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Introduction

Composition—property relationships of choline
based eutectic solvents: impact of the hydrogen
bond donor and CO, saturationt

Ruth Dikki, Vaishali Khokhar,® Muhammad Zeeshan,? Sanchari Bhattacharjee,”
Oguz Kagan Coskun,® Rachel Getmani® and Burcu Gurkan (2 *@

Eutectic solvents are tunable for targeted applications through the functional groups in their hydrogen
bond acceptor (HBA) and hydrogen bond donor (HBD) components, as well as the HBA: HBD compo-
sition ratio. This study examines the properties of choline-based eutectics containing imidazole, phenol,
pyrrole-2-carbonitrile, and 1,2,4-triazole HBAs, and ethylene glycol, 1,2-propylene glycol, and ethanol-
amine HBDs. The viscosity, conductivity, degree of hydrogen bonding, thermal stability, and solvatochro-
mic properties are examined as a function of HBA, HBD, and the composition. These studies revealed a
predominant dependence of physical properties on the HBD and determined that the strong hydrogen
bonding in phenol and imidazole-based systems lead to higher viscosities and lower conductivities —
critical parameters for CO, capture and electrochemical conversion. The developed eutectic solvents
were further evaluated in terms of their CO, capture capacities and electrochemical stabilities. Solvatochromic
properties were found to correlate with CO, capacities, demonstrating the tunability of these solvents for
CO, capture. The quantitative structure—property relationship (QSPR) analysis demonstrated the ability to
predict viscosities and CO, capture capacities (<25% deviation) through a multi linear regression method
utilizing five molecular descriptors. This work highlights the role of functionalized HBAs and HBDs in the
physical, thermal, and electrochemical properties of eutectic solvents as they relate to CO, capture and
electrochemical processes.

salt concentrations and strong hydrogen bonding among their
constituents.’> However, the exact ‘deep’ eutectic composition*

Eutectic solvents are versatile liquids that present tunable pro-
perties for a variety of applications including separations,
energy storage, and catalysis."”> They are commonly obtained
from mixtures of hydrogen bond acceptors (HBAs), such as
halide salts, and hydrogen bond donors (HBDs). Deep eutectic
solvents (DESs) form at the HBA: HBD eutectic composition
where significant melting point depression of the resulting
solvent occurs in comparison to the neat components. DESs
are considered greener alternatives to volatile organic solvents
because of their low volatility that originates from their high
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may not be required, and the eutectic solvent composition
may be suitable to take advantage of their tunable properties.’
There are several reports of eutectic solvents displaying electro-
chemical and thermal stability for flow battery and CO,
capture and conversion applications.®® In particular, by func-
tionalizing the eutectic solvent components with CO, reactive
moieties, CO, selectivity and absorption capacity have been
shown to improve.'®™** When functionalizing eutectic solvents
for a target application, consideration of the interplay between
the physical, chemical, thermal, and electrochemical pro-
perties is important as these properties vary with molecular
structure and composition."**® Therefore, understanding the
structure-composition-property relationship is essential in the
design of eutectic solvents for targeted applications. Here, we
present data for a series of choline-based eutectic solvents
with demonstrated structure-composition-property relation
for the example application of CO, capture.

Recent studies'”'® investigating the impact of different
HBA and HBD composition on the physical properties of the
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Table 1 Molecular structures and abbreviations of the HBAs and HBDs used in the formulation of the eutectic solvents examined. For eutectic sol-
vents derived from choline-HBAs containing imidazole and phenol, choline dipolar ion Ch* and cation [Ch]* abbreviations are used due to the
proton sharing existing between choline and ImH/PhOH, represented by the dashed lines. This proton sharing is observed experimentally in the syn-
thesized Ch*lmH and Ch*PhOH HBAs.?2 However, it is not included in MD simulations for computational tractability, since modeling proton sharing

