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al networks trained to predict
plasma temperature from optical emission spectra†

Erik Képeš, *a Homa Saeidfirozeh, b Vojtěch Laitl,bc Jakub Vrábel, a

Petr Kubeĺık,bd Pavel Poř́ızka,*aef Martin Ferusb and Jozef Kaiser aef

We explore the application of artificial neural networks (ANNs) for predicting plasma temperatures in Laser-

Induced Breakdown Spectroscopy (LIBS) analysis. Estimating plasma temperature from emission spectra is

often challenging due to spectral interference and matrix effects. Traditional methods like the Boltzmann

plot technique have limitations, both in applicability due to various matrix effects and in accuracy owing

to the uncertainty of the underlying spectroscopic constants. Consequently, ANNs have already been

successfully demonstrated as a viable alternative for plasma temperature prediction. We leverage

synthetic data to isolate temperature effects from other factors and study the relationship between the

LIBS spectra and temperature learnt by the ANN. We employ various post-hoc model interpretation

techniques, including gradient-based methods, to verify that ANNs learn meaningful spectroscopic

features for temperature prediction. Our findings demonstrate the potential of ANNs to learn complex

relationships in LIBS spectra, offering a promising avenue for improved plasma temperature estimation

and enhancing the overall accuracy of LIBS analysis.
1 Introduction

Laser-induced breakdown spectroscopy (LIBS) is a powerful
analytical technique1,2 with numerous applications.3–13 LIBS
utilizes laser-induced plasma to analyze the elemental compo-
sition of various materials. LIBS analysis yields high-
dimensional but sparse optical emission spectra, which are
primarily processed via model-based approaches.14–16 Here,
high dimensionality refers to the tens of thousands of resolved
wavelengths frequently present in LIBS spectra. Meanwhile,
a dominant portion of these wavelengths carries no valuable
information (i.e., no emission lines), making the spectra
sparse.17 Commonly, the output of these models is the investi-
gated material's elemental composition (referred to as quanti-
tative analysis) or its type (qualitative analysis). Nevertheless,
the characterization of the laser-induced plasma is also of
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frequent interest, which entails the determination of, e.g., the
plasma temperature, electron number density, or simply the
verication of the presence of local thermodynamic equilibrium
(LTE).18 In the context of LIBS, the plasma parameters can be
used to standardize the emission spectra, thus enhancing the
subsequent qualitative or quantitative analysis.19 Nevertheless,
due to the arduous procedures used to estimate plasma
temperature from emission spectra, the temperature is oen
substituted with proxy values.20–23

The standard approach of plasma characterization based on
optical emission spectra collected by LIBS uses the Boltzmann
plot technique24 (or its extensions, such as the single25–27 or
multiple element Saha–Boltzmann plot28,29) for calculating the
source plasma's temperature30 and the Saha equation31 or line
broadening analysis32,33 to estimate the source plasma's elec-
tron number density. While these approaches are based on well-
established physical descriptions of plasma processes, their
applicability can be strongly affected by spectral interference
and various physical and chemical matrix effects, which violate
the underlying assumptions. As such, the listed methods
require considerable spectroscopic expertise and are generally
time-consuming. More recently, model-based approaches for
successful plasma temperature prediction have also been
demonstrated.34 Namely, the use of articial neural networks
has been extended from the well-established qualitative35,36 and
quantitative37,38 analysis to plasma characterization.

Corresponding to the increased application of articial
neural network (ANN) models in LIBS analysis, there has been
an increased effort to understand these models. Namely, initial
This journal is © The Royal Society of Chemistry 2024

http://crossmark.crossref.org/dialog/?doi=10.1039/d3ja00363a&domain=pdf&date_stamp=2024-03-29
http://orcid.org/0000-0002-7086-2613
http://orcid.org/0000-0002-6687-1496
http://orcid.org/0000-0001-5629-3314
http://orcid.org/0000-0002-7397-125X
https://doi.org/10.1039/d3ja00363a
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ja00363a
https://pubs.rsc.org/en/journals/journal/JA
https://pubs.rsc.org/en/journals/journal/JA?issueid=JA039004


Paper JAAS

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
M

ar
ch

 2
02

4.
 D

ow
nl

oa
de

d 
on

 8
/6

/2
02

5 
6:

36
:4

6 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
attempts visualized how the emission spectra's representation
is transformed by the individual layers of a deep ANN using t-
distributed stochastic neighborhood embedding.39 More
recently, the transformation of LIBS spectra via the convolu-
tional layers of a CNN classier has also been investigated.40

The work also studied the network behavior using prototype
spectra, which are considered to be the perfect representations
of the considered classes.41,42 Nevertheless, only a small fraction
of the available interpretation techniques have found their way
into the LIBS literature. Namely, gradient-based interpretability
techniques, such as saliency maps and class-activation
maps43–46 remain unexplored.

