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Practical applications of total internal reflection
fluorescence microscopy for nanocatalysis
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Fluorescence microscopy has evolved from a purely biological tool to a powerful chemical instrument for

imaging and kinetics research into nanocatalysis. And the demand for high signal-to-noise ratio and

temporal–spatial resolution detection has encouraged rapid growth in total internal reflection fluorescence

microscopy (TIRFM). By producing an evanescent wave on the glass–water interface, excitation can be

limited to a thin plane to ensure the measured accuracy of kinetics and image contrast of TIRFM. Thus, this

unique physical principle of TIRFM makes it suitable for chemical research. This review outlines applications

of TIRFM in the field of chemistry, including imaging and kinetics research. Hence, this review could

provide guidance for beginners employing TIRFM to solve current challenges creatively in chemistry.
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1 Introduction

Nanocatalysts are essential for some important industrial
application prospects and economic benefits.1–5 Besides,
nanocatalysts are usually the basis for pursuing high-
efficiency and selectivity research.6–9 Therefore, the study of

the structure–activity relationship of nanocatalysts has
prospered in recent years, enhancing the comprehension of
nanoparticles (NPs), clusters and atoms10,11 at the single-
particle level. A common area of interest for chemists is to
investigate nanocatalysts in real-time, in situ and at high
spatiotemporal resolution. Total internal reflection
fluorescence microscopy (TIRFM) is a special kind of
fluorescence microscopy amongst many detection
technologies.12–15 A large amount of research work into
TIRFM has been reported in previous publications.16–19 The
core principle of TIRFM is to illuminate a thin plane at the
two-phase interface by an evanescent wave, with both out-of-
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focus fluorescence and the overall lighting of the sample
declining dramatically.16,17 Moreover, TIRFM and fluorescent
dyes can join forces to break the diffraction limit, making it
an attractive detection technique for nanocatalytic chemists.
Therefore, TIRFM, as an invaluable optical tool in chemical
systems, offers real-time, in situ and high space–time
resolution.16–19 Hofkens et al.20 showed that the catalytic
heterogeneity of layered double hydroxide (LDH) could be
revealed by TIRFM (Fig. 1a–d). Chen et al.21 studied the
catalytic kinetics and dynamics of individual Au
nanoparticles via this unique analytical tool (Fig. 1e and f).

Majima's group22 employed this technique to uncover the
photocatalytically active sites of semiconductors
(Fig. 1g and h).

However, chemists should recognize the underlying
photophysical phenomena and the physical principles of
TIRFM to ensure good reliability and accuracy in
experiments.23–26 Theoretically, the main difficulty with the
experiments is organically integrating the evanescent wave
and the fluorescence. Sometimes the true structure or
catalytic processes of the catalyst cannot be fully
characterized by the collected signals (images or fluorescence
blinking movies) due to the intrinsic principles of TIRFM,
such as the evanescent field, noise and intensity. Although
detailed guides to TIRFM can be found extensively in the
biological field,20,27 some special descriptions are needed for
the chemical field.

From this perspective, some barriers need to be overcome.
Thus, in this review, the principles of TIRFM are discussed
and its practical applications in the nanocatalysis field,
including super-resolution imaging and kinetic analysis, are
emphasized. Most importantly, this review aims at describing
a series of physical principles of TIRFM and recommending
the application of TIRFM in chemical systems, which may
encourage researchers to solve current challenges creatively
in nanocatalysis fields.

2 Development and theory of TIRFM
2.1 A brief history of the development of fluorescence
microscopy and TIRFM

The invention of TIRFM was based on a series of accidental
discoveries that boomed in the early 20th century.23 The tale
started with the special phenomena of various minerals and
plant extracts that emit a certain color of light when exposed
to sunlight.28 George Stokes29 coined the term “fluorescence”
in 1852 and observed that the wavelength of light emitted
from fluorescent substances is longer than that of the
excitation light and now the phenomenon is named “Stokes
shift”. At the same time, physicists were intent on improving
the resolution of conventional optical microscopes. In 1872,
Abbe's work30 suggested that the wavelength and resolution
could be obtained from the following formula:

d ¼ λ

2NA
(1)

where d is the distance between the two points in the image,
representing the resolution; NA is the parameter of the
objective lens, which is related to the aperture of the
objective and the refractive index between the sample and
the lens; λ is the wavelength.

It is known from the formula that if we use green light
(λ = 532 nm) and a certain objective lens (for example, NA =
1.4), we can produce an image whose resolution is about
200 nm. The formula also shows that the spatial resolution
of classical optical microscopes is limited by the wavelength
of the light (to about half of the wavelength of the light).

