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lysis of LDA, PLS-DA, SVM, RF, and
voting ensemble for discrimination origin in
greenish-white to white nephrites using LIBS

Meiyu Shih, Ye Yuan and Guanghai Shi*

As there are distinct variations in economic value for greenish-white to white nephrites based on their

geographical origin, it is crucial to develop a robust origin discrimination method for them. The reported

correlation between the intensity of spectra and material properties gives us a clue that such

a correlation may exist in nephrites worldwide. In this study, 364 pieces of greenish-white to white

nephrite jades from different locations, including Qiemo, Qinghai, Xiuyan and Yecheng in China, South

Korea, and Russia, were analyzed using laser-induced breakdown spectroscopy (LIBS). Four machine

learning methods, including linear discriminant analysis (LDA), support vector machine (SVM), partial least

squares discriminant analysis (PLS-DA), random forest (RF), and an ensemble learning approach known

as a voting classifier for origin discrimination were then employed. The results show a higher training

accuracy of 99.81% (LDA), 94.01% (SVM), 100% (PLS-DA), 98.08% (RF), and 99.93% (voting classifier), with

corresponding testing accuracies of 96.13%, 93.04%, 94.99%, 95.90%, and 99.93%, respectively. By

appropriately selecting voting weights, the voting classifier effectively mitigates misclassification,

achieving balanced accuracy for each origin. Therefore, the LIBS analyses could be utilized in the origin

discrimination of greenish-white to white nephrite jades, offering valuable insights for accurately

evaluating these gemstones, based on the successful application of various machine learning methods in

the origin discrimination of nephrite jades. An integrated voting ensemble method was further

introduced, providing new possibilities for rapid discrimination in diverse industries, including gemstone

trading, manufacturing, archaeology, and more.
1 Introduction

Nephrite, a rock primarily composed of nearly monomineralic
tremolite-actinolite (Ca2(Mg, Fe)5Si8O22(OH)2), is distributed
worldwide.1–8 It is classied into dolomite-related and
serpentine-related types based on the parent and host rocks
associated with ore formation. Both types of nephrites are
formed through a process known as metasomatism.6,9,10

The geographical origin of nephrite jade carries signicant
cultural signicance in various regions. In archaeology, dis-
tinguishing jades and gemstones from diverse origins aids in
a deeper understanding of historical cultural exchanges.11–13

Although examining the microstructure of dolomite-related
nephrite offers some assistance, uncertainties remain.14,15

However, determining the origin of nephrite jade based
solely on simple observations presents challenges. Researchers
have achieved informative results by utilizing trace elements
and hydrogen–oxygen isotopes to identify geographical
origins.16–18 Nevertheless, this oen necessitates complex
sample pretreatment, potentially damaging the samples.
osciences Beijing, Beijing 100083, China.

39, 1560–1570
Nonetheless, distinguishing the origins of nephrite jade
remains challenging, especially regarding rapid discrimination.
Laser-induced breakdown spectroscopy (LIBS) is a technique
that employs laser-induced photon emission from materials
and detects it. LIBS offers advantages such as short testing
times (less than 1 min) and no need for sample preparation. In
the eld of gemology, LIBS has been successfully applied to
determine the origins of gemstones such as rubies, sapphires,
diamonds, and others.19–21

Furthermore, the application of various multivariate models
such as linear discriminant analysis (LDA), partial least squares
(PLS), and their respective improved methods, as well as
support vector machine (SVM), has become commonplace in
the eld of gemology.22–26

However, previous studies on nephrite jade discrimination
have oen been constrained by less than 200 samples; such
a number is too small for modeling. As the dataset employed for
modeling typically does not exceed 500 entries, integrated
methods are seldom employed. Samples with different tonesmay
reect signicant variations in mineralization environments,
suggesting that their chemical compositions might vary as well.27

When dealing with a larger sample number (more than 100
samples), the selection process usually overlooks the variation
This journal is © The Royal Society of Chemistry 2024

http://crossmark.crossref.org/dialog/?doi=10.1039/d3ja00464c&domain=pdf&date_stamp=2024-05-31
http://orcid.org/0000-0003-3570-9653
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ja00464c
https://pubs.rsc.org/en/journals/journal/JA
https://pubs.rsc.org/en/journals/journal/JA?issueid=JA039006


