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Palladium-catalyzed carbonylation of activated
alkyl halides via radical intermediates

Zhi-Peng Baoab and Xiao-Feng Wu *ab

Palladium-catalyzed carbonylation is an efficient approach to prepare carbonyl-containing compounds

with high atomic economy in synthetic organic chemistry. However, in comparison with aryl halides, car-

bonylation of alkyl halides is relatively challenging due to the decreased stability of the palladium intermedi-

ates. Carbonylation of activated alkyl halides is even more difficult, as nucleophilic substitution reactions

with nucleophiles occur more easily with them. In this article, we summarize and discuss recent achieve-

ments in palladium-catalyzed carbonylative reactions of activated alkyl halides. The transformations pro-

ceed through radical intermediates which are generated in various manners. Under a relatively high pres-

sure of carbon monoxide, the corresponding aliphatic carboxylic acid derivates were effectively prepared

with various nucleophiles as the reaction partners. Besides alcohols, amines and organoboron reagents,

four-component reactions in combination with alkenes or alkynes were also developed. Case-by-case re-

action mechanisms are discussed as well and a personal outlook has also been provided.

Keywords: Carbonyl group; Palladium catalysis; Carbonylation; Activated alkyl halides; Radical

intermediates.

1 Introduction

Carbon monoxide (CO) is an inexpensive and abundant one-
carbon source in chemical synthesis, and employing it to un-
dertake the carbonylative process is a direct and efficient way
to construct valuable carbonyl-containing compounds.1,2 Re-
markable progress has been made in transition-metal-
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catalyzed carbonylation reactions after decades of develop-
ment. This kind of transformation has now become one of
the most powerful methods for the synthesis of carbonylated
compounds and has also been successfully used as a key step
in the total synthesis of many natural products.3,4 More im-
portantly, many carbonylative procedures have been industri-
alized. For instance, the catalytic double carbonylative reac-
tion of benzyl halides and the carbonylation of epoxides have
been performed at large scale, and the Monsanto or Cativa
processes make the majority of the world's acetic acid pro-
duction through methanol carbonylation.2,5,6

Palladium-catalyzed carbonylative reactions have experi-
enced rapid development during past decades. In 1974, Heck
and co-workers reported the first palladium-catalyzed carbon-
ylation reaction of aryl halides and benzyl halogenated com-
pounds.7 Then, Ryu and co-workers reported their study on
the free-radical-mediated carbonylation of unactivated alkyl
halides in 1990.8 The same group also reported a Pd/light-in-
duced multicomponent carbonylative coupling reaction of ac-
tivated halides with alkenes in 2011.9 In 2020, Arndtsen and
co-workers developed a seminal strategy that exploits simple
visible-light excitation of palladium to drive both oxidative
addition and reductive elimination with low barriers. Both
aryl halides and unactivated halides can be effectively con-
verted into the corresponding carbonylated compounds
(Scheme 1).10

In synthetic chemistry, the efficient assembly of complex
compounds from simple starting materials is a challenging
and long-standing goal. In this article, we summarize and
discuss recent studies on palladium-catalyzed carbonylative
transformations of activated alkyl halides which are able to
construct a wide variety of carbonylated compounds and their
derivatives with valuable functional groups, including fluori-
nated groups, cyano groups, and ester groups. The contents
are mainly categorized according to two aspects: i)
palladium-catalyzed direct carbonylation of activated alkyl ha-
lides with nucleophiles (Scheme 2); ii) palladium-catalyzed
carbonylation of activated alkyl halides and nucleophiles with
alkenes or alkynes (Scheme 3).