This work employs several post-hoc model interpretation
techniques – all of them for the rst time in the context of LIBS
regression analysis – to show that neural networks learn
meaningful spectroscopic features in a regression setting used
to predict plasma temperatures from synthetic optical emis-
sion spectra. We employ synthetic spectra exclusively to
establish a controlled ground truth. This approach serves two
primary purposes: (1) to isolate the effects of temperature from
those of the matrix; and (2), to disentangle the measurement of
temperature from the uncertainties inherent in spectroscopic
analysis. While the plasma temperature could be controlled
experimentally, e.g., by changing the laser uence, this would
lead to changes in the laser–matter interaction. Thus, the effect
of plasma temperature cannot be easily separated. Alterna-
tively, the plasma emission spectra can be recorded at different
time domains. As the plasma cools down, this approach yields
emission spectra along the whole temperature curve. Never-
theless, our goal is to develop a technique for plasma
temperature measurements that does not rely on emission
spectra. To this end, this pilot study aims to validate the
applicability of ANNs provided with accurate data to yield
reliable and spectroscopically meaningful temperature esti-
mates. The spectra are generated from compositions inspired
by regoliths, in large part to eventually reach compatibility with
the ChemCam47,48 data. While our ndings are promising, as
a preliminary study utilizing synthetic spectra, the developed
articial neural network (ANN) is not immediately applicable
to actual ChemCam spectra, and it will need further develop-
ment. This limitation notwithstanding, the ndings under-
score the prospective utility of ANN for plasma temperature
estimation in future applications. Before these methods can be
applied to experimental spectra, initial steps must involve
plasma characterization through scattering measurements
(namely Thomson and Rayleigh scattering49–53) to be routinely
used in LIBS applications. These techniques would allow users
to obtain plasma temperature measurement unburdened by
the uncertainties of the standard spectroscopic temperature
measurements.

2 Methodology

The following subsections provide a detailed description of the
workow, which consists of the following steps:

� generation of synthetic spectra assuming local thermody-
namic equilibrium (LTE),
This journal is © The Royal Society of Chemistry 2024
� augmentation of the LTE spectra with experimental base-
line and noise,

� optimization and training of an ANN for predicting the
temperature used to generate the spectra,

� pos hoc interpretation of the trained ANN.
In the Results and discussion section, we employ statistical

techniques such as principal component analysis (PCA)54,55 for
data visualization and partial least squares regression
(PLSR)56,57 for reference. As these methods are commonly
applied in LIBS, we only introduce them briey. In short, both
methods perform the matrix decomposition of the dataset of N
spectra (represented by a matrix X whose rows xi, i ˛ {1, ., N}
are the individual spectra). PCA performs this decomposition in
an unsupervised manner, yielding a set of new orthogonal
variables. On the contrary, PLSR considers the predicted vari-
able (using only the known training data) to guide the decom-
position and yield variables that are predictive of the target
variable. The PLSR model has a single hyperparameter, the
number of latent parameters. This was chosen using a 10-fold
cross-validation process; the model was trained on a random
subset of the training data and evaluated on the remaining
training data, according to the split detailed in the Methodology
section. This process was repeated 10 times for each latent
variable count in the 2–50 range.
2.1 Synthetic data generation

The synthetic spectra generation shown below draws upon the
results of ANN-LIBS analysis, which is described in detail else-
where.34 The approach outlined therein is now taken in the
opposite sense, i.e., instead of analyzing an unknown sample,
we use the exact same formulae to hypothesize on a known
specimen's spectra. As in the original study, python-numpy is
used to build the simpler simulation.

LIBS protocols are a widely recognized method for analyzing
(optically thin) LIBS plasma under LTE conditions. Under such
conditions, the integral intensity of a spectral line can be
expressed as follows:

Iij ¼ FNS
ZAijgihnij

exp

�
� Ei

kBT

�
4pQS

ZðTÞ (1)

NZ
S denotes the abundance of a Z-charged species S, to which

a partition function QS
Z(T) is ascribed. Aij is the Einstein A

coefficient, gi is the degeneracy of the upper energy level Ei, h is
the Planck constant, and nij is the frequency ascribed to a tran-
sition i/ j. F is an experimental factor counting for the optical
system's efficiency and the sampled plasma's optical depth. In
the optically thin case, when no self-absorption corrections are
introduced,58 such a parameter is later outed by means of the
calibration-free approach.59,60

Iij corresponds to an intensity distribution I(n) integrated
over experimental frequencies; in the general case of Voigt
distribution, we dene

I
�
n ¼ c

l

�
¼ Iij

s
ffiffiffiffiffiffi
2p

p R

�
w

�
n� nij þ ig

s
ffiffiffi
2

p
��

: (2)
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Iij and nij are introduced by eqn (1), w($) is a Faddeeva function
of which a real part R is taken, and s and g are respectively the
Gaussian and Lorentzian broadening parameters. s relates to
both the instrumental function and thermal broadening and
was set as a xed parameter (cf. Eqn (11). g, on the other hand,
may be physically linked to the pressure-broadening
phenomena. Upon neglecting inter-heavy particle collisions,61

the following relation is drawn:

g ¼ 2U

 
Ne

N*
e

!
(3)

U is the electron-impact parameter, and Ne is the electron
number density scaled to a certain reference N*

e ; the latter is
typically implicit to a database.

Synthetic spectra employed in this study were governed by
chemical compositions of existing ChemCam samples (62,
appendix Table S1†), i.e., by controlled amounts of alkaline
metals (Na and K), alkaline earth metals (Ca andMg), Ti, O, Mn,
Fe, Al, P, and Si. Molar fractions thereof, required for speciation
analysis, were obtained by scaling recorded mass fractions as
follows

x̂S ¼
ŵS

MSP
S¼elements

ŵS

MS

(4)

where ŵS is the mass fraction of a given element and MS its
molar mass in amu. NIST atomic spectra database63 was con-
sulted to retrieve known transition parameters of Aij, gi, hnij, and
Ei, as well as the partition functions QS(T) and ionization
potentials EN, for all the above elements.