Paper JAAS

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
M

ar
ch

 2
02

4.
 D

ow
nl

oa
de

d 
on

 7
/3

0/
20

25
 3

:0
9:

12
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
in color tones among the samples. Due to these factors, the
necessity for comprehensive modeling for larger nephrite
datasets is neglected. For instance, with chemical composi-
tions, rare Earth elements, and isotopes, we can successfully
distinguish between a few origins of nephrite; however, when
faced with more diverse origins of samples, they may fall
short.28 In such cases, it becomes essential to explore a robust
discrimination method to differentiate certain origins of
nephrite that have similar tones accurately.

Previous studies have indicated that it is tough to differen-
tiate the origin of chemically similar nephrite jades based on
their major element contents. Fortunately, the content of minor
elements, such as Be, Li, Na, Al, Mn, Sr, K, Zr, Fe, La, and Ce, has
been reported to carry signicant records in determining the
origin.23,29,30 All these elements could be analyzed using LIBS. In
addition, using LIBS, variations in the intensity of major
elements at the same emission lines could be determined
among nephrites from different origins.31 These advantages of
using LIBS prove it to be a powerful tool for differentiating the
origin although the exact reasons behind these differences
remain unclear.

This study aims to analyze the discrimination of 364 pieces
of greenish-white to white nephrite jades from different loca-
tions, including Qiemo, Qinghai, Xiuyan, and Yecheng in
China, South Korea, and Russia, using a combination of
multiple classiers, including PLS-DA, LDA, SVM, and RF,
based on LIBS, as well as a single voting ensemble method.

We explore the effectiveness of these methods in addressing
the complexity of discriminating origins of nephrite, evaluate
the performance of these classiers, discuss potential factors
inuencing variations in the intensity of spectral lines,
including differences in chemical composition and physical
matrix effects such as crystallinity and transparency, and
attempt to provide a novel ensemble approach for the origin
discrimination of nephrite jades, which may contribute to the
advancement of the eld of geographical identication of
gemstones and jades, and promoting similar research on other
materials.
2 Methods
2.1 Samples

In this study, a total of 364 nephrite samples from various
geographical origins were included for experimentation
(Table 1): 60 samples from Chuncheon in Korea, 70 from the
Table 1 Description of the 364 nephrite samples included in this case
study

Numbers of samples Provenance/origin Code mark

60 Chuncheon in Korea HL
70 Lake Baikal region in Russia ELS
51 Qiemo of Xinjiang in China QM
55 Qinghai in China QH
61 Xiuyan of Liaoning in China XY
67 Yecheng of Xinjiang in China YC

This journal is © The Royal Society of Chemistry 2024
Lake Baikal region in Russia, 51 samples from Qiemo in China,
67 from Yecheng in China, 55 from Qinghai in China, and 61
from Xiuyan in China. All the samples used in this experiment
were provided by a nephrite trading company with assistance
from Prof. Yu Ming at the Chinese Jade Culture Research
Center, Central Academy of Fine Arts. Representative specimens
from different origins are shown in Fig. 1.

2.2 Experimental setup

The LIBS system (ChemReveal 3766, TSI Inc) at the Gemological
Center of China University of Geosciences, Beijing, consisting of
a pulsed Nd: YAG laser was operated at 1064 nm, emitting laser
pulses with an energy of 50 mJ at a repetition rate of 1 Hz, in air
at ambient pressure, in a spectral range from 188 to 980 nm,
with a resolution of 0.1–0.2 nm. The laser spot size at the
sample surface is approximately 100 mm.

2.3 Measurements and data processing

To ensure accurate and consistent testing results, we followed
a systematic procedure to guarantee its plain face upwards:
utilizing the real-time camera feature to capture a clear image
within a eld of view of approximately 500 mm × 500 mm, and
then carefully assessed the image's clarity by adjusting the sample
height to maintain a height deviation within 5 mm for optimal
sharpness. All data collection spots were within the same focal
plane to minimize possible errors due to surface irregularities.