Fig. 1 TIRFM images of nanocatalysts at single-molecule level. (a and
b) Images of individual LDH catalytic reactions in 1-butanol at ester
concentrations of (a) 40 and (b) 700 nM; (c) product formation at
crystal edges; (d) accumulated spot intensity on the same crystal;20

reprinted with permission from ref. 20. Copyright 2006, Springer
Nature. (e and f) Fluorescence images21 (e) and fluorescence trajectory
(f) of single Au NPs. Reprinted with permission from ref. 21. Copyright
2008, Springer Nature. (g and h) Fluorescence22 (g) and transmission
(h) images of the same TiO2 crystal. Reprinted with permission from
ref. 22. Copyright 2011, American Chemical Society.
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Obviously, if we use shorter wavelengths of light (i.e.,
ultraviolet), we can get higher-resolution images. It would
seem that using the shortest wavelengths of light, such
as ultraviolet, could produce super-resolution images.
However, such UV light is invisible and harmful to
human eyes, making experimentation difficult.31–36 In
1904 this phenomenon of auto-fluorescence was
described as an experimental problem rather than a
lighting system.37 In 1911, it is pointed out that
enough excitation light to illuminate the sample and
collect fluorescence with low noise is important for
fluorescence microscopy. And the first fluorescence
microscope was built to observe bacteria based on the
autofluorescence phenomenon.38 However, there was an
obvious limitation in application of the fluorescence
microscope at that time due to the illumination system
being dependent on the autofluorescence of the sample
and a dark field concentrator. Secondary fluorescence
technology has brought enormous changes to the
fluorescence microscope. This technology needs the
application of exogenous fluorescent chemicals (which are
now named fluorescent pigments) to illuminate samples.
Fluorescent pigments and their applications really began an
epoch for shaping microscopy and fluorescence microscopy
techniques.45 In 1980, Daniel Axelrod39 proposed total
internal reflection fluorescence microscopy (TIRFM), which
uses the principle of total internal reflection (TIR) to excite
fluorescent dyes to obtain a high signal-to-noise ratio. TIR
can lead excitation light to produce an evanescent wave at
the interface, which gives it an excellent optical slicing ability
in the Z-axis, and thus a high signal-to-noise ratio. Besides,
TIRFM can observe the entire wide field rather than point-by-
point scanning, which allows it to monitor multiple samples
in real-time.

2.2 Theory of TIRFM

What is total internal reflection? Considering a beam
transmitted from medium 1 to medium 2 (Fig. 2), the
transmitted and reflected light obey Snell's law:40

n1 sin θ = n2 sin θT (2)

where the refractive indices of medium 1 and medium 2 are
n1 and n2, respectively, θ is the angle of incidence and θT is
the refraction angle.

The critical angle is defined as θc ¼ sin−1 n2
n1

� �
. When θ =

θc, the incident beam is refracted by the parallel surface and,
accordingly, no light is delivered to the other side. If θ < θc,
most of the light enters the sample through the interface as
conventional wide-field illumination. The incident light is
completely reflected from the interface only when θ > θc,
which is called total internal reflection.23 At this point, an
evanescent wave propagates in the direction normal to the
interface and finally enters the sample through the interface.
According to prediction from Maxwell's equations, the
frequency, polarity and wavelength of the field are the same
as those of the incident light when an evanescent field
appears. Maxwell's equations and Snell's law are combined to
calculate the intensity of an evanescent field as follows:24,25

IT ¼ ATj j2 exp −Z 4π
λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 θ

n2

s
− 1

2
4

3
5 (3)

where AT, λ2, and Z are the amplitude of the electric field, the
wavelength in dielectric 2 and the distance in the direction of
the interface normal, respectively.

The equation indicates that the intensity of the
evanescent wave decreases exponentially with Z. Therefore,
total internal reflection happens when an excitation beam
is incident at a high angle (θ > θc) and is completely
reflected without refraction, resulting in a magnetic field
which exponentially decays with distance from the
interface. The transmission depth d can be given by the
following formula:26

d ¼ n2λ2
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 sin

2 θ − n22
p (4)

In an actual system, medium 1 is usually quartz (n1 = 1.46)
and medium 2 is water (n2 = 1.33). When using excitation
light with a wavelength of λ = 532 nm (λ = n2λ2), d is about
120 nm. Therefore, the excitation light can selectively excite
the fluorophore at the glass/water interface based on the
characteristics of the evanescent field to obtain a high
signal-to-noise ratio.

As for application to the nanocatalysis field, multi-layered
interfaces are sometimes involved.41–43 For example, if
medium 1 is indium tin oxide (ITO) with a nanometer-thick
middle layer, TIR will occur regardless of the refractive index
of the middle layer.