The latter two parameters are crucial for dening the Saha
ionization eqn (5) which is derived from Boltzmann ionization
equilibrium as follows:

NS
Zþ1Ne

NS
Z

¼ QS
Zþ1ðTÞ

QS
ZðTÞ

ð2pmekBTÞ
3
2

h3
exp

�
� EN

Z

kBT

�
(5)

Ionization states of I–V were considered in the above ratios,
and their transitions were constrained to a wavelength interval
of 200–800 nm, which complies with standard LIBS analytical
procedures. Hence, a molar fraction of an element's ionization
state was considered equal to

xS
Z ¼ x̂S$

NS
ZP4

Z¼0

NS
Z

(6)

for NS
Z being the nominal abundances introduced in eqn (1).

For simulation purposes, the hypothetical LIBS spectra
of such samples were parameterized by a set of respective
temperatures (i.e., drawn as discrete values from an interval
of 8000–16000 K) and electron number densities
(i.e., 1 × 1016 cm−3, 5 × 1016 cm−3, and 1 × 1017 cm−3). Fixing
such properties converts eqn (5) to a set of recursive linear
equations for unknown abundances, i.e.,
1162 | J. Anal. At. Spectrom., 2024, 39, 1160–1174
NS
Zþ1 ¼ NS

Z$
QS

Zþ1ðTÞ
QS

ZðTÞ
ð2pmekBTÞ32

Neh3
exp�

� EN
Z

kBT

�
hConstantðT ;NeÞ$NS

Z: (7)

These were solved by numpy.linalg solver aer replenishing
the linear system with two summation formulae. In particular,
eqn (6) lets us dene a linear scaling rule of 8 (cf. the CF-LIBS
method of59): X4

Z¼0

xS
Z ¼ x̂S (8)

while the quasi-neutrality condition requires that an expressionX
S¼elements

X4
Z¼0

ZNS
Z ¼ Ne (9)

hold for all the unknown NS
Z. Then, the system of eqn (7)–(9)

has one and only one solution comprising of the set of all
species' abundances NS

Z. These were passed into eqn (1) to get
the integral intensities of all available transitions. Their wave-
length–intensity proles were modeled with eqn (2), for which
the g parameters were read by eqn (3). Known electron impact
parameters were obtained from the STARK-B database,64–66

relying on N*
e values recorded for given temperature ranges. In

case of a missing U parameter, the g half-width of the corre-
sponding transition was drawn as

g � N
	
gS

Z; var
	
gS

Z




(10)

where N is a Gaussian random variable given by the mean value
and variation of g values known for a given element and ioni-
zation state.

s broadening parameters were set as constant values of

s ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
$FWHM0 (11)

FWHM0 = 0.05 nm is an average thermal and instrumental func-
tion broadening parameter applied in our previous study.34 Finally,
a theoretical spectrum TðlÞ was drawn as a sum of I(n) Voigt line
proles for the calculated Iij, g, and s. Such a result was likened to
an experimental record by adding a quasi-experimental baseline
b(l) level, evaluated by averaging real spectra of qualitatively similar
solid-phase samples available in-house.67 The baseline was
acquired for the real detector's wavelength ranges and resolutions,
and therefore, partially related to its efficiency factors.

Noise level n(l) was mimicked as follows

nðlÞ � N

�
bðlÞ; TðlÞ

5000

�
; (12)

i.e., as a Gaussian random variable centred around the baseline
level with a variation arbitrarily scaled to the intensity levels

TðlÞ. Upon choosing
1

5000
as a scaling factor, the resultant

signal-to-noise levels corresponded to the values recorded
in.34,67 As a nal result, the following synthetic spectra SðlÞ were
passed into ANN analyses (See Fig. 1):
This journal is © The Royal Society of Chemistry 2024
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Fig. 1 An example of sample no. 7's synthetic spectra generated for 8000–16000 K (1000 K increment). The temperature–intensity evolution is
highlighted in the inset which shows Fe emission lines in the 300–400 nm region.

SðlÞ ¼
X

S¼elements

X4
Z¼0

X
isj

Iij

s
ffiffiffiffiffiffi
2p

p R

�
w

�
n� nij þ ig

s
ffiffiffi
2

p
��

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
T ðlÞ

þbðlÞ þ N
�
bðlÞ; T ðlÞ

5000

�
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

nðlÞ

: (13)
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2.2 Data augmentation

The procedure described above yielded a single spectrum for
each combination of elemental composition and LTE temper-
ature (hereaer referred to as target combination). This dataset
did not exhibit the variability generally required for training
ANNs. Consequently, the generated dataset was augmented
with an additional noise and baseline component. The noise
component is generally considered to be white noise drawn
from a Gaussian distribution.68,69 Nevertheless, the shape of the
noise distribution can deviate from that of normal distribu-
tion.70,71 Meanwhile, the baseline can take complex shapes,
oen approximated by high-order polynomials.72–74 Thus, both
components (noise and baseline) were generated from experi-
mentally obtained data. Namely, the Gaussian distribution used
to generate random noise was estimated by tting the intensity
values of measured spectra in spectral regions devoid of emis-
sion lines. The baseline was estimated using a model-free
algorithm:75 First, a sliding minimum lter (with a window
width of 100 ordinal data indices) was applied to experimental
spectra. Subsequently, the found local minima were smoothed
using a sliding Gaussian lter (with a window width and full
width at half maximum of 50 and 200 ordinal data indices,
respectively). 100 estimates were obtained for both the noise
and baseline “spectra”. Lastly, random samples of 25 noise and
baseline “spectra” were added to each synthetic spectrum. The
available dataset's size was expanded by a factor of 25, and each
This journal is © The Royal Society of Chemistry 2024
target combination was represented by 25 spectra in the nal
dataset.