Before conducting LIBS measurements on our nephrite
samples, we implemented a pre-analysis cleaning procedure
involving two pre-ablation shots at the same location on each
sample in order to eliminate any dust or potential surface
pollution that may have accumulated during handling. These
pre-ablation measurements were excluded from the subsequent
data analysis. Aer this cleaning, three different areas were
carefully selected on each sample. As a single shot may not
capture the inhomogeneity of nephrite samples, ten laser
analyses of each area were conducted, which were then averaged
to create a single spectrum. As a result, three average spectra per
sample were recorded.

Following the data collection, we applied a standard normal
variance (SNV) transformation to all the LIBS spectra.32–34 This
transformation aimed to facilitate incorporating additional
data into our database for future research endeavors. Next, we
ltered out 370 characteristic peaks by utilizing an automatic
peak-seeking program provided by the manufacturer, which
operated within Chemlytics. This program helped us identify
the characteristic peaks in nephrite spectra originating from six
different origins. Subsequently, we excluded peaks with inten-
sities exceeding 14 500 (the maximum detection range is 16
384), resulting in a total of 261 peaks. These characteristic peaks
were input variables for LDA, PLS-DA, SVM, and RF models
processed in Python 3.7. Our analysis randomly designated 819
spectra as the training set, while the remaining 273 spectra were
allocated as the test set.

The training of these models involved using the LIBS spectra
from the training set. Each spectrum was associated with
a specic origin, determined by reference techniques. During
J. Anal. At. Spectrom., 2024, 39, 1560–1570 | 1561
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Fig. 1 The images of 6 representative greenish-white to white nephrite jades, one from each origin (denoted as ELS24, HL07, QH15, QM03,
XY09 and YC03).
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the training phase, each model learned the spectra associated
with the origin of the sample. Once the training was completed
using the 819 samples dedicated to this task, each resulting
model was evaluated using the test set. Each sample from the
test set was introduced into these models during this stage, and
the model attributed an origin to each sample. By repeating this
operation on the 273 spectra designated for testing, we could
assess the model's performance in differentiating the spectra
and, consequently, the origins of nephrites.

We ne-tuned model parameters such as the number of
decision trees, maximumdepth, and latent variables to enhance
computational performance using ten-fold cross-validation and
accuracy as the evaluationmetrics. This selection process aimed
to optimize the overall performance of the data analysis.
2.4 Machine learning methods

The ability to discriminate between nephrites from different
origins based on their LIBS spectra was assessed using LDA,
PLS-DA, SVM, and RF algorithms in Python 3.7. LDA35 is
a technique that projects high-dimensional sample data X into
a vector space optimized for classication purposes, allowing
for the extraction of classication information while reducing
the dimensionality of the features. Its underlying principle is to
maximize the distances between different classes while mini-
mizing the distances within each class.

SVM is a statistical method to solve the separation hyper-
plane, which can divide the training data set correctly and has
the maximum geometric interval.

Partial least squares discriminant analysis (PLS-DA)34 is
a discriminant method that employs partial least squares
regression. This approach entails constructing a linear model to
regress the sample data X against a categorical matrix Y, which
1562 | J. Anal. At. Spectrom., 2024, 39, 1560–1570
is subsequently utilized for classication purposes. Unlike
traditional linear regression methods, PLS-DA projects both X
and Y into a new space and extracts latent variables that maxi-
mize the covariance between X and Y.

Random forest (RF)36 is an ensemble learning algorithm that
enhances prediction accuracy and robustness by creating
multiple decision trees and randomly selecting features for
training. RF is capable of handling classication and regression
problems that involve a large number of features and samples.

A voting ensemble classier, oen called a voting classi-
er,37,38 is a machine-learning technique that combines
predictions from multiple models or classiers. Each model
contributes its prediction, and the nal prediction is deter-
mined by aggregating the votes of these models. This method
enhances accuracy and robustness by leveraging diverse
perspectives provided by individual models.
3 Results
3.1 The variation of intensities

The average spectra within the 200–320 nm range indicate that
nephrite jade from six locations exhibits remarkable similari-
ties (Fig. 2), whereas slight differences are observed in some
spectral lines, as shown in the bar charts of the average spectral
line intensity of the samples from each origin.