2 Palladium-catalyzed direct
carbonylation of activated alkyl
halides with nucleophiles

Organic fluorides play a vital role in medical chemistry, and
materials science due to their special physical and chemical
properties. The introduction of a fluorine atom into organic

molecules could change their biological activity and physical
properties.11–14 On the other hand, employing commercially
available fluorine-containing activated halides to introduce
fluorine atoms into molecules is an efficient method to con-
struct fluorine-containing compounds. In 2016, Zhang's
group15 and Skrydstrup's group16 reported elegant transfor-
mations of Pd-catalyzed carbonylative coupling reactions of
difluoroalkyl bromides. The main challenge is that the reac-
tion intermediates (Rf–M) are less prone to undergoing car-
bonyl insertion because the σ-bonds between fluoroalkyl
groups and transitional metals are stronger than their nor-
mal hydrocarbon counterparts. This transformation not only
provides us with a new way of viewing palladium-catalyzed
fluoroalkylative carbonylation but also inspires us to probe
this strategy to build up some valuable bioactive molecules
(Scheme 4).

Later, in 2018, Skrydstrup's group provided a direct route
to construct α,α-difluoro-β-alkyl-β-ketoamides via Pd-
catalyzed carbonylative coupling between bromo-
difluoroacetamides and alkyl boron reagents.17 This transfor-
mation has good chemoselectivity and provided a broad

Scheme 1 Landmarks of palladium-catalyzed carbonylative transfor-
mations of various halides.

Scheme 2 Palladium-catalyzed direct carbonylation of activated alkyl
halides with nucleophiles.

Scheme 3 Palladium-catalyzed carbonylation of activated alkyl
halides and nucleophiles with alkenes or alkynes.
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selection of α,α-difluoro-β-alkyl-β-ketoamides which are suit-
able for further synthetic manipulation (Scheme 5).

In 2021, Zhang's group reported a palladium-catalyzed
carbonylative cross-coupling of difluoroalkyl halides with
alkyl-9-BBN under 1 bar of CO.18 The reaction overcomes the
hydrodehalogenation and β-hydride elimination of
unactivated difluoroalkyl halides, representing the first exam-
ple of catalytic carbonylation of unactivated difluoroalkyl ha-
lides (Scheme 6).

In 2023, our group developed a novel palladium-catalyzed
carbonylative procedure for bromoacetonitrile using amines,
phenols, and alcohols as the nucleophiles via a radical inter-
mediate. A variety of valuable 2-cyano-N-acetamide and
2-cyanoacetate products were obtained in excellent yields un-
der mild reaction conditions. Additionally, a scale-up reaction
was performed smoothly with low catalyst loading. Moreover,
this transformation can be carried out under atmospheric
pressure and provide alternative routes to 7 drug precursors.
This transformation overcame the challenge that activated
haloalkanes are prone to undergoing nucleophilic substitu-

tion reactions with strong nucleophiles and tend to be re-
duced by dehalogenation (Scheme 7).19

3 Palladium-catalyzed carbonylation
of activated alkyl halides and
nucleophiles with alkenes or alkynes

Multicomponent reactions (MCRs), in which three or more
reactants are combined in a single reaction vessel ending up
with one main product, is an efficient way to synthesize
highly functionalized molecules from readily available
synthons. Carbon monoxide (CO) is a cheap industrial raw
material, and employing it in multicomponent reactions to

Scheme 4 Palladium-catalyzed direct carbonylation of difluoroalkyl
bromides and aryl boron reagents.

Scheme 5 Palladium-catalyzed direct carbonylation of difluoroalkyl
bromides and alkyl boron reagents.

Scheme 6 Palladium-catalyzed direct carbonylation of unactivated
difluoroalkyl halides with alkylboranes.

Scheme 7 Palladium-catalyzed direct carbonylation of
bromoacetonitrile to synthesize 2-cyano-N-acetamide or 2-cyano-
acetate compounds.
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build up some valuable scaffolds is an efficient and attractive
method.20–23

In 2011, Ryu's group developed a pioneering and interest-
ing carbonylative four-component transformation comprising
α-substituted iodoalkanes, alkenes, and alcohols. The reac-
tion proceeded smoothly to give functionalized esters in good
yields under photoirradiation conditions using xenon light,
and a three-component coupling reaction accompanied by in-
tramolecular esterification proceeded to give lactones in good
yields (Scheme 8).9