2.2.1 Final datasets. In total, there were 261 target combi-
nations: 9 distinct temperature values {0.8–1.6} × 104 K and 29
unique elemental compositions. A full summary of the
considered compositions is provided in the ESI, Table S1.†With
25 augmented spectra available for each target combination,
the dataset consisted of 6525 spectra. For the nal evaluation of
the model, spectra of 30 target combinations were set aside. The
remaining 231 target combinations (5775 spectra) were used for
cross-validation (CV) and training with 30 target combinations
(750 spectra) used for validation in each CV round.
2.3 Articial neural networks

Articial neural networks represent a family of mathematical
models that are capable of approximating any function.76,77 This
ability is achieved by alternating linear and non-linear trans-
formations of the input data.78 The linear transformation is
done by multiplying the data with weight matrices W(n) (where
the index n refers to the n-th layer of the network) and the
addition of bias values B(n). Each layer is commonly followed by
a non-linear transformation carried out by the so-called non-
linear activation function,79 e.g., the commonly used rectied
linear unit g(a) = max(a, 0) (ReLU),80 which is applied inde-
pendently to each value. Thus, in their most general forms,
ANNs can be written as f(x, q(X), where x is an input vector (i.e.,
J. Anal. At. Spectrom., 2024, 39, 1160–1174 | 1163
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Fig. 2 Principal component scores of the (a) training and (b) testing
datasets, projected using the same set of loadings. The colorbar
represents the temperature of the given spectrum. The percentage
values in the brackets denote the variance explained by the respective
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a spectrum), q represents the set of weight matrices W(n) and
corresponding bias values B(n), collectively referred to as the
learnable parameters (or parameters for short) of the ANN.

The weights q are a function of the dataset X because these
data are used to learn the weights q, commonly via a variation of
gradient descent:81,82 the predictions made by the ANN on the
dataset X are iteratively compared to the true values y (referred
to as ground truth values) using a loss (or cost) function:
Lðf ðX; qÞ; yÞ ¼ LðkÞ, where k denotes the iteration. The loss
function quanties the error made by the ANN and is chosen
according to the problem the user tries to solve. For a regression
problem such as the considered temperature prediction,
a common choice is the mean squared error

MSE ¼ 1
N
$
XN
i¼1

ðyi � byiÞ2, where byi is the ANN's prediction cor-

responding to spectrum xi. At each iteration, the impact of each
parameter on the prediction error is determined by calculating
the loss function's gradient w.r.t. the model parameters.
Subsequently, the model parameters are adjusted by a value
corresponding to their estimated impact:

DqðkÞ ¼ �hðkÞ$VqL
	
f
	
X; qk�1



; y


; (14)

where h(k) is the learning rate which can depend on the itera-
tion (commonly referred to as the training step). This update
rule can be (and is frequently) modied to improve the opti-
mization's stability and convergence rate.83 The optimizer used
to train the model denes the nal update rule. There is
a variety of optimizers available.84 The most common ones have
been recently described in an educative manner in the context
of LIBS.35

Here we used a fully connected ANN (other commonly used
architectures in LIBS have been recently summarized15,37) with
two hidden layers; thus, including the input and output layers,
the network consisted of 4 layers with 2000, 1000, 500, and 1
unit (or node), respectively. Each layer was coupled with the
ReLU activation function dened above. The purpose of this
activation function in the last layer is to ensure that the
prediction is non-negative since we expect positive tempera-
tures (the predicted temperature values were not scaled in any
way). Each layer was followed by a dropout layer,85 which
randomly sets a dened number of weights (here chosen to be
20%) to 0 in each iteration. This forces the model to learn more
robust relationships between the predictive and predicted
variables, acting as regularization.86 For additional regulariza-
tion, we employed both L1 and L2 regularization (sum of the
absolute and squared weight values, respectively) with aL1 = 10
and aL2 = 1.

The model was trained using the Adam optimizer,87 which
modies 14 to adapt the learning rate for the individual
parameters based on the gradients from preceding iterations.
The initial learning rate was 10−5. The model was trained for
a total of 300 epochs (the number of times a single spectrum is
shown to the model in randomized order) with a batch size of 32
(the number of spectra shown to the model in each iteration).
The model's hyperparameters (number of hidden layers and
their sizes, dropout rate, optimizer, initial learning rate, L1 and
1164 | J. Anal. At. Spectrom., 2024, 39, 1160–1174
L2 regularization factors) were chosen following a limited
manual exploration of their impact on the model's performance
on the validation dataset.

The model was trained in the Google Colaboratory environ-
ment using the Tensorow88 framework with the Keras89 inter-
face in the Python90 programming language using the freely
available GPU option. The complete training of the model took
units of minutes.
2.4 Neural network interpretation

This work aims to demonstrate that the ANN model trained to
predict plasma temperature from LIBS spectra learns mean-
ingful relationships between the spectral intensities and the
target temperature. We achieve this by probing the trained
model using a combination of three distinct techniques,
detailed below.

2.4.1 Relevance scores. The most fundamental tool for the
post hoc interpretation of ANNs is the saliency, which is the
gradient of the model w.r.t. a given input. While saliency can
provide useful information on a case-by-case basis for indi-
vidual observations, saliency values tend to be rather noisy. As
such, relevance scores (RS) are oen used instead, which
enhance the distinction between noisy and valuable variables.
Thus, RS quantify the impact of changing each input variable's
magnitude on the prediction.91 RS is a form of sensitivity
principal component.