is significantly more computationally demanding

HBAs
O N o)
N N N + O - H
P NN
| \—/ /T
Chimil Ch*PhOH
~ OH N _cN + OH N
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eutectic solvents reported a decrease in solvent viscosity with
increase in the mole ratios of HBDs such as ethylene glycol
(EG), 1,2-propylene glycol (PG), and 1,4-butanediol when
choline chloride ([Ch]'[C]]7) salt was used as the HBA. This be-
havior is attributed to the weakening of the HBA-HBD inter-
actions with increased molar concentrations of the HBD. This
was similarly observed in superbase and EG based eutectic sol-
vents where increased volatility with increased EG molar ratio
supports the presence of a weakened intermolecular inter-
action.'® It is worth noting that this is not a universal trend for
eutectic solvents; for instance in the case of glyceline DES,
which is a 1:2 molar mixture of [Ch]'[CI]” and glycerol, the
viscosity decreases with increasing [Ch]'[C]]™ content up to the
deep eutectic composition. This was shown to be due to the
weakening of the strong hydrogen bonding between the gly-
cerol molecules by the introduction of chloride-glycerol inter-
actions which are weaker than the glycerol-glycerol inter-
actions.'® However, when HBDs such as EG are introduced to
the more viscous ionic liquids (ILs), which are functional salts
that melt below 100 °C, the viscosity of the resulting eutectic
mixture is typically lowered.”®>" While the reduced viscosity
improves mass transport in ILs for gas separations, the intro-
duction of a volatile component also results in lowered
thermal stability. Since the chemisorbed CO, is conventionally
released by thermal heating to regenerate the liquid, thermal
stability is important for solvent cyclability and reuse in CO,
separations by absorption-desorption techniques. Therefore,
this interplay between thermal stability and viscosity should
be considered when designing eutectic solvents for gas separ-
ations. Both of these properties are related to the strength of
hydrogen bonding among the eutectic solvent components,
which can vary widely depending primarily on the HBA anion
and the type and number of hydrogen bonding sites on HBD.
For CO, capture application, the hydrogen bonding site may

3442 | Green Chem., 2024, 26, 3441-3452

also be the CO, binding site; therefore, these properties can
further influence the CO, absorption capacities.

In this study, all-organic eutectic solvents based on choline
HBAs with amine and alcohol functionalities, and HBDs
including EG, PG, and monoethanolamine (MEA) are exam-
ined (structures shown in Table 1). Specifically, the tempera-
ture-dependent densities, viscosities, and ionic conductivities
were measured in order to establish the structure-compo-
sition-property relations in these CO,-reactive eutectic sol-
vents. To further understand the hydrogen bonding inter-
actions involved within these liquids, solute-solvent inter-
actions were probed with solvatochromic dyes. The spectro-
scopic study offers key insights about the hydrogen bond
donating/accepting ability along with the polarizability of a
solvent with respect to the absorbance probes. Further, hydro-
gen bond statistics were computed using molecular dynamics
(MD) simulations. Thermal gravimetric analysis (TGA) and
differential scanning calorimetry (DSC) measurements were
performed to characterize thermal behaviour and phase tran-
sitions. In order to relate the measured properties and the
hydrogen bonding to CO, capture applications, the CO,
absorption capacities were measured. Finally, to enable future
predictions of the eutectic solvent properties, quantitative
structure-property relationship (QSPR) analysis was carried
out, thus establishing empirical mathematical models that
only requires certain molecular descriptors of the components
as input.

Result & discussion
Thermal analysis

The eutectic behavior of the solvents formed upon combining
the HBAs and HBDs are confirmed by DSC. As an example,

This journal is © The Royal Society of Chemistry 2024
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Fig. 1 DSC thermogram of Ch*lmH based solvents with different molar ratios of HBDs: EG (a), PG (b), and MEA (c). T, and T,,, represent the cold

crystallization and melting peaks, respectively.

mixtures of Ch*ImH with HBDs (at 1:1,1:2,1:3,1:5,1:7,
and 1:10 molar ratios of HBA:HBD) is shown in Fig. 1.
Mixtures with HBD diols (those containing EG and PG),
demonstrate second order glass transitions between —70 °C
and —110 °C depending on the HBD content, without a clear
melting peak as commonly observed for eutectic solvents.>**
A reduction in the glass transition temperature () is observed
with increasing HBD content. A similar trend is seen for
Ch*ImH : MEA mixtures when moving from 1:1 to 1: 3 compo-
sitions. However, further increase in the MEA (1:5, 1:7, and
1:10 compositions) resulted in the appearance of cold crystal-
lization peaks, accompanied by melting between 0 and 10 °C,
thus indicating increased MEA-MEA interactions at these
higher HBD compositions, along with a possible break down
of the eutectic behavior. The observation of melting (7,,) and
cold crystallization (7..) peaks together with the glass transition
is indicative of the formation of a semicrystalline material,*
with an amorphous character promoted by the Ch*ImH-MEA

