values. Due to considerable matrix effects, it is not
possible to use standards to calibrate the LIBS instrument and
obtain quantitative data based on standards. Unlike ICP-OES,
where standards mixed from pure chemicals can be used to
translate signal into a dry matter concentration, the LIBS
quantication of the element concentration must be based on
a matrix matched sample set that has been analysed with ICP-
OES or ICP-MS to yield known concentrations of the analytes
of interest.9 Based on the known concentrations it is possible to
build PLS models that can predict the concentration of the
element of interest. While this is a well proven and accepted
approach,47 it does mean that any uncertainty in the ICP anal-
ysis will be carried over to the LIBS quantication. Table 2
shows the accuracy RMSE, and corresponding RSD, for 17 CRM
samples analysed with ICP-OES. Phosphorus, K, Mg, Ca, S, Mn
and B had RSD values from 2.7–4.1%. However, the
This journal is © The Royal Society of Chemistry 2024
micronutrient Zn, Fe and Cu had relatively high RSD values
(7.6%, 5.6% and 8.4%, respectively). Furthermore, Fe and Cu
were close to not being within the accepted accuracy (±10% of
the certied value for the CRM). The Zn and Cu concentrations
in the CRM used here are low, and this could explain the rela-
tively poor performance of the ICP analysis. It is likely that the
accuracy was better for samples with higher concentrations
meaning that the majority of the analysed samples in this
dataset were likely to have a better accuracy than the CRM. The
Fe concentration in the CRM sample, however, is close to the
50th percentile value for Fe in the plant samples used in this
study, and it must therefore be expected that the ICP data for Fe
were generally of a lower quality compared to the other
elements.

Model performance for macro- and micronutrients

The mixed prediction models and the plant specic models
both performed better when predicting the macronutrients
compared to the micronutrients. The relRMSECV values were
lower for the macronutrients compared to the micronutrients
(mean value 10.1% and 13.3% for macronutrients and micro-
nutrients, respectively). The pooled RSD for the predictions for
the internal standard sample were lower for the macronutrients
compared to the micronutrients (mean value 2.4% and 5.3% for
macronutrients and micronutrients, respectively). This was ex-
pected given that the concentrations of the macronutrients are
considerably higher than the concentrations of the micro-
nutrients, and furthermore, the ICP-OES analysis also resulted
in RSD values that were lower for the macronutrients compared
to the micronutrients. In accordance with these results Devey
et al.36 also found that LIBS had a lower error for macronutrients
compared to micronutrients. The mean estimated error in
percentage was 9.6% for macronutrients and 30.2% for micro-
nutrients. The explanation for the much larger difference
between the error for the macronutrients compared to the
micronutrients in this study, compared to what is found in our
study, could be that the samples were not seared prior to
analysis. The searing procedure removes volatiles on the sample
surface and reduces the sample matrix complexity. This results
in stronger element emission lines, and a reduction of the
sample matrix effect.

Performance and benet of plant specic models

Considering that sample matrix affects the LIBS spectra, there
was reason to believe that a plant specic prediction model
would perform better as compared to a prediction model based
on a mixture of different plant species. To test this, PLS models
based on either wheat or faba bean samples were built. The
models improved when a single plant species was used instead
of all the eight plant species (Table 4). For the mixed models the
relRMSECV was above 10% for all the models. For the wheat
models the values were below 10% for P, K, Ca, Mg, S, Fe, Mn
and Cu. For the faba bean models P, Ca, Mg, Zn and B were
below 10% (Table 4). This clearly shows the benet of
building plant specic prediction models. This is most likely
due to a remaining matrix effect caused by different physical
J. Anal. At. Spectrom., 2024, 39, 2008–2020 | 2017
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properties of the leaves. The difference in physical structure
also resulted in slightly different powder properties, which
could have affected the measurements. For all the nutrients the
improvement was most pronounced for the wheat models,
whereas the faba beanmodels generally did not perform as well.
It should be noted that the faba bean plants were grown in
different locations. Thirty plants were eld grown and the
remaining plants were greenhouse grown. It is possible that this
accounts for the diminished effect of building a plant specic
model. It has long been recognised that stress, e.g., from wind,
affects the morphology of plants, a phenomenon known as
seismomorphogenesis.48 In a study conducted on soybean
leaves, strong matrix effects were observed when soybeans
grown at different locations were analysed with LIBS. Plasma
temperature and electron density varied considerable between
samples from different sets, but only small variations were
observed from the same set. The matrix effect was so
pronounced that without a normalization, to adjust for the
matrix effect, no meaningful connection between signal
intensity and concentration could be established.49 Considering
that this type of detrimental matrix effect was not observed in
the mixed model or the faba bean model, it can be concluded
that the searing step included in the sample preparation step
serves the purpose of decreasing the matrix effect. Combined
with the multivariate approach it is possible to get meaningful
correlations out of a mixed model, however, despite this it is
still benecial to make matrix matched models. Braga et al.50

reached a similar conclusion stating that to avoid matrix effects
it is advisable to work with plant specic calibrations. However,
more research into the benets and limitations of plant specic
models is needed.
LIBS as a tool for diagnosing nutrient deciencies in plants