This journal is © The Royal Society of Chemistry 2024

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ja00363a


Fig. 3 Summary of the partial least squares model: (a) results of the cross-validation used to optimize the number of latent variables; (b) the test
performance of the final model (with the diagonal line representing perfect prediction); (c) sum of the model's weights' absolute values.

Fig. 4 Artificial neural network's performance on the (a) training and
(b) testing datasets (with the diagonal line representing perfect
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analysis,92–94 which has been successfully applied to other
machine learning models in the context of LIBS.95 RS is calcu-
lated as:

RS(X) = (Vxf(x,q))
2, (15)

where the squaring is applied element-wise. Thus, the RS cor-
responding to a spectrum x is a non-negative vector of the same
length. Note the difference between the formulation of gradient
descent and the denition of RS; while gradient descent
considers the gradient of the loss function w.r.t. the model
parameters, the RS corresponds to the gradient of the model's
prediction w.r.t. the model's input evaluated at a specic
spectrum. The obtained gradient is then squared. Note that RS
achieves a superior resolution compared to saliency at the price
of losing directional information due to the squaring operation.
That is, RS does not reveal whether the increase of a variable's
value has a negative or positive impact on the prediction.

2.4.2 Taylor decomposition. The trained ANN regression
model is non-linear. Nevertheless, taking its Taylor decompo-
sition w.r.t. the input vector can locally linearize it. This oper-
ation can be expressed as96,97

f(x,q) = f(x0)+Vxf(x0)
T(x − x0)+H.O.T., (16)

where x0 is some root point (discussed below), ($)T is the
transpose operator, and H.O.T. are the higher order terms
which here include the quadratic term as well since the model
uses only ReLU activation functions and hence locally behaves
linearly.98,99 The second term on the right-hand side can be used
as an alternative to the relevance scores introduced above. That
is, the term represents a weight spectrum and is henceforth
referred to as the Taylor spectrum. In general, it is recom-
mended to use synthetic observation as the root point where the
function evaluates to 0. This can be achieved using the
approach described in Subsection 2.4.3. However, this recom-
mendation was established in the context of image recognition.
Hence, here we present two alternative root points.

2.4.3 Prototype spectra. Lastly, based on the technique
referred to as model explanation by concept visualization,41,42

we found prototype spectra xp
(t) which yield perfect predictions
This journal is © The Royal Society of Chemistry 2024
for each considered temperature t. These prototype spectra are
obtained by applying gradient descent to solve the optimization
problem:

xp
ðtÞ ¼ argmin

x

L
	
x; yp; ŷ



; (17)
prediction).
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where Lðx; yp; ŷÞ is the same loss function as was used for
training the model, i.e., MSE with three regularization terms
added to it:

Pjxij,
P

(xi)
2, and

Pjxi − xi+1j,100,101 where the
indexing i runs over the individual variables (intensity values).
Without the regularization terms, the optimization was
observed to yield noisy prototype spectra.40
3 Results and discussion

This work represents an empirical study of the inner workings
of ANNmodels used to predict plasma temperature from optical
emission (i.e., LIBS) spectra. That is, we explore whether an ANN
trained to predict plasma temperature learns spectroscopically
meaningful behaviors in the data in a well-controlled setting,
i.e., using synthetic data with known ground truth.

The challenge of predicting the correct temperature in the
considered scenario is demonstrated in Fig. 2: there is no
simple linear relationship between the spectral intensities and
LTE temperature values corresponding to the spectra, as
demonstrated by the overlapping PCA scores of the spectra of
distinct temperatures. Nevertheless, a gradual change in
temperatures can be observed along the diagonal of Fig. 2a,
suggesting that a multivariate linear relationship might exist.
To explore this possibility, we employed PLSR (Fig. 3). The
results are presented in Fig. 3a. Using 34 latent variables
determined by the applied CV process (corresponding to both
the minimum in Fig. 3a and the lowest uncertainty: 900 ± 50 K
RMSE), the PLSR model was retrained on the whole training
dataset. This model was then evaluated on the test dataset
(Fig. 3b). The test error of this model was 770 K RMSE. The
wavelength-wise sum of the absolute loading values of the
model is shown in Fig. 3c; the model's loadings are oen
Fig. 5 Examples of the relevance scores and Taylor decomposition ana
composition; (b) mean Taylor spectrum (second term on the right-hand
shaded areas represent the standard deviation. The transparent rectangl

1166 | J. Anal. At. Spectrom., 2024, 39, 1160–1174
paralleled with feature importance. Note the considerable
impact of the baseline.

Despite the apparent linear relationship in Fig. 2 (color
gradient along the diagonal), the PLSR model's temperature
prediction is outperformed by the considered ANN model,
whose test error was 470 ± 130 K RMSE (corresponding to a 22
to 55% improvement in test prediction error; Fig. 4. The
uncertainty here was determined by re-training and evaluating
the ANNmodel with the same architecture on the same datasets
(training and validation) with different random initializations
and randomminibatch sampling. The source of the uncertainty
is the dependence of the model's learnable parameters on the
training data, and in particular on the order in which the
training data is presented to the model during training: the
gradient used to update the model parameters is an estimate of
the true gradient obtained from the minibatch.