2.3 General procedure for employing TIRFM

With the development of laser technology,44,45 fluorescent
probe synthesis46,47 and computer technology,48,49 TIRFM
has transformed from a professional physicist's tool to a
toolkit that the general public can use, even building itFig. 2 Light waves propagate at the interface.
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yourself in the lab.50 In this section, from the perspective of
TIRFM principles and applications, we focus on the
construction of experimental equipment, reaction cells and
single-turnaround reactions. For other aspects of TIRFM,
such as the properties of fluorescent probe, the reader can
refer to these papers.47,51

The TIRFM can be achieved by using a prism to direct an
excitation beam to the interface or through a high NA value
microscope objective.26,52,53 As shown in Fig. 3d, the beam
passes through a neutral density filter and a beam expander,
which controls its power density and diameter. Due to the
laser being linearly polarized, a quaternary wave plate is used
to convert the light to circular polarization to guarantee
uniform Koehler illumination of the sample. It passes
through an achromatic lens to focus the light on a prism and
the excitation beam undergoes total internal reflection at the
glass/water interface. Finally, the fluorescence caused by the
evanescent wave is collected by the objective and is recorded
through the filter and focusing optics by the electron-
multiplying charge-coupled device (EMCCD) camera. The
illumination path and the signal collection do not interfere
with each other. In addition, this gives great freedom in the
selection of microscope filters and color dividers. The

EMCCD camera has a small dark current at low temperature.
For these reasons, the fluorescent signals can be monitored
with high signal-to-noise ratios at the single-molecule level.

Currently, a laser light source, which has
monochromaticity, directionality and high brightness, is the
most general choice compared with others. The wavelength
of the light is determined by the fluorescent molecules. For
example, the classical fluorescence reaction system adopted
by our group is based on the non-fluorescent molecule
resazurin reverting to the fluorescent molecule resorufin,
which can be excited by a 532 nm laser to produce
fluorescence. The strong fluorescence emitted by resorufin
then can be detected at the single-molecule level.24

So, how can these parts be combined on the microscope for
observation after considering all of this? First, take our group's
work as an example, dispersing the sample on a slide with
enough distance by appropriate methods (such as controlling
the concentration of nanoparticles and spin coating) to ensure
reliable observation of single molecules, considering the low
lateral resolution of TIRFM53 (about 200 nm). Sometimes, the
glass needs to be functionalized to fix the sample. Secondly, a
reaction cell needs to be built with glass that can hold liquids
and has the ability to exchange substances54,55 due to most
catalytic reactions occurring in a liquid environment. Finally,
they are assembled with epoxy resin,56 as shown in Fig. 3a.
According to this train of thought and the characteristics of the
target reaction, we have successively constructed a
temperature-controlling reaction cell57 (Fig. 3b) and an
electrochemical reaction cell58 (Fig. 3c).

In 2008, the process of the catalytic reduction of resazurin by
individual gold nanoparticles and its catalytic kinetics were
studied by Chen et al. (Fig. 4a and b) through TIRFM.21 In this
work, the catalytic process is modeled in two parts: the
formation process (τon) and the dissociation process (τoff), where
τon and τoff correspond to fluorescence burst and fluorescence
quenching in the time–intensity curve, respectively. Thus, the
dissociation rate and the product formation rate can be
expressed as 〈τon〉

−1 and 〈τoff〉
−1, respectively. Statistical analysis

of 〈τon〉
−1 and 〈τoff〉

−1 was based on the Langmuir–Hinshelwood
mechanism, with the following results:

τoffh i−1 ¼ γeffαB B½ �
1þ αB B½ � (5)

Fig. 3 Types of reaction cells. (a) Classical reaction cell.56 Reprinted
with permission from ref. 56. Copyright 2022, PNAS. (b) Temperature
control of the reactive cell.57 Reprinted with permission from ref. 57.
Copyright 2016, American Chemical Society. (c) Electrochemical
reaction cell.58 Reprinted with permission from ref. 58. Copyright
2016, Wiley-VCH GmbH. (d) Schematic diagram of a prism-type TIR
setup on an inverted microscope: depolarizer (DEP), neutral density
filter (ND), mirror (M), focusing lens (L), prism (PR), glass slide (GS)T,
microscope objective (MO), barrier filter (BF), imager intensifier (II),
electron-multiplying charge-coupled device (EMCCD).52 Reprinted
with permission from ref. 52. Copyright 1969, Springer Nature.