In 2016, Liang's group reported a Pd-catalyzed four-com-
ponent radical carbonylation and difluoroalkylation reaction
utilizing ethyl difluoroiodoacetate as a CF2 radical precursor
under a low pressure of CO in a single step using alcohols,
phenols, and amines as nucleophiles.24 In 2017, the same

group developed a Pd-catalyzed four-component
perfluoroalkylative carbonylation by using arylboronic acids
as carbon nucleophiles under 1 bar of CO at room tempera-
ture (Scheme 9).25

In 2017, Skrydstrup's group reported a convenient method
to access perfluoroalkyl-substituted enones using a four-
component palladium-catalyzed carbonylative coupling of
aryl boronic acids together with terminal alkynes and
perfluoroalkyl iodides in the presence of CO. A wide range of
highly functionalized enones can be prepared in a single op-
eration in good yields. With 2-aminophenyl alkynes as the
substrates, intramolecular aminocarbonylation proceeded
smoothly to provide the desired indolin-2-one framework. Fi-
nally, the authors expanded the two-chamber technology to
synthesize the target compounds with 13C-isotope labeling
(Scheme 10).26

In 2018, Liang's group reported a palladium-catalyzed
perfluoroalkylative/difluoroalkylative carbonylation of alkyne
with alkyne as the nucleophile. This interesting transforma-
tion proceeded under atmospheric pressure at room tempera-
ture (Scheme 11).27

Scheme 8 Palladium-catalyzed four-component fluoroalkylative
carbonylation.

Scheme 9 Palladium-catalyzed four-component fluoroalkylative car-
bonylation of aryl alkynes.

Scheme 10 Palladium-catalyzed perfluoroalkylative carbonylation of
alkyne to synthesize perfluoroalkyl-substituted enones and indolin-2-
ones.

Scheme 11 Palladium-catalyzed perfluoroalkylative and
difluoroalkylative carbonylation of alkyne using alkyne as a
nucleophile.
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In 2021, our group reported a palladium-catalyzed four-com-
ponent perfluoroalkylative carbonylation of unactivated alkenes
with perfluoroalkyl halides, amines, or phenols (Scheme 12).
With dioxane as a solvent, we got β-perfluoroalkyl esters while
β-perfluoroalkyl amides were obtained with benzotrifluoride as
the solvent. This transformation proceeded under mild condi-
tions and is suitable for the modification of pharmaceutical and
drug molecules. Furthermore, a wide range of substrates, in-
cluding phenols, anilines, alkylamines, sulfonamides, and hy-
drazines, are suitable reaction partners for this catalyst system,
resulting in various β-perfluoroalkyl amides with good
functional-group tolerance and excellent chemoselectivity.28,29

In 2022, our group reported a novel palladium-catalyzed proce-
dure for the difluoroalkylative carbonylation of aryl olefins
(Scheme 13).30

The catalytic cycle was initiated from the active catalyst Pd0Ln
species, which was produced from the PdCl2 pre-catalyst. Then,
the Pd0Ln complex induced an SET (single-electron transfer)
process of bromodifluoroacetate to give the corresponding
difluoroacetate radical and a PdILnX species, followed by the ad-
dition of the difluoroacetate radical to aryl alkenes to give a sec-
ondary benzylic radical I. Then, the PdILnX species was
reincorporated with carbon radical I to obtain the vital interme-
diate II. It should be mentioned that complex II could be con-
verted into III through reductive elimination. However, the reac-
tion is reversible, and compound III could react with the
reactive Pd0Ln species and reconverted into II. After the inser-
tion of CO, complex II will be transformed into intermediate IV.
Finally, complex IV reacts with another molecule of bromo-
difluoroacetate and gives the final product after reductive elimi-
nation. Meanwhile, in the presence of DiPEA, Pd0Ln will be re-
generated for the next catalytic cycle.