The better test performance of the neural network is of
course not surprising. Provided with a sufficient training data-
set, neural networks can provably approximate any function.77

On the contrary, a major limitation of neural networks is their
black-box nature. As such, the predictions of an ANN must be
investigated post hoc. The sensitivity of the model to individual
features can be determined on a case-by-case basis, i.e., for each
observation (spectrum) separately by observing their relevance
scores, Taylor approximation, or by calculating prototype
spectra for selected predicted values. The following subsections
discuss the results obtained by each individual technique.
3.1 Relevance scores

Relevance scores assign an importance value to the individual
predictive variables (resolved wavelength values). In the present
context, the importance corresponds to the relative magnitude
lyses: (a) mean relevance scores across all temperatures with a fixed
side of eqn (16)) across all temperatures with a fixed composition. The
e corresponds to the inset's position.

This journal is © The Royal Society of Chemistry 2024
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of the expected change in predicted temperature caused by
small changes to the variable's value. The locality is important
here: the gradient w.r.t. the input (eqn (15)) essentially linear-
izes the model, but only in the close vicinity (i.e., subject to
small perturbations only) of the chosen probe spectrum.

The relevance scores obtained for a selected spectrum and
a xed model form a spectrum which we henceforth refer to as
a relevance spectrum (Fig. 5). The importance of the individual
features is expected to be stable with the changing target
composition and plasma temperature. Nevertheless, the model
is approximating a non-linear relationship between the input
Fig. 6 Prototype spectra that yield perfect a prediction for (a) 8000 K, (b
axis ranges have been fixed to emphasize the change in absolute magnitu
analysis has been performed. Namely: Fe II 252.54 nm (11.1 eV upper ener
Fe I 393.35 nm (6.2 eV); Fe I 504.10 nm (3.4 eV) and/or Si II 504.10 nm (

This journal is © The Royal Society of Chemistry 2024
values and the output. As such, considering that the relevance
spectrum is the squared gradient of the model w.r.t. its input
(eqn (15)), the relevance spectra are expected to exhibit some
variation. As a verication, the relevance spectrum averaged
over all compositions at a selected temperature (11 000 K) is
shown in Fig. 5a (a more complete showcase is included in
Fig. S2, ESI†).

The relevance spectra contain both stable and variable
spectral regions as either the composition or temperature is
varied, as shown in Fig. 5a (and Fig. S2(a) and (b)†). This
suggests that relevance scores can be used to investigate the
) 10 000 K, (c) 12 000 K, and (d) 16 000 K, respectively. Note that the y-
de. The highlighted regions denote emission lines for which sensitivity
gy level) and/or Ti II 252.56 nm (5.0 eV); Ca II 393.36 nm (3.2 eV) and/or
12.5 eV); and Si II 637.13 nm (10.1 eV) and/or Ti I 637.14 nm (4.1 eV).
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general behavior of the model. Consequently, targeted sensi-
tivity analysis can be performed using the relevance spectrum to
select important spectral regions. Namely, the intensities at
wavelengths with relevance scores below a certain threshold
(chosen here to be less than 1% of the maximum relevance
score in the considered relevance spectrum) can be selectively
perturbed by adding random values drawn from a uniform
distribution with a width corresponding to 1% of the spec-
trum's maximum intensity. Such sensitivity analysis showed
that perturbing the important variables (which represent up to
4% of all variables, i.e., about 300 out of the available 8600)
caused a change comparable to perturbing the remaining 96%
of the variables (1000 K and 2000 K change on average,
respectively). The corresponding relevance spectrum averaged
over the full training dataset is shown in Fig. S2d.† Neverthe-
less, the relevance spectra also exhibited spectral regions with
relatively high variance (Fig. 5a inset). In general, these regions
do not resemble clearly distinguished emission lines.

Lastly, the relevance spectra were consistent even across the
differently initialized models (Fig. S2c†), remaining virtually
indistinguishable between the different models for the same
probe spectrum. Consequently, it appears that the initialization
Fig. 7 Comparison of the model prediction and its first order approxima
a single composition using three distinct root points for the Taylor decom
zero; (b) the mean of the spectra corresponding to the same compo
prediction of the model, i.e., approximately 10 000 K). The diagonal line

Fig. 8 (a) Detailed view of the 393.35 nm emission line in several spectra
104 and 1.6 × 104 K, the mean relevance scores spectrum, and the mean
a selected prototype spectrum and their baseline prediction. The horizon
generated.

1168 | J. Anal. At. Spectrom., 2024, 39, 1160–1174
of the predictive model has negligible impact on the approxi-
mation it learns. However, this is in contrast with the test
performance of the models, which varied by up to 450 K (the
difference between the best and worst-performing models' test
RMSE).

3.2 Taylor decomposition

In contrast with the relevance spectra, the Taylor
decomposition-based approach relates the model's gradient to
a xed point, i.e., the root point (eqn (16)). As such, the model's
Taylor decomposition provides two insights: (1) about the
importance of the individual input features (5b); and (2) by
selecting an appropriate root point, about the degree of non-
linearity exhibited by the model (Fig. 7).

Compared with the relevance spectra (Fig. 7a), the Taylor
spectra (Fig. 7b) contain fewer but more pronounced emission
lines. In addition, the Taylor spectra also contain information
about the direction of expected change resulting from per-
turbing a given variable: negative values in the Taylor spectrum
suggest that increasing the corresponding intensities will
decrease the predicted temperature. Correspondingly, the pre-
sented variance of the Taylor spectra (such as the portion shown
tion (sum of the first two terms of the right-hand side of eqn (16)) for
position: a) a prototype spectrum yielding a prediction of approximately
sition and temperature; and (c) a zero vector (which yields the base
represents a perfect correspondence, not a perfect prediction.