This journal is © The Royal Society of Chemistry 2024

interactions, and crystalline behavior promoted by the MEA-
MEA interactions. This is indicative of a stronger hydrogen-
bonding promoted by both the -NH, and —-OH groups in the
case of MEA compared to the other HBDs. A similar overview
of the phase behavior was observed for the [Ch]'[Trz]~ based
solvents (Fig. S1f). DSC curves for mixtures with Ch*PhOH
and [Ch]'[CNpyr]” HBAs were only examined for the 1:2
HBA: HBD compositions where the only clear feature was T,
(Fig. S21). [Ch]'[CNpyr]”:MEA (1:2) sample demonstrated
precipitation at room temperature and therefore was not
studied for further characterization in the study.

It should further be noted that while the melting peaks of
the neat EG and MEA are visible and consistent with
literature,”>>®> the melting of PG, reported at —60 °C,*® is
absent in Fig. 1 possibly due to the rate of heating employed.
PG, however, displayed a second order glass transition temp-
erature peak around —100 °C which is lower than the known
melting temperature. Therefore, the examined PG based mix-

Green Chem., 2024, 26, 3441-3452 | 3443
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Fig. 2 TGA curves of eutectic solvents based on Ch*lmH (a), [Ch]*[Trz]™ (b), [Ch]*[CNpyr]~ (c), and Ch*PhOH (d) HBAs. The HBA: EG (1:2) curves

are from Dikki et al.?? and included here for comparison.

tures are considered eutectic solvents. Similarly, the presence
of glass transition, along with the absence of melting in the
DSC curves of EG and PG based mixtures indicate the
absence of a defined crystal structure due to the heterogeneity
in their structure and in the interactions among their
constituents.

The thermal stability as it relates to the regenerability and
durability of these solvents in separation applications with
temperature-swing operations was examined by TGA as shown
in Fig. 2. Only the systems with 1:2 HBA: HBD composition
were examined as it is expected that further increase in the
volatile HBD component would lead to lowered thermal stabi-
lity.>” The onset temperature (Tonser) fOr the eutectic solvents
varied according to the boiling point (7},) of the HBDs used
while presenting no clear dependence on the stability of HBAs
(see Table S1t). For instance, replacing MEA (T, = 171 °C)*®
with PG (T, = 187 °C)*® and EG (T, = 197 °C)*° generally
increased the Tonser. On the other hand, keeping the same
HBD with varied [Ch]'[CNpyr]™ (Tonset = 165 °C), Ch*PhOH
(Tonset = 141 °C), and Ch*ImH (T,psec = 140 °C) HBAs did not

3444 | Green Chem., 2024, 26, 3441-3452

result in significant changes in the Tyns¢ Of the mixtures.
These results suggest that it is not the thermal degradation of
the HBA, but the evaporation of the HBD that dominantly con-
trols thermal stability in these eutectics despite the existing
HBA-HBD interactions. This is also apparent in Fig. S31 where
the mass loss experienced by the eutectic solvents at isother-
mal 50 °C is reported. It is seen that for [Ch]'[CNpyr]™ : HBD
mixtures, the evaporation rate is greatest whereas Ch*PhOH : HBD
mixtures demonstrate the slowest and the smallest mass loss.
This is not surprising considering the significant compacting
of the liquid and the increased viscosities with Ch*PhOH
systems as discussed later.

Physical properties

Density. Fig. 3 shows the measured densities and their
linear fits to express the temperature dependence for each
HBA:HBD (1:2) system. Table S2} shows the comparison of
the experimentally measured and simulated densities at 25 °C,
where the agreement is within +6.5%. Density is an important
property in general for estimating mass and footprint require-

This journal is © The Royal Society of Chemistry 2024
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Fig. 3 Measured densities with respect to the temperature as a function of composition. The HBA and HBD densities at 25 °C are shown separately
in side panels for clarity. The error in the measured densities of the liquid samples is smaller than the symbol, while the error of the solid HBAs is

+4%. The solid lines are linear fits (Table S37 lists the fit parameters).