In the same year, we developed a palladium-catalyzed
four-component difluoroalkylative carbonylation of aryl ole-
fins. Notably, ethylene gas, as an original C2 synthon, can
also be transformed into the corresponding products with
moderate yields (Scheme 14).31

Scheme 12 Palladium-catalyzed perfluoroalkylative carbonylation of
unactivated alkenes to synthesize β-perfluoroalkyl esters and amides. Scheme 13 Palladium-catalyzed difluoroalkylative carbonylation of

aryl alkenes toward corresponding difluoropentanedioates.

Scheme 14 Palladium-catalyzed four-component difluoroalkylative
carbonylation of aryl alkenes and ethylene gas.
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In 2022, we developed a difluoroalkylative carbonylative
cyclization of unactivated alkenes and ethylene gas enabled
by palladium catalysis (Scheme 15). This transformation
proceeded in mild conditions with good functional-group
and heterocyclic compatibility, which is suitable for late-
stage functionalization. Moreover, this procedure can also
be applied to the synthesis of gemigliptin, which is a medi-
cine approved for the treatment of type 2 diabetes
mellitus.32

In 2022, our group reported an efficient palladium-
catalyzed multicomponent perfluoroalkylative carbonylation
to synthesize various amides, and 2-allyl trifluoromethane-
sulfonates, perfluoroalkyl halides and amines were applied in
this tandem process to get the corresponding β-perfluoroalkyl
amides with good functional-group tolerance and high
chemoselectivity (Scheme 16). The various final products were
controlled by the different bases applied.33

In the same year, a palladium-catalyzed cascade radical cy-
clization and carbonylation of 1,7-enynes with perfluoroalkyl
iodides and alcohols was developed by our group
(Scheme 17). This method provides a facile and efficient
route for the construction of 3,4-dihydroquinolin-2(1H)-one
scaffolds by applying benzene-1,3,5-triyl triformate (TFBen)
as the CO source. This method enables the incorporation of
both perfluoroalkyl and carbonyl units into the 3,4-dihydro-
quinolin-2(1H)-one scaffolds, providing different 3,4-dihydro-
quinolin-2(1H)-one derivatives in moderate to high yields
with excellent E/Z selectivity.34

In 2023, a one-pot two-step radical-mediated carbonylative cy-
clization of 1,7-enynes with perfluoroalkyl iodides catalyzed by
palladium was developed, and a variety of polycyclic 3,4-dihydro-
quinolin-2(1H)-one derivatives containing perfluoroalkyl and car-
bonyl units were obtained in good yields (Scheme 18).35

Scheme 15 Palladium-catalyzed difluoroalkylative carbonylation of
alkenes to carbonyl difluoro-containing heterocycles.

Scheme 16 Palladium-catalyzed perfluoroalkylative carbonylation of
2-allylaryl trifluoromethanesulfonates.

Scheme 17 Palladium-catalyzed cascade carbonylative synthesis of
perfluoroalkyl and carbonyl-containing 3,4-dihydroquinolin-2(1H)-
ones.

Scheme 18 Palladium-mediated cascade carbonylative synthesis of
perfluoroalkyl and carbonyl-containing polycyclic 3,4-dihydroquinolin-
2(1H)-one derivatives.
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4 Summary and outlook

In conclusion, this review has surveyed recent advances in
the area of palladium-catalyzed carbonylative coupling con-
version of activated alkyl halides via radical intermediates.
These transformations can be performed under a low pres-
sure of CO, unlike traditional free radical carbonylation reac-
tions. More importantly, these methods provide alternative
routes to construct some bioactive drug molecules due to the
introduction of some interesting functional groups. Although
palladium-catalyzed carbonylative coupling reactions of acti-
vated alkyl halides have developed very well, several interest-
ing directions still need to be probed: i) employing cheaper
metal catalysts to achieve these transformations; ii) improv-
ing these interesting methods to synthesize some useful drug
molecules or bioactive compounds with shorter steps; iii) de-
veloping a novel catalyst system to achieve the enantio-
selective carbonylation reaction of activated alkyl halides. Fi-
nally, we hope that this review will inspire future
developments in this area.
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