When examining several representative spectral lines
(Fig. 3), such as Ca 364.4, Ca 409.8, Mg 202.6, Mg 292.8, Si 251.9,
and Si 252.4, these bars in the histogram show somewhat
similar distributions. This suggests a consistent pattern in the
behavior of the emission of photons for that particular element
in the same source, highlighting the variations in the excitation
levels of the samples across different origins.
This journal is © The Royal Society of Chemistry 2024
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Fig. 2 The average LIBS spectra from nephrite jade samples of six
different origins exhibit high similarities in the 200–320 nm wave-
length range. The shaded area represents the standard deviation.
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However, for spectral lines such as Al 308.2, Al 309.3, Be
234.8, and Be 313.0 (Fig. 3a), the heights exhibit relatively weaker
average intensities in the Qinghai origins compared to the other
origins. Mn 403.6, Mn 403.3, Sr 407.8, and Sr 421.6, show relative
weakness in the Qiemo origins. For Li 670.7 and Na 819.5, the
heights demonstrate relatively weaker average intensities in the
Xiuyan origins. The heights of O 777.2 and H 656.3 exhibit no
noticeable variations across different origins, suggesting that the
test results are relatively consistent.

Plotting their intensities as scattered points across all
samples by choosing the intensities observed in certain spectral
lines of elements reveals a discernible clustering pattern for
some origins (Fig. 4). The IAl/IBe ratio of samples from Qinghai
exhibits a distinct characteristic of a le-lower clustering pattern
relative to other origins (Fig. 4a). Such similar observations have
been reported.29 However, there is still a considerable overlap of
scattered data points from various spectral lines vs. their origins
in most cases (Fig. 4c), and vice versa.
This journal is © The Royal Society of Chemistry 2024
There is a notable difference observed in an individual
nephrite with higher and lower translucency from Qinghai
(Fig. 5); in the higher-translucency region, a signicant decrease
in spectral line intensity was observed, particularly at ISi 288.15 nm

(Fig. 5b), with differences reaching up to 25%, whilst IMg 285.21

nm exhibited self-absorption in the lower-translucency portion
(Fig. 5c).
3.2 Matrix effect of multivariate methods

The analysis of nephrite (Table 2) using LIBS spectra with four
machine learning methods and a voting classier achieved
a total accuracy above 93% for all methods: a training accuracy
of 99.81%, 94.01%, 100%, 98.08%, and 99.93%, and testing
accuracy of 96.13%, 93.04%, 94.99%, 95.90%, and 99.93% for
the LDA, PLS-DA, RF, and SVM algorithms, and voting classier,
respectively.

Some misclassications appeared between specic methods
and origins, resulting in a testing accuracy below 90% for specic
categories. For example, higher error rates were occurred in RF
for the Russian origin, and PLS-DA for the Korean origin.

In order to enhance the accuracy of specic origins,
strengthen the overall robustness, and improve the reliability of
the model, a voting ensemble method was conducted. In this
approach, multiple models were employed to make predictions
on the data, and majority voting was conducted based on their
outcomes, by using which the nal prediction was determined.

This methodology allowed for an effective balance of accu-
racy across various origins and yielded more dependable clas-
sication results. For instance, if the origin is Russia and
classied as Qinghai in LDA, Russia in PLS-DA, Russia in RF,
and Korea in SVM, the nal prediction would be Russia. Then
weights were adjusted as follows: SVM > RF > LDA > PLS-DA.
Similarly, if the origin is Korea and classied as Korea in LDA,
Russia in PLS-DA, Russia in RF, and Korea in SVM, the nal
prediction would be Korea. The voting classier achieved a total
testing accuracy of 99.93%, effectively increasing the testing
accuracy to above 99% for each origin.
4 Discussion

The results from multivariate methods demonstrate highly
effective discrimination among the six origins of Qiemo, Qing-
hai, Xiuyan, and Yecheng in China, South Korea, and Russia. In
nearly all machine learning methods, results of Russian and
Korean origins exhibited a relatively higher number of
misclassications compared to other origins. This observation
is likely attributed to the similarities in their ore forming uid
origins (meteoric waters) and comparable microstructures.39,40

And the misclassications from Korea are higher in LDA and
PLS-DA, but lower in SVM and RF. Conversely, misclassica-
tions from Russia display the opposite trend, possibly reecting
differences in model adaptability.