ments in a given application utilizing these solvents (e.g, cal-
culation of gravimetric CO, absorption capacity). The
measured densities of EG (1.11 g em™>), PG (1.03 ¢ cm™?), and
MEA (1.01 g cm™) match perfectly with the reported densities
for these HBDs.*"*> When the eutectics with the same HBA
are compared, both the experimental and simulation results
demonstrate the solvents with EG as the HBD to have the
largest densities, while those with MEA have the lowest,
directly corresponding to the comparison between neat EG
and MEA. Therefore, it can be said that HBD has a direct
influence on the density. Table S3t lists the linear density
fit parameters (and corresponding equation). Accordingly,
the densities of HBA:MEA (1:2) eutectic solvents present
higher dependence on temperature compared to those with
EG and PG. Further, the density of eutectic solvents based
on [Ch]'[CNpyr]~ have the greatest sensitivity to temperature
whereas those based on PhOH have the least sensitivity,
similar to the trends in the thermal stability of these solvents.
To examine the influence of the HBAs and HBDs on the
nature of the intermolecular interactions occurring in these
binary solvents, excess molar volume at 25 °C was calculated
using the experimentally measured densities of the HBDs,
HBAs, and eutectic solvents. As summarized in Table 2, nega-
tive excess molar volumes were obtained for all of the systems,
indicating molecular packing due to the enhanced hydrogen
bonding interactions compared to their pure component.*?
The largest deviation from ideal solution was observed with
Ch*PhOH : HBD mixtures, likely due to the m-n interactions
induced in the liquid phase with the C aromatic rings and the

This journal is © The Royal Society of Chemistry 2024

Table 2 Excess molar volumes (V,,f) of the eutectic solvents,
HBA: HBD (1:2), at 25 °C, as calculated using the measured densities

HBDs HBAs V" (cm® mol™)
EG Ch*ImH —5.455
Ch*PhOH -14.656
[Ch]'[CNpyr]~ —3.589
[Ch]'[Trz]~ —3.992
PG Ch*ImH —5.489
Ch*PhOH —-14.681
[Ch]'[CNpyr]~ —-3.603
[Ch]'[Trz]~ —4.227
MEA Ch*ImH —5.192
Ch*PhOH —14.222
[Ch]'[Trz]” —4.181

strong H-bonding induced by the PhOH alcohol conjugate
group, differently than ImH, TrzH, and CNpyrH.

Viscosity and ionic conductivity. The measured viscosities of
the eutectic solvents ranged between 643 mPa s for Ch*PhOH : PG
(1:2) and 96 mPa s for [Ch]'[CNpyr]™: EG (1:2) at 25 °C as
seen in Fig. 4. Similar to the trends in viscosities, the ionic
conductivity of Ch*PhOH : EG was the lowest (0.36 mS cm ™)
and that of [Ch]'[CNpyr]”:EG (1:2) was the highest
(2.28 mS em™). Both PG and MEA-based solvents exhibited a
similar trend, with the lowest conductivity observed in
Ch*PhoH based eutectics, followed by Ch*ImH, [Ch]'[Trz]™,
and [Ch]'[CNpyr]~. This is not surprising considering the
reduced ionic nature and increased viscosity in the case of
Ch*ImH and Ch*PhOH. The viscosities of neat HBDs are in
perfect agreement with literature (18,>* 44,> and 19,*> mPa s

Green Chem., 2024, 26, 3441-3452 | 3445
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Fig. 4 Impact of the room temperature viscosities of the HBDs on the viscosity (a) and conductivity (b) of the eutectic solvents. Solid lines represent

their VFT fits (fit parameters for viscosity and conductivity are shown in Tables S4 and S5,} respectively).

for EG, PG, and MEA, respectively). The temperature depen-
dencies of viscosity and ionic conductivity are well described
by the VFT model (solid lines in Fig. 4) hence the samples are
characterized as glass forming liquids, consistent with obser-
vations by DSC. Overall, the viscosities are seen to primarily
depend on the parent HBD in the case of EG and PG, consist-
ent with a previous report on similar eutectic systems.'’
However, upon the replacement of EG with MEA (19 mPa s at
25 °C), a decrease in the viscosities of the eutectic solvents
(about 2-fold) was observed. By replacing the hydroxyl func-
tional group in EG with a primary amine group having a lower
hydrogen bond donating ability, the strength of HBA-HBD
interactions is weakened. This is supported by calculated
hydrogen bonding (HB) statistics which show significantly
more extensive hydrogen bonding with EG and PG than with
MEA as seen in Fig. 5.