Fig. 4 Single-turnover detection of single-Au-nanoparticle catalysis.21

(a) Reaction cell and experimental design; (b) classic fluorescence
signal. Reprinted with permission from ref. 21. Copyright 2008,
Springer Nature.
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τonh i−1 ¼ k2G1 B½ � þ k3
1þ G1 B½ � (6)

where [B], αB and γeff represent the concentration of resazurin,
the adsorption equilibrium constant of resazurin and the inner
catalytic reaction rate of a single nanoparticle, respectively. k2
and k3 represent the direct and indirect dissociation constants
of the product. G is a parameter without physical significance.

Through eqn (5) and (6), the authors gave the mechanism
of product generation and dissociation at the single-molecule
level, and further time-dependent analysis revealed
fluctuation in the activity of single nanoparticles. This paper
showed that TIRFM is a reinforcing single-molecule tool to
reveal nanocatalysis processes, but it lacks sufficient
structural information on nanocatalysts.3,18

3 Kinetic analysis of single-molecule
and particle nanocatalysis by TIRFM

Prism-based TIRFM is reputed to be the best single-molecule
imaging method with high resolution at room
temperature.25,59 It is used to detect the time dependence,
distribution and trajectory of catalytic particles, and to study
single-turnover reactions according to the time–intensity
curve. However, its application in practical systems remains a
challenge.60 This section shows our work in employing the
TIRFM of practical single-molecule single-turnover reactions.

3.1 Particle size effect in gold clusters and palladium cubes

Metal nanomaterials (nanoparticles, clusters, etc.) are the
most important materials for developing highly selective
catalysts.18,41,43 In particular, noble metals such as Au (ref.
61–63) and Pd (ref. 64–66) have been used extensively in
energy and chemical industries, contaminant treatment and
clean energy.67 The size of metal nanomaterials dominates
catalytic performance compared to morphology or catalyst
support. The size effect means that tremendous changes in
their electronic and geometric structures shape the unique
performance of nanocatalysts.68 The basic mechanism of this
property and the study of the catalytic performance of
individual nanocatalysts at the atomic level have been
explored quite a lot by traditional detection methods, such as
transmission electron microscopy and scanning probe
measured microscopies. However, they mainly obtain
averaged properties of the catalytic system.69–71

As mentioned previously, TIRFM is a wide-field imaging
technology. The full field of view can be imaged at a very high
acquisition speed (a few milliseconds to hundreds of
milliseconds). It not only has high spatiotemporal resolution,
and high sensitivity but can act at the level of a single
molecule. Here, our group displayed the size dependence of
gold clusters and palladium cubes based on TIRFM.72 Chen
et al.21 studied Au nanoparticles via TIRFM and pointed out
the heterogeneous reactivity and reaction mechanism of Au
NPs. We further studied atomically precise Au clusters.72 Based

on an Au cluster-catalyzed single-turnover catalytic fluorescence
reaction (i.e., the reduction of non-fluorescent resazurin to
fluorescent resorufin), atomically precise Au clusters (Au15,
Au18, Au25) were chosen as model catalysts to study the kinetics
and dynamics of different sizes of Au clusters.

As displayed in Fig. 5a and b, the typical fluorescence
burst curve contains complete information about a single-
turnover reaction (i.e., τon and τoff). Based on the L–H
mechanism, the equations for product formation rate (〈τoff〉

−1)
and dissociation rate (〈τon〉

−1) can be obtained:73

τoffh i−1 ¼ γeffαAαB SA½ � SB½ �
1þ αA SA½ � þ αB SB½ �ð Þ2 (7)

τonh i−1 ¼ k2G SB½ � þ k3
1þ G SB½ � (8)

where αA and αB represent the adsorption equilibrium
constants of NH2OH and resazurin, respectively; [SA] is the
concentration of NH2OH.

Obviously, the different performance of Au clusters is not
accounted for by the change in substrate concentration or
the inactivity of Au clusters (Fig. 5a and e). Similarly, for the
product dissociation process, the dissociation rate is
independent of substrate concentration, which is
diametrically opposed to that of Au NPs (Fig. 5b). This means

Fig. 5 Single-turnover detection of single-Au-cluster catalysis.72 (a)
Reaction cell and experimental design. (b) Classic fluorescence signal.
Kinetic study of different-sized Au clusters; (c) the substrate resazurin
concentration; (d) reaction paths; (e) resazurin concentration titrations
of 〈τoff〉

−1 on Au25, Au18 and Au15. Reprinted with permission from ref.
72. Copyright 2018, Proc. Natl. Acad. Sci. U. S. A.
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that the active sites of an Au cluster are limited, so after the
adsorption reaches equilibrium, adsorption of the substrate
molecules is limited by steric hindrance. On the Au cluster
surface, the product molecules can only directly dissociate
without being affected by the substrate molecules. Based on
this idea, kinetic parameters are fitted to further evaluate the
size effect of Au clusters.21,72 γeff increases with a decrease in
the size of Au clusters in contradiction to the variation in
the resazurin adsorption equilibrium constant and the
product direct dissociation constant, unlike previous
investigation of gold nanoparticles,21 suggesting that Au
clusters show strong adsorption of reactants and weak
adsorption of products. Such a difference can be attributed
to the quantum effects of unique dimensions and the
different structures between them; that is, the different
arrangements of atoms.74