The heights of the spectral lines (Fig. 2) from Russia
demonstrate a signicantly higher error rate in most bars,
suggesting that samples from this origin exhibit substantial
variability and share certain characteristics with other origins,
J. Anal. At. Spectrom., 2024, 39, 1560–1570 | 1563
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Fig. 3 The characteristic peaks include: Al, Ba, and Be (a); Ca, Mg, and Fe (b); Si, Li, and Mn (c); Sr, K, Na, H, and O (d).
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and therefore the likelihood of misclassifying Russian samples
into different origins increases. Additionally, the uneven
distribution of sample numbers within each origin may also
contribute to an increased probability of misclassication.

According to the algorithms, certain spectral lines originating
from trace elements such as Fe, Mn, Al, Sr, Be, Li, Na, and K carry
1564 | J. Anal. At. Spectrom., 2024, 39, 1560–1570
more signicant weights in discriminating between different
origins. Fig. 3a shows that the intensity of the Be and Al area is
noticeably lower in Qinghai compared to other locations. This
result is closely related to the ore-forming mechanisms, as the
lower Be intensity in Qinghai was reported to be attributed to the
contact rocks being mac rocks (gabbro),41 being unlike the
This journal is © The Royal Society of Chemistry 2024
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Fig. 4 Combined three scatter plots showing the relationship between two spectral lines and intensity: Be 313.0 and Al 309.3 (A), Sr 407.8 and
Mn 403.1 (B), and Na 819.6 and Li 670.7 (C). The scatter plots illustrate the intensity variations and highlight the distinctive left-clustered
distribution observed in the Qinghai region (A) and Qiemo region (B), which is distinct from that of other origins. However, in most cases, there
are still some overlapping clustering distributions that are not apparent (C).The characteristic peaks include: Al, Ba, and Be (a); Ca, Mg, and Fe (b);
Si, Li, and Mn (c); Sr, K, Na, H, and O (d).

This journal is © The Royal Society of Chemistry 2024 J. Anal. At. Spectrom., 2024, 39, 1560–1570 | 1565
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Fig. 5 Spectra of Qinghai nephrite jade and its test point. (a) The sample and its test points, spectra from the higher translucency portion (b), and
spectra from the lower translucency portion (c). The dashed lines point to the characteristic peak.
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intermediate-acidic rocks found in other areas that contain
higher concentrations of Be. The relatively lower intensity of Al
may be attributed to multiple stages of hydrothermal processes.42

As the intensity of emission peaks does not necessarily have
a linear relationship with element concentrations, various
physical matrix effects such as grain size, cohesive forces,
sample roughness, crystallinity and the thermal and optical
properties of the target material could contribute to this varia-
tion,43 leading to corresponding variations in spectral lines.

Nephrite jade exhibits various microstructures and grain
sizes, such as felted and brous textures. In their microstruc-
tural study, white jade in the Qinghai region oen displays
a distinctive broblastic texture,44,45 and has higher crystallinity
compared to that in Russia, Korea, and Xinjiang.46 This texture
can consist of weakly oriented bers of similar sizes or the
interweaving of ne bers (>200 mm) with even ner bers (<50
mm). As the laser spot size used in the test is approximately 100
mm, the potential to cause slight variations in spectral patterns
may exist when ablating samples with different grain sizes.
Nephrite jades from Korea and Russia oen exhibit similar
crystalline microstructures inherited from carbonatites, which
are less commonly found in other origins.39,40 Such a similarity
might be the reason for the higher rates of misclassication
observed.

As the intensity of Na and K spectral lines can be inuenced
by physical matrix effects associated with smaller grain sizes
ranging from 250–500 mm,43 the grain size of nephrite in our
samples is less than 500 mm, mostly with size below 200 mm;
this may explain why algorithms assigned higher weights to the
spectral lines associated with Na and K.

The reduction in intensity at ISi 288.15 nm (Fig. 5b) can be
attributed to the loss of irradiance as the laser beam passes
through the front surface and traverses the body of the higher-
translucency sample.47 This can be explained by the optical
thickness of the plasma generated during high-energy pulsed
laser ablation of the sample. When photons generated within
the plasma propagate outward, they may be absorbed by similar
1566 | J. Anal. At. Spectrom., 2024, 39, 1560–1570
atoms or ions along their path. The self-absorption phenomena
(Fig. 5c) are more likely to occur for transitions involving lower
energy levels. This suggests that less homogeneous samples are
more appropriate for collecting data frommultiple locations on
the sample surface.