Hydrogen bonding (HB). Hydrogen bonding interactions
between the HBA-HBD were observed via examining the OH
proton shift in "H-NMR of the neat HBDs (Fig. S41) and in the
eutectic solvents (Fig. S5-S81), where a general downshift of
the OH proton in EG and PG was observed in all the
HBA : HBD (1 : 2) mixtures examined. This downshift is indica-
tive of a hydrogen bonding interaction that results in deshield-
ing. These hydrogen bonding interactions were further ana-
lyzed with the MD simulations. The calculated HB statistics
are presented in Fig. 5 (atom type notations are provided in
Fig. S91). Corresponding radial distribution functions (RDFs)
are presented in Fig. S10.f Hydrogen bonding is highly system-
dependent; however, the following generalizations can be
made. First, all of the systems present significant HBD-HBD

3446 | Green Chem., 2024, 26, 3441-3452

interactions (dark blue bars in Fig. 5). Second, HBs between
the anion-HBD are the most significant for [Ch]'[Trz]™ (green
bars). This stands true when comparing against
[Ch]'[CNpyr]”:HBD (1:2) in which the interactions among
the HBD molecules are the most significant instead. The stron-
ger interactions in [Ch]'[Trz]”:HBD seen from MD simu-
lations, both from the ionic and HB interactions, explain the
higher viscosities measured. Third, in the case of neutral
species, Ch"ImH and Ch*PhOH, interactions between Ch* and
HBD are the most significant (labeled as cation-HBD; red bars
in Fig. 5). It should be noted that since the proton sharing is
not captured in MD simulations, for comparison arguments
and simplicity in plotting, [Ch]" and Ch* are both referred as
cations while PhOH and ImH are referred as anions in Fig. 5.
Comparing hydrogen bonding results with experimentally
measured properties, systems where cation-HBD interactions
are dominant (ie., systems comprising Ch*ImH and
Ch*PhOH) have larger viscosities and present larger deviations
from ideal mixtures with respect to the excess molar volumes.
Overall weaker HBA-HBD interactions (combination of red and
green bars) in [Ch]'[CNpyr]™: HBD systems as obtained from
MD simualtions further explain its relatively lower thermal
stability and lower viscosity.

Solvatochromic analysis. The solvatochromic studies based
on UV-vis absorbance probes provides key-insights of various
solvent properties including the solvent polarity and their
hydrogen bond accepting/donating ability. Betaine dyes rep-
resent a well-recognized class of solvatochromic absorbance
probes and exhibits a pronounced negative solvatochromism
with decrease in solvent polarity resulting in bathochromic

This journal is © The Royal Society of Chemistry 2024
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shift.>***” The spectral response of the dye is strongly affected
by the solvent dipolarity/polarizability (z*) and the hydrogen
bond donating acidity («). In this context, we have employed
betaine 30 along with 4-nitroaniline (NA) and N,N-diethey-4-
nitroaniline (DENA) to determine the solvent polarity Ey(30)
and Kamlet-Taft parameters, 7*, @ and hydrogen bond accep-
tor basicity (5).>°° Kamlet-Taft parameters are widely used to
establish the physicochemical properties of the eutectic sol-
vents. The E(30), 7*, a and p are evaluated from the absor-
bance maxima of the UV-vis probes and are listed in Table 3. A
representative spectrum featuring the shift in absorbance
response of the investigated UV-vis probes dissolved in eutectic

Table 3 Kamlet-Taft parameters — dipolarity/polarizability (z*), HBA
basicity (#) HBD acidity (@), and E7(30) of the eutectic solvents at
298.15K. The standard error in z*, , and a are < + 0.02

Er(30)/

Solvent HBA : HBD (1:2) * B a keal mol ™"
Ch*ImH : EG 1.11 0.83 0.72 54.98
Ch*PhOH : EG* N/A N/A N/A 54.56
[Ch]'[CNpyr]™ : EG 1.13 0.77 0.77 56.28
[Ch]'[Trz]” : EG 1.11 0.60 0.75 55.62
Ch*ImH : PG 1.09 0.88 0.68 54.15
Ch*PhOH : PG* N/A N/A N/A 54.15
[Ch]'[CNpyr]™: PG 1.09 0.74 0.78 55.84
[Ch]'[Trz]” : PG 1.06 0.64 0.76 54.87
Ch*'ImH : MEA 1.09 0.83 N/A N/A
Ch*PhOH : MEA* N/A N/A N/A 51.05
[Ch]'[Trz]” : MEA 1.11 0.74 0.59 52.95

* Due to high absorbance of the PhOH-based systems, the spectral
features were not well-resolved.