As detailed in Fig. 6a–e, the size-dependence of the Pd
cube's catalytic properties was studied for five different sizes
of Pd cube. Kinetic and thermodynamic parameters are
calculated through quantitative deconvolution of product
formation and dissociation rate.75 γeff increases with an
increase in Pd cube size, which means that the smaller the
size of the Pd nanoparticles, the higher the utilization rate.
The adsorption equilibrium constant of resazurin rises
rapidly with an increase in nanoparticle size. Size-related
selectivity in the process of product desorption was also
observed. Small nanocubes are more inclined to a direct
desorption pathway, and large ones are promoted by
substrate adsorption.

The edge activity sites dominate the total activity of Pd
cubes, which means that edge sites are more active than
planar sites.75 The product desorption process at the planar
sites is subdivided into two pathways: a direct dissociation
pathway and an indirect dissociation pathway. The direct
dissociation pathway is twice as large as the other.
Conversely, the product dissociation rate at the edge sites
decreases with an increase in substrate concentration,

indicating that substrate adsorption obstructs the product
desorption process. These differences are referenced to the
changes in the degree of atomic contribution to the surface
caused by a reduction in nanoparticle size.

The works21,72,75 introduced here cover only the
application of a single-molecule strategy in traditional
catalysis, and there is no denying the fact that single-
molecule technology is a powerful representative tool for
revealing atomic catalytic information on different types of
surface. And the new information mined is conducive to an
in-depth understanding of surface catalysis. The digging out
of new information is conducive to a better understanding of
the surface catalysis process and guidance for catalyst design.

3.2 Kinetic study of two-electron oxygen reduction reaction
based on Fe3O4 nanoparticles

In the clean energy field, the oxygen reduction reaction
(ORR) is one of the most important reactions in which
detection of either the 4H+ + 4e− + O2 → 2H2O reaction (4e
ORR) or the 2H+ + 2e− + O2 → H2O2 reaction (2e ORR) are
both particularly challenging.76–78 4e ORR consists of 2e ORR,
which means that improving the kinetics of 2e ORR is crucial
to the efficiency of ORR. Based on the fact that Fe3O4 NPs
can catalyze 2H+ + O2 to H2O2 or H2O2 + Amplex red to
resorufin (high fluorescence activity),79,80 Xu et al.81 cascaded
them to reveal the kinetics of 2e ORR at the single-molecule
level and measured the electron transport coefficient,
standard rate, and active heterogeneity of the long-term
catalysis of individual nanoparticles.

As shown in Fig. 7a–c, electrochemistry coupled with
fluorescence spectroscopy indicates that the fluorescence signal
comes only from the Reaction-II process and has nothing to do
with other Fe3O4 NP catalytic oxidation processes. Based on such
a result, fluorescence burst movies during the catalytic process
are recorded via a three-electrode reaction cell (Fig. 7d). Fig. 7e
displays part of the typical time trajectory, which contains
fluorescence burst and quenching signals that span the entire
observation. Each impulse represents the time of generation
resorufin by Reaction-I/II and the sudden drop in intensity
represents resorufin dissociation. Therefore, each on–off time
means a full 2e ORR cycle. The high probe concentration causes
Reaction-I to become a rate-determining step. At low potential,
all the H2O2 molecules produced by the nanoparticles can be
approximated as being consumed by probes to result in burst
fluorescence. Thus, the generation rate of resorufin (fluorescent
product) closely approximates the rate of 2e ORR. 〈τoff〉

−1, which
represents the rate of 2e ORR, can be expressed by the classic
Butler–Volmer model, following the formula:

〈τoff〉
−1 = Aoff exp(−βfE) (9)

where the frequency factor Aoff is related to a standard rate
constant (K) and oxygen concentration (CO2

), Aoff = KCO2
; β is

the electron-transfer coefficient and E is the applied
potential.

Fig. 6 (a–c) Classical TEM images of different-sized Pd nanocubes. (a)
7; (b) 11.4; (c) 15.2 nm; (d) and (e) reaction cell and classical reaction
signaling. Reprinted with permission from ref. 75. Copyright 2016,
Wiley-VCH GmbH.
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The heterogeneity of their electrocatalytic activity has also
been researched, such as the size, shape and surface
distribution of active sites, by monitoring the activity of
multiple nanoparticles. Further long-term activity testing
shows that the 2e ORR process of individual nanoparticles is
gradually inactivated over time and eventually stabilizes
(Fig. 7f and g). More interestingly, from a nanoparticle's
point of view, it has three deactivated channels, which
confirms the heterogeneity of the nanoparticles. In general,
this study helps to further understand and design the
composition of electrolytes for better catalytic performance.