: the mean spectrum of the training dataset, the prototype spectra for
Taylor spectrum. (b) Comparison of the trained models' prediction for
tal line denotes the temperature for which the prototype spectrumwas

This journal is © The Royal Society of Chemistry 2024
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in the inset of Fig. 5b) is signicantly higher than that of the
corresponding RS. This suggests that the Taylor decomposition-
based approach offers a more granular resolution of feature
importance. In addition, the Taylor spectra suggest that the
model is less sensitive to the 251–253 nm spectral region
(Fig. 5b inset) as shown by the relevance spectra. Lastly, the
model appears to be sensitive to the emission line shape
(second derivative) of the 393.349 nm emission line (Fig. 8a). No
similar behavior was observed considering the other emission
lines.

Note that the presented Taylor spectra were obtained by
choosing the mean of the spectra at the corresponding
temperature and composition. While qualitatively comparable
Taylor spectra are obtained irrespective of the root point's
choice (i.e., the same emission lines are generally present), the
model's linearly approximated predictions vary considerably.
Namely, depending on the root point's choice, the model's
linear approximation can introduce an explicit positive bias to
the predictions: the rst-order Taylor approximation of the
model overestimates the target temperature in every case. This
is, for example, the case if the synthetic spectrum yielding
a 0 prediction is chosen (Fig. 7a). The magnitude of this bias is
not uniform and depends on both the temperature and
composition.

On the contrary, using the temperature and composition-
wise mean spectra as root points (the same root point for all
25 spectra representing a single temperature and composition),
the linear approximation of the model is relatively accurate
(Fig. 7b). As a third alternative, Fig. 7c shows the obtained
approximations using a null vector (vector of zeros) as the root
point. In this case, the non-linearity of the model appears to be
responsible for corrections for the spectra's variance (consid-
ering the increased vertical spread of the points compared to 4)
and to provide bias. The most notable impact of linearly
approximating the model is the sudden drop of predicted
temperatures at 16 000 K in Fig. 7c.
Fig. 9 Comparison of the predicted temperatures before and after
perturbing the denoted emission line. The colors correspond to the
highlighting used in Fig. 6 and 10 (both in ESI†). The diagonal lines
denote perfect correspondence and their color is selected solely for
the sake of visibility. The denoted wavelengths correspond to Fe II
252.54 nm (11.1 eV upper energy level) and/or Ti II 252.56 nm (5.0 eV);
Ca II 393.36 nm (3.2 eV) and/or Fe I 393.35 nm (6.2 eV); Fe I 504.10 nm
(3.4 eV) and/or Si II 504.10 nm (12.5 eV); and Si II 637.13 nm (10.1 eV)
and/or Ti I 637.14 nm (4.1 eV).
3.3 Prototype spectra

While both the relevance and Taylor spectra provide insights
into the overall behavior of the model, the prototype spectra are
expected to reveal more details about the model around specic
temperatures. Namely, the simplest prototype spectrum
(Fig. 6b) corresponds to 10 000 K, which is approximately equal
to the model's prediction for a zero-vector (henceforth referred
to as the model's baseline prediction). In addition, the proto-
type spectra corresponding to 8000 and 12 000 K (in equal
distance from the simplest 10 000 K) appear to be reections of
each other.

Moreover, several emission lines present in the prototype
spectra appear or disappear in a step-wise manner: the emission
line at 504.10 nm (corresponding to Fe I 504.10 nm and/or Si II
504.10 nm with corresponding upper energy levels of 3.4 and
12.5 eV, respectively) appears in prototype spectra correspond-
ing to temperatures above 14 000 K (here only shown for 16 000
K in Fig. 6d). Other emission lines, such as 252.55 (Fe II
252.54 nm (11.1 eV) and/or Ti II 252.56 nm (5.0 eV)) and
This journal is © The Royal Society of Chemistry 2024
393.35 nm (Ca II 393.36 nm (3.2 eV) and/or Fe I 393.35 (6.2 eV)),
gradually decrease, eventually ipping around the prototype
closest to the baseline prediction (10 000 K, Fig. 6a–c). More-
over, note the considerable potential spectral interference,
which would invalidate the standard Boltzmann plot technique
using these lines. Hence, provided with accurate ground truth
values obtained using external measurements (decoupled from
J. Anal. At. Spectrom., 2024, 39, 1160–1174 | 1169
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the LIBS emission spectra), ANNs could address some of the
challenges faced by standard methods. The extent of the
necessary external measurements required to train such ANNs
applicable in practical settings is yet to be determined.

Considering the selective presence of the emission lines in
the prototype spectra, perturbing these emission lines should
only affect predictions in the temperatures where they are
present. This is indeed the case, as shown in Fig. 9. Perturbing
(setting equal to 0 in the spectrum) the emission lines at 504.16
(Fe I 504.10 nm (3.4 eV) and/or Si II 504.10 nm (12.5 eV)) and
637.14 nm (Si II 637.13 nm (10.1 eV) and/or Ti I 637.14 nm
(4.1 eV)), which rst appear in the prototype spectrum of 14 000
K affects the predictions only in the 14 000–18 000 K range. On
the contrary, perturbing the emission lines at 252.55 (Fe II
252.54 nm (11.1 eV upper energy level) and/or Ti II 252.56 nm
(5.0 eV)) and 393.35 nm (Ca II 393.36 nm (3.2 eV) and/or Fe I
393.35 nm (6.2 eV)), present in every prototype spectrum, affects
every prediction. Moreover, there is a clear change in the
dominant shi's direction caused by the removal of the
considered emission lines. In the temperature range where the
emission lines' intensities are negative in the corresponding
prototype spectra, the lines' removal causes an upward shi in
Fig. 10 (a) Mean spectrum of the training dataset and (b)–(e) relationship
mean spectrum and the prototype spectra. The full vertical and horizon
respectively. The dashed lines denote the line intensity at the temperatu

1170 | J. Anal. At. Spectrom., 2024, 39, 1160–1174
the predicted temperature, and vice versa in the case of positive
intensities.