In order to avoid the misclassication assigned through
local optimality that the machine learning method encountered
in some origins, the voting classier was introduced. Although
the total accuracy of the voting classier was slightly lower than
that of SVM in the test set, it achieved the highest accuracy in
the training set. The voting classier proves to be a powerful
tool for enhancing the robustness of the model for origin
discrimination.

The misclassications can be attributed not only to the
chemical composition but also to the material characteristics.
Several factors would inuence the effectiveness of origin
discrimination, including similarities in the nephritization
processes between the origins, heterogeneity in the samples
and the groups, the number of samples introduced, instrument
sensitivity and/or instability, and the complexity and expressive
capacity of different machine learning models. Minimizing
these misclassications is crucial to ensure the robustness and
reliability of the results.

Due to the limited detection of sensitivity for the LIBS
instrument in this study, potentially valuable records of
medium and heavy rare earth elements were prevented. To
address this issue, one possible approach is to increase the
number of tests conducted on each sample to obtain more
comprehensive information. However, this may cause visible
surface damage on the samples in such cases, which is unac-
ceptable in many elds. Therefore, establishing a reliable
method and a sufficiently large LIBS database would effectively
reduce the testing numbers for samples in future research
studies. Besides, we seek other methods to minimize the
damage caused by LIBS analysis of the samples. Note that
elements with low concentration such as Na, Sr, Be, and Li
exhibit clear detectability in LIBS, but conversely, it is
This journal is © The Royal Society of Chemistry 2024
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Table 2 Average ten-fold cross-validation confusionmatrices for six origins, including fourmultivariate statistical methods and a voting classifier

Prediction results of the training set Prediction results of the test set

ELS HL QH QM XY YC Accuracy ELS HL QH QM XY YC Accuracy

LDA LDA
ELS 156.9 0.1 0 0 0 0 99.94% ELS 50.2 2.8 0 0 0 0 94.72%
HL 0 135 0 0 0 0 100% HL 3 42 0 0 0 0 93.33%
QH 0 0.7 123.3 0 0 0 99.44% QH 0 1.3 39.3 0 0.4 0 95.85%
QM 0.5 0 0 114.5 0 0 99.57% QM 0.6 0 0 37.3 0.1 0 98.16%
XY 0 0 0 0 136.9 0.1 99.93% XY 0 0 0 0 44.5 1.5 96.74%
YC 0 0 0 0 0 151 100% YC 0 0 0 0 1 49 98.00%
Total correct rate for the training set 99.81% Total correct rate for the testing set 96.13%

Prediction results of the training set Prediction results of the test set

ELS HL QH QM XY YC Accuracy ELS HL QH QM XY YC Accuracy

PLD-DA PLD-DA
ELS 149.9 6.3 0 0.8 0 0 95.48% ELS 49.6 3.1 0.1 0.2 0 0 93.58%
HL 11.1 121.8 0 0 1.9 0.2 90.22% HL 5.4 38.6 0 0 0.9 0.1 85.78%
QH 0 4.2 119.8 0 0 0 96.61% QH 0 1.3 39.7 0 0 0 96.83%
QM 4.5 0 0 109.7 0.3 0.5 95.39% QM 0.7 0 0 37 0.1 0.2 97.37%
XY 0 2.1 0.5 0.1 121.2 13.1 88.47% XY 0.1 0.7 0.4 0 40.7 4.1 88.48%
YC 0 1.7 0 0.2 1.3 147.8 97.88% YC 0.1 0.9 0 0.2 0.7 48.1 96.20%
Total correct rate for the training set 94.01% Total correct rate for the testing set 93.04%