3.3 Revealing the catalytic kinetics of Pt single-atom catalysts

Single-atom catalysts82–85 play a central role in heterogeneous
catalysis, due to their near 100% atomic utilization and
remarkable economic results. A previous study75 has shown
that Pt cubes show size-dependent activity, and Xu et al.56

further studied a Pt single-atom catalyst at the single-atom
level via TIRFM (Fig. 8a–c).

As mentioned before,21 τoff and τon contain kinetic
information about the formation and dissociation process;
where 〈τoff〉

−1 and 〈τon〉
−1 represent the production formation

and dissociation rate, respectively. It is found that the total
reaction process follows the L–H mechanism, and the
relationship between catalytic reaction rate and substrate
concentration can be determined by analyzing the spectral
data. The activity of monoatomic Pt is significantly greater than
that of Pt nanoparticles. This difference is mainly caused by
the different structures of the active sites and the steric
hindrance effect on the surface of traditional Pt nanoparticles,
which is an important reason for the high utilization rate of Pt
mono-atomic catalysts. The surface reconstruction of the single
atom has an effect on the catalytic process, which is consistent
with nanoparticle catalysts; however, its catalytic process makes
no difference to surface reconstruction, which is different from
the case of nanoparticle catalysts. This phenomenon is
attributed to the surface remodelling of single-atom catalysts,
which is a rapid process; thus, the impact from the
environment is diminished.

In conclusion, the catalytic behaviour of Pt single-atom
catalysts is studied at the single-atom level by TIRFM, which
provides a basic insight into the structure–activity
relationship of atomically dispersed catalysts.

4 Nanocatalysts super-resolution
images in TIRFM

Compared with kinetic analysis, super-resolution imaging
concentrates mainly on the structure of nanocatalysts. Recent
studies86–88 have reported that bimetallic nanoparticles, Au-
and Ag-based linked nanostructures, and plasmonic
nanoparticles can be super-resolution imaged by TIRFM,
resulting in super-resolution graphics that provide new
insights into nanocatalysts.

Fig. 7 Reaction mechanism (a) and detection mechanism (b); (c)
electrochemically coupled fluorescent light; (d) schematic illustration
of a three-electrode microfluidic reaction cell; (e) typical fluorescence
burst curve; (f and g) fitting (f) and correlation analysis (g) of kinetic
parameters.81 Reprinted with permission from ref. 81. Copyright 2020,
American Chemical Society.

Fig. 8 (a) Catalyst structure model; (b and c) imaging principles (b)
and fluorescence signals (c).56 Reprinted with permission from ref. 56.
Copyright 2022, Proc. Natl. Acad. Sci. U. S. A.
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4.1 Bimetallic nanoparticle super-resolution imaging

Bimetallic nanoparticles represent one type of heterogeneous
catalyst that are widely used in industry and energy, due to
their unique activity, selectivity and stability.89–92 The
bimetallic effects93–95 are based on two main mechanisms:
an electronic effect and an ensemble effect. However, the
special effects exhibit high heterogeneity, and their catalytic
enhancement is a result of the bimetallic interactions at the
atomic level, which makes detection difficult.96,97 Peng Chen
et al.86 quantitatively imaged the enhanced bimetallic activity
within individual bimetallic nanoparticles by total internal
reflection super-resolution fluorescence microscopy (TIR-SR-M).
A mesoporous silica-covered PdAu bimetallic nanoparticle
(Fig. 9a) was chosen as a model bimetallic catalyst and catalytic
resazurin disproportionation was selected as the labeled
reaction (Fig. 9b). Thus, this enhanced bimetallic reaction can

be imaged on individual PdAu nanoparticles by TIR-SR-M. Due
to the unique structure of nanoparticles, the super-resolution
catalysis images can be added onto their SEM images with 40
nm precision, on which the Pd–Au interface location is obvious
(Fig. 9c–e). This is the first time that catalytic enhancement by
the bimetallic effect has been visualized. Each PdAu
nanoparticle is further divided into four different areas (Fig. 9f):
(Pd–Au region, monometallic Pd component, Au–Pd region, and
monometallic Au component) and each region is larger than 40
nm to ensure the significance of spatial resolution. The results
of summarizing PdAu nanoparticles show that the activity of
bimetallic Au–Pd and Pd–Au regions are almost twice those of
monometallic Pd or Au. The phenomenon denotes that the
observed higher product detection rates in bimetallic regions
are attributable to the bimetallic effect. The disconnected Pd–
Au junction images show that bimetallic enhancement is
relevant to the particular geometry of Pd–Au contact.