This study conrms that with the demonstrated setup, LIBS
analysis is faster and thus potentially cheaper than traditional
ICP-OES analysis. The key question is then; is the analytical
accuracy and precision good enough to make trustworthy
predictions of plant nutritional status? To be a useful tool for
diagnosing nutrient deciencies, the predicted values must be
accurate enough to distinguish decient plants from normal
non-decient plants. No analytical method is perfect and there
will always be an uncertainty associated with an analysis.
However, this needs to be at a level where most plant samples
are correctly diagnosed as either decient or non-decient. The
RMSEP or RMSECV values are the best estimates of how well the
models perform and what accuracy can be expected of future
predicted concentrations. The R2 is good for evaluating overall
correlation. However, R2 can be heavily inuenced by few
measurements at extreme values. Thus, in this study key results
and main conclusions are not based on R2. The mixed models
generally had RMSEP values that were too high to be useful for
diagnosing nutrient deciencies. The wheat models on the
other hand are considered to be sufficiently good to be useful in
diagnosing decient plants. When the RMSECV values from the
wheat models are compared to the RMSE values from ICP-OES
analysis it is obvious that for some nutrients ICP-OES is
2018 | J. Anal. At. Spectrom., 2024, 39, 2008–2020
superior when it comes to accuracy, but for others the difference
is negligible. For P, K, Mg, S and Mn the ICP-OES has
a considerably better accuracy, however for Ca, Zn, Fe, B and Cu
it is very similar to LIBS.

In addition to the analytical accuracy and precision, the
biological variation also inuences the usefulness of the data.
For nutrients with a large gap between normal concentrations
and deciency levels, the acceptable uncertainty for the
prediction models is larger than for the nutrients where the
difference between normal concentrations and deciency is
smaller. The deciency limits and midrange concentrations
from Fig. 1 can serve as an indication of whether the prediction
models are sufficiently good and can be trusted to separate
decient from normal plants. In Fig. 5 the probability of erro-
neously diagnosing a wheat plant as either decient or suffi-
cient at different nutrient levels for the nutrients considered in
this study can be seen. Although, LIBS predictions of P, K, Mg
and S are less accurate than ICP-OES measurements, they can
still be trusted to correctly classify the vast majority of samples.
For Ca, Zn, Fe, B and Cu the accuracies are very similar and
predictions based on LIBS analysis are thus expected to result in
nearly the same amount of correctly classied plants as ICP-OES
analysis. Manganese predictions are less accurate as compared
to ICP-OES analysis and for this nutrient there would be
a considerable risk of misclassifying plants based on predic-
tions from the PLS model. For future studies it would be rele-
vant to include more samples with low concentrations, which
would probably increase the likelihood of achieving sufficiently
low uncertainties for the Mn model. Devey et al.36 reached
different conclusions when analysing pasture samples with
LIBS and ICP-OES. They found that K, Mg, Ca and P measured
with LIBS had accuracies similar to ICP-OESmeasurements. For
Mn, Fe and B they found the LIBS measurements to be t-for-
purpose, although the accuracy was inferior to that of ICP-
OES measurements of the same elements. However, Zn, Cu
and S were not measured with sufficiently good accuracy to be
considered t-for-purpose. The difference in their ndings with
regards to S, can be explained by the lack of atmospheric
purging in their LIBS instrumentation, which enables analysis
of the S 181 nm emission line. The explanation for the nding,
that the Mn model is t-for-purpose, is likely that the concen-
tration in the analysed pasture samples were considerably
higher for this element, as compared to the samples in the
present study. In a study conducted on sugarcane leaves a good
agreement between predictions based on LIBS analysis and ICP-
OES data was found for P, K, Ca, Mg, Mn, Fe, Zn and B. A
multivariate approach yielded considerably better result than
a univariate approach.51 In agreement with ndings from our
study the precision was best for macronutrients. The RMSEP
values obtained in the sugarcane study are generally compa-
rable to the RMSECV values for the wheat models in our study.
In accordance with our ndings, Mn and Fe are the most
difficult elements to obtain good prediction models for.

Although ICP-OES also suffers from the inability to
measure N, it would be of great interest to work further on
quantifying N with LIBS. Jull, Künnemeyer52 used argon for
atmospheric purging and achieved a reasonably good
This journal is © The Royal Society of Chemistry 2024
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correlation between N estimated with NIR and Nmeasured with
LIBS. This warrants further research into the quantication of N
with LIBS. Another element that is currently not being analysed
with LIBS is Mo.9 This is due to its inherently low concentration
in plant tissue, and not a lack of suitable emission lines. By dry-
ashing the sample prior to analysis it might be possible to get
a sufficiently high signal, but further studies are required to add
this essential nutrient to the list of elements that can be
quantied with LIBS.

Conclusion

In this study the novel LIBS set-up proved to be considerably
faster than ICP-OES analysis. The combined sample prepara-
tion and analysis time was less than two minutes per sample.
The nutrients P, K, Mg, S, Ca, Fe, Zn, Mn, B and Cu could all be
quantied. The spectral repeatability of LIBS measurements
expressed as RSD (3–4%) was comparable to the RSD for ICP-
OES measurements (2.7–8.4%). Despite the reduction of
matrix effects by sample searing prior to LIBS analysis, the plant
species specic models performed better than the mixed
models. The best performing models were for wheat where the
relRMSECV was below 10% for P, K, Ca, Mg, S, Fe, Mn and Cu.
Considering the limits of nutrient deciency for wheat the
accuracies for P, K, Mg, S, Ca, Zn, Fe, B, and Cu wheat models
were satisfactory, whereas the uncertainty for the Mn wheat
model would result in a risk of misclassifying decient plants as
non-decient. For Mn more samples in the low concentration
range are required to build more accurate models. It was also
demonstrated that the combination of sample searing before
analysis and purging with N gas during analysis makes it
possible to quantify S, a previously challenging element in LIBS
analysis, with a certainty that enables diagnosis of S deciency
in plants. In conclusion, this study demonstrates the potential
of using LIBS to quantify a broad range of nutrients in plant
tissue and detecting nutrient deciencies in a highly cost-
efficient way.
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