Most emission lines deemed important by the ANN corre-
spond to a convolution of multiple emission lines that cannot
be resolved spectroscopically. Nevertheless, by analyzing the
spectroscopic constants associated with these emission lines, it
is possible to identify the strongest line with a high degree of
condence. Despite the order of magnitude higher concentra-
tion of Si in the considered targets, the ionic Si lines' upper
energy levels are too high to exhibit notable intensity contri-
bution to the observed composite emission features. Conse-
quently, the ANN has been trained to prioritize emission lines
from Fe and Ti, mirroring the approach frequently adopted by
expert spectroscopists.

Nevertheless, while the emission line intensities in the
prototype spectra are related to the corresponding intensities in
the training spectra, they are not linearly correlated (Fig. 10c).
Namely, the 393.35 nm emission line's intensity exhibits a good
linear correlation between the prototype and emission spectra.
On the other hand, the remaining three shown emission lines
exhibit different behaviors: the 252.55 nm emission line shows
a logarithmic dependence, while the 504.10 and 637.14 nm
of the 4 highlighted emission lines' intensities in the temperature-wise
tal lines mark the mean intensity in the training and prototype spectra,
re which coincides with the baseline prediction of the model.

This journal is © The Royal Society of Chemistry 2024
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emission lines show an approximately binary relationship (that
is, present or not present). Note that this comparison is done
instead of considering the Boltzmann plot to avoid the impact
of the changing composition in the training dataset. For
example, the 504.10 nm emission line remains unchanged in
the spectra corresponding to several temperatures. Accordingly,
the line intensities in the corresponding prototype spectra are
close to 0.

An apparent discrepancy exists between the relevance scores
and the Taylor decomposition, attributable solely to the
intrinsic formulations of these two methodologies. The rele-
vance scores do not consider the sign of values, rendering them
sign-agnostic. Consequently, averaging over different tempera-
tures and/or compositions can lead cause the Taylor spectra to
approach 0. On the contrary, the relevance scores are non-
negative. Hence, averaging several relevance score spectra
increases yields a spectrum with an enhanced signal-to-noise
ratio, i.e., more pronounced emission lines. Overall, despite
these methodological differences, all three approaches—when
applied iteratively—yield qualitatively similar outcomes,
consistently emphasizing the signicance of the identied
emission lines.

Our nal comments on the interpretability technique using
prototype spectra address the stability of the generated proto-
type spectra. Briey, the obtained prototype spectra were found
to be transferable between the distinct trained models, up to
a constant error. In turn, this error was found to be linearly
dependent on the models' baseline prediction (Fig. 8b). Thus,
the prediction error on the prototype spectra resulting from
transferring a prototype spectrum between models is linearly
proportional to the value predicted from a zero vector (the base
prediction).

4 Conclusions

This empirical study delves into the inner workings of articial
neural network (ANN) models employed to predict plasma
temperature based on optical emission (LIBS) spectra. The
investigation is carried out in a controlled manner using
synthetic data with known ground truth. These efforts are to be
extended to experimentally collected spectra in the future. To
avoid propagating errors in temperature determination from
the Boltzmann plot method, an external technique for
temperature measurement will be used in future studies. The
study employs three interpretability techniques to shed light on
the ANN's behavior. Relevance scores showed a potential to
investigate the model's behavior systematically: perturbing the
variables found important via relevance scores resulted in
amore pronounced impact on themodel's prediction compared
to the perturbation of intensity values with a low assigned
relevance score. The stability of relevance scores across differ-
ently initialized models suggests that initialization has minimal
impact on the learned approximation. Taylor decomposition-
based analysis provides additional insights, namely about the
non-linearity in the model. The Taylor decomposition showed
better resolution but a strong dependence on the root point's
choice. Lastly, the prototype spectra corresponding to specic
This journal is © The Royal Society of Chemistry 2024
temperatures contain a set of well-dened emission lines that
exhibit distinct behaviors. Certain lines appear or disappear in
a step-wise manner. Perturbing these lines affects predictions
within specic temperature ranges, with a clear shi direc-
tionality depending on the emission lines' intensities. Overall,
the results suggest that if trained on accurate ground truth
values obtained via external measurements, ANNs could greatly
enhance our capabilities to diagnose plasmas using their
optical emission spectra. Moreover, the presented trends
suggest that (with proper regularization on well-controlled
synthetic spectra) the ANN learns spectroscopically sound
trends in the data, which we can interpret and translate into
domain expertise. This is crucial, because owing to the general
approximation theorem, the ANNs could very well t spurious
correlations in the data, rendering any further efforts towards
the improvement of laser-induced plasma temperature using
ANNs futile. Most importantly, we present a set of robust
techniques that can be used to probe and understand any ANNs
developed and applied in the future. Nevertheless, the broader
applicability of the determination of laser-induced plasma
temperature using articial neural networks in practical
scenarios is yet to be established. A signicant obstacle in this
regard is ensuring the precision of experimental methodologies
employed to derive ground truth values. In the spectrum of
available methods, Rayleigh and Thomson scattering tech-
niques are particularly noteworthy for their potential.
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