Fig. 9g shows the nanoscale images of surface-plasmon
(SP)-enhanced catalytic activity by the Au–Ag-based linked
nanostructures.88 In contrast to the visualization of PdAu
bimetallic nanoparticles, this work does not rely on the
bimetallic junction, instead focusing on the surface plasmon
(SP) resonance at nanoscale gaps. As for metal nanoparticles,
SP excitation can enhance the catalytic activity of the
nanoparticles, whereas reductive deoxygenation of resazurin
to resorufin by NH2OH as a label reaction enables super-
resolution images of Au–Ag-based linked nanostructures. The
catalytic activities of gap regions are twice as high as those of
non-gap regions by mapping the super-resolution images
onto SEM images, which suggests catalytic enhancement at
plasmonic hotspots on Au–Ag nanostructures. Further study
of the gap size effect shows that the larger the gap, the
smaller the enhancement (Fig. 9h).

4.2 Photoactivation and optical writing–reading of silver
nanoparticles

Stefania Impellizzeri et al.87 designed a unique system
(Fig. 11a) that consists of Ag nanoparticles (Ag NPs) and
fluorogenic-derived dipyrromethene, which can be selectively
activated by UVA or UVC. Ag NPs have been used to enhance
fluorescence by the reasonable design of the nanostructure,
which can be employed to increase the fluorescence signal
relative to noise.

Under wide-field laser (TIRFM) illumination, the
appropriate photoacid generator releases p-toluenesulfonic,
triflic or hydrobromic acid. Any of them can promote
optical writing (Fig. 10b) by catalyzing the formation of
fluorescent species. A further single-molecule reading study
(Fig. 10c) shows that the fluorescence intensity is unevenly
distributed, which is caused by the structure of the Ag NPs
and the Ag NPs effectively reducing the necessary writing
time by half compared with non-Ag NPs. Thus, the fine-
tuning of Ag nanostructures can significantly facilitate the
performance of fluorescence optical techniques to achieve
faster and superior results.

Fig. 9 (a) TEM image of mesoporous silica-coated PdAu nanoparticles;
(b) labeled fluorescence reactions; (c) fluorescence image; (d) TEM
image; (e) fluorescence and TEM composite figure; (f) segmentation of
a typical PdAu nanoparticle.86 Reprinted with permission from ref. 86.
Copyright 2017, American Chemical Society. (g) Catalytic hotspots on
linked Au–Ag nanorod–nanoparticle nanostructures; (h) average single-
molecule fluorescence intensity.88 Reprinted with permission from ref.
88. Copyright 2018, American Chemical Society.
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4.3 Super-resolution imaging of plasmon-driven chemical
reactions

The ability to generate highly energetic charge carriers,
elevated surface temperatures and enhanced electromagnetic
fields has enabled plasmonic nanoparticles to emerge as
promising photocatalysts. Andrea Baldi et al.98 studied the
plasmon-driven chemical reactions of a single Au nanorod
(Fig. 11a) by a fluorogenic chemical reaction (Fig. 11b) (the
dismutation reaction of resazurin) and superresolution
fluorescence microscopy (Fig. 11c). Real-time imaging of the
plasmon-driven chemical reaction conjugated to Au nanorods

revealed that the electric field distribution is closely related
to catalytic activity, which may be sufficient to guide the
design of advanced photocatalysts. By showing that the
absorption and scattering cross-sections of the nanorod are
independent of the in-plane particle orientation, the study
further demonstrated the varying in-plane orientations.

The in-plane angular distribution of catalytic events has
been used to investigate the relationship between catalytic
activity and simulated electric field, which further
demonstrates the reasonableness of the weak correlation
between the turnover rate, the weak average field
enhancement and the particle orientation (Fig. 11d and e).
On top of this, the authors assume that all molecules are
observed within the outer 5 nm of the SiO2 shell and achieve
quantitative detection. This in situ mapping scattering
method with a subparticle spatial resolution can be extended
to other photochemical systems.