Prediction results of the training set Prediction results of the test set

ELS HL QH QM XY YC Accuracy ELS HL QH QM XY YC Accuracy

RF RF
ELS 157 0 0 0 0 0 100% ELS 47.3 4.6 0.5 0.1 0.2 0.3 89.25%
HL 0 135 0 0 0 0 100% HL 3.5 40.8 0 0 0.4 0.3 90.67%
QH 0 0 124 0 0 0 100% QH 0 0.8 40.2 0 0 0 98.05%
QM 0 0 0 115 0 0 100% QM 0 0 0.1 37.8 0.1 0 99.47%
XY 0 0 0 0 137 0 100% XY 1.4 0.1 0 0 43.3 1.2 94.13%
YC 0 0 0 0 0 151 100% YC 0.2 0.2 0 0 0.4 49.2 98.40%
Total correct rate for the training set 100% Total correct rate for the testing set 94.99%

Prediction results of the training set Prediction results of the test set

ELS HL QH QM XY YC Accuracy ELS HL QH QM XY YC Accuracy

SVM SVM
ELS 150.8 6 0 0 0 0.2 96.05% ELS 48.9 3.3 0 0 0 0.8 92.26%
HL 3.9 131.1 0 0 0 0 97.11% HL 2.8 42.1 0 0 0.1 0 93.56%
QH 0 0.3 123.7 0 0 0 99.76% QH 0 0.5 40.5 0 0 0 98.78%
QM 0.2 0 0 114.8 0 0 99.83% QM 0.7 0 0 37.1 0 0.2 97.63%
XY 0 1.7 0 0 131.3 4 95.84% XY 0.1 0.4 0.1 0 43.4 2 94.35%
YC 0.2 0 0 0 0 150.8 99.87% YC 0.6 0 0 0 0 49.4 98.80%
Total correct rate for the training set 98.08% Total correct rate for the testing set 95.90%

Prediction results of the training set Prediction results of the test set

ELS HL QH QM XY YC Accuracy ELS HL QH QM XY YC Accuracy

Voting Voting
ELS 157 0 0 0 0 0 100% ELS 157 0 0 0 0 0 100%
HL 0 135 0 0 0 0 100% HL 0 135 0 0 0 0 100%
QH 0 0.3 123.7 0 0 0 99.76% QH 0 0.3 123.7 0 0 0 99.76%
QM 0.1 0 0 114.9 0 0 99.91% QM 0.1 0 0 114.9 0 0 99.91%
XY 0 0 0 0 136.9 0.1 99.93% XY 0 0 0 0 136.9 0.1 99.93%
YC 0 0 0 0 0 151 100% YC 0 0 0 0 0 151 100%
Total correct rate for the training set 99.93% Total correct rate for the testing set 99.93%

This journal is © The Royal Society of Chemistry 2024 J. Anal. At. Spectrom., 2024, 39, 1560–1570 | 1567
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signicantly lower in XRF. This may contribute to research on
gemstones rich in sodium components, such as jadeite and
albite. Meanwhile, analyzing data from other complementary
techniques would also contribute to research progress on LIBS.

5 Conclusions

This study aimed to compare the classication performance of
four methods for six origins of nephrites based on LIBS spectra.
Furthermore, a voting classier was utilized to integrate the
results, enabling a comprehensive analysis. The analysis revealed
that slight variations in the intensity of some spectral lines are
related to the physical state, such as the microstructure, trans-
parency, grain size of the samples, and the number of spectra
included in the model. It is necessary to collect more spectra
from multiple spots for each sample to establish an optimal
model, especially when dealing with polycrystalline samples.

Using machine learning methods, the LIBS technique success-
fully differentiated the origins of greenish-white to white nephrite
jades from six locations. Combining four algorithms using a voting
ensemble approach effectively balanced the misclassication rates
in certain origins within these algorithms. This method should be
considered a key approach for rapid and reliable decision-making
in sourcing greenish-white to white nephrite.

These preliminary results have motivated us to develop LIBS
technology further and explore the advanced data processing
methods described in this study for broader applications across
diverse origins and materials. Therefore, LIBS is a feasible and
promising option for analyzing the origins of nephrite jade.

It is more likely that LIBS could potentially become a routine
reference technique in archaeological and jade analyses within
current geographical and chrono-cultural frameworks. Finally,
with the possibility of extending this method, it has the
potential to encompass a wider array of gemstones, geological
materials, and other sample types, providing enhanced analysis
of different material backgrounds and sourcing applications.
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