5 Combining TIRFM with other
detection technologies

TIRFM technology is short of structural information about
nanocatalysts, but this can be detected by ex situmethods, such
as scanning electron microscopy (SEM),99,100 transmission
electron microscopy (TEM), and scanning electron microscopy
(AEM).107,111 As different types of information can be provided
by different equipment, coupling of devices enables different
information to be obtained simultaneously. Certainly, this
often happens in chemistry, such as the coupling of
chromatography to mass spectrometry.101–104 Michael Börsch
et al.105 coupled a scanning electrochemical microscope
(SECM) and TIRFM (Fig. 12a) in 2004. SECM is applied to
generate space- and time-controlled pH gradients in a solvent
and TIRFM is used to monitor the real-time pH gradients
generated by the sample. The authors monitored proton-driven
ATP synthesis with these coupled instruments (Fig. 12b).
Combining TIRFM with AFM is also an interesting
technique106–108 as shown in Fig. 12c. This technology
introduces a new way to study cell structures at high resolution
that cannot be recognized by TIRFM. It can also reveal cell
properties that cannot be detected by classical optical or
electron microscopy. Like SECM–TIRFM,120,121 AFM–TIRFM is
widely suitable for specimens in water or other fluid media,
such as redox reactions.

Another interesting combination is TIRFM with super-
resolution technologies, such as photoactivated localization
microscopy or stochastic optical reconstruction
microscopy,109,110 due to the wide-field property of TIRFM.
These two mentioned super-resolution technologies take new
fluorophores and illumination methods that allow the timely
separation of the emission of fluorescent particles, allowing
them to obtain diffraction-limit localization results that
outperform samples with high concentrations of fluorescent
molecules. TIRFM is used to reduce background signals and
achieve a high signal-to-noise ratio. These combinations will
enable other future expansions that may enable TIRFM to

Fig. 11 (a–c) In situ super-resolution catalysis on individual gold
nanorods (a) TEM image of the Au@mSiO2 nanorods; (b) principle of
fluorescent labelling; (c) single-molecule imaging; (d and e) electric
field intensity normalized to the incident field intensity. The nanorod is
p-oriented (d) or s-oriented (e).98 Reprinted with permission from ref.
98. Copyright 2021, American Chemical Society.

Fig. 10 (a) Structures of compounds 1–6; (b) optical writing process;
(c) single-molecule TIRFM images of Ag NPs across the sample area.87

Reprinted with permission from ref. 87. Copyright 2020, Royal Society
of Chemistry.
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achieve resolution at the near-molecular level and provide
important new tools for observing molecular localization and
interactions.

In this section, coupling instruments (such as SECM-TIRFM,
AFM-TIRFM)52,105 were seldom employed to solve chemical

problems encouraging. There are several reasons for this: first,
there is a lack of awareness among chemists of the need to pay
attention to photophysical phenomena in chemistry.112

Secondly, the employment of probes in chemistry is not really
as developed as in biology.46 Finally, there has been diffidence
in building a standard for employing TIRFM in chemistry.113

6 Conclusions and outlook

Applications of TIRFM in the nanocatalysis field represent an
important transition in the development of fluorescence
microscopy. It can quantify specific nanocatalysis reactions,
monitor changes in the catalytic kinetics of nanoparticles,
and reveal the structure–activity relationships at the single-
molecule level.58,81,86–88 The basic physical principles of
TIRFM and the overall experimental design from theoretical
applications to the field of catalysis have been discussed.

The advantages of TIRFM as a real-time in situ detection
technique were fully discussed in this review. Last but not
least, perhaps it is appropriate to end with some discussion
of probe limitation. For one thing, the real limitation of
TIRFM as a modern detection method in biochemistry and
chemistry stem from the lack of selective fluorescent
probes.114–117 There are many commercially available probes
in the biological field, but most of the probes used in the
chemical field are non-commercial and are only designed
and synthesized in the laboratory, and whether their
characteristics (such as quantum yield, fluorescence lifetime,
or stability) meet the requirements of chemical inertness and
non-reactivity has not yet been confirmed.118,119 In addition,
it is difficult for laboratories to have the ability for both
fluorescent probe synthesis and single-molecule fluorescence
detection. For another thing, organic fluorophores are
comparable to or even larger than catalysts in size. This
means we have to consider whether each potential
interaction would affect the experimental results.46 Therefore,
much scientific research effort is still required to develop
probes suitable for chemistry. And, thirdly, many probes are
stable in aqueous solution, but not in organic solvents, which
limits their application in organic reactions.120–122 Finally,
much detection based on the redox reaction123–125 of probes
lacks systematic research on whether the redox reactions
would have an impact on research objectives.

Although single-molecule measurement lays many traps
for beginners (such as applying principles, constructing
reaction cells, and designing experiments), predictably it will
provide new platforms and opportunities for those who are
proficient in the technology.
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Fig. 12 (a) SECM–TIRFM schematic diagram; (b) a 35 nm-radius
nanorode generates a local pH gradient.105 Reprinted with permission
from ref. 105. Copyright 2004, American Chemical Society. (c) AFM–

TIRFM schematic diagram.111 Reprinted with permission from ref. 111.
Copyright 1996, Springer Nature.
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