This journal is © The Royal Society of Chemistry 2024

mixtures of [Ch]'[Trz]~ with different HBDs is shown in
Fig. S11.1 The observed shifts in the absorbance maxima of
the probes signifies the variations in the solvent environment.
For both EG and PG, the highest E(30) value is observed for
the [Ch]'[CNpyr]”~ mixtures trailed by the [Ch][Trz]". The
PhOH based mixtures showed lowest solvent polarities. The
trend in the solvent polarities closely resembles the trend fol-
lowed by the ionic conductivities and the decrease in viscos-
ities of these mixtures. This supports the argument that the
[Ch]'[CNpyr]~ and [Ch]'[Trz]” has higher ionic character as
compared to the Ch*ImH and Ch*PhOH-based solvents con-
sisting of dipolar species imparting a greater polarizability to
these solvents. The E1(30) value could not be determined for
Ch*ImH : MEA due to absence of the low energy-transition
band for the dye. The Kamlet-Taft polarizability z* value is
largely similar for all the examined system and did not show
any distinct trend. Whereas the g value was observed to be
highest for the Ch*ImH based eutectics indicating the greater
tendency of the mixture to accept hydrogen bonding from the
solute. The high basicity of these solvents can indicate their
greater potential as CO, absorbing solvents. Subsequently, the
acidity parameter a was determined by combining the
responses of Er(30) and z* which further shows the enhanced
solvent-to-solute hydrogen bond donating capacity for the
[Ch]'[CNpyr]” HBA. These outcomes corroborate with MD
simulations showing reduced interactions between the HBD
and HBA resulting in the higher overall tendency of solvent to
donate hydrogen bond towards the solute. The observed
reduced HBD-HBA interactions for [Ch]'[CNpyr]™ HBA further
rationalizes the lower thermal stability of these mixtures. For
both hydroxyl functional based HBDs, the « follows the similar

Green Chem., 2024, 26, 3441-3452 | 3447
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trend, [Ch]"[CNpyr]~ > [Ch]'[Trz]” > Ch*ImH. The higher HBD
acidity/polarity of these solvents can be considered as an indi-
cation of reduced nucleophilicity which impacts CO, binding
as discussed later.

CO,, absorption and impact on physical properties

CO, absorption in these eutectic solvents is through chemi-
sorption, where CO, binds to the HBA and HBDs upon contact
and releases at elevated temperatures (see Fig. S127), as
detailed in an earlier study by Dikki et al.>* Accordingly, CO,
primarily binds to the HBD (i.e., EG-CO, accompanied with
H-transfer to the anion/Ch®). The measured CO, capacities
and the changes in the viscosities and conductivities with CO,
saturation are summarized in Table 4, along with a compari-
son to literature reporting these properties for similar solvents.
The chemisorption process of CO, is generally accompanied
by significant changes in the intermolecular interactions and
possibly the liquid structure. The presence of chemisorbed
CO, in HBA:HBD (1:2) eutectic solvents is shown by the
appearance of the C=0O and -COO vibrations in the FTIR
spectra (Fig. S13 and S147) that is otherwise absent in the neat
solvents. The H-bonding enhanced by these absorption pro-
ducts underly the measured property changes in Table 4.

The change in viscosity and conductivity due to CO, absorp-
tion was significant as seen in Table 4 (Table S61 shows the
increase in density that occurs upon CO, absorption). The
largest positive change in viscosity, and consequently the
largest reduction in conductivity among the systems investi-
gated here was the [Ch]'[CNpyr]~ based eutectic solvents pre-
senting the increased interactions with CO, absorption. While
this increase in viscosity with CO, saturation is consistent with

Table 4 CO, capacity and change in the viscosities and conductivities of
and 25 °C. Comparable systems from literature are included for comparison
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the trends observed in the literature data on similar solvents;
it was not as dramatic (e.g., previously reported examples in
Table 4). There were also opposite trends; the largest reduction
in viscosity was with the Ch*PhOH based eutectic solvents.
The viscosity decrease is indicative of a weakened/disrupted
intermolecular interaction post CO, chemisorption. In the
case of the CO, reactive MEA, the eutectic solvent formed a gel
and the viscosity could not be measured with the available
instrument. It is also noteworthy that the eutectics composed
of [Ch][Trz]~ exhibited smaller variations in both viscosity
and conductivity upon CO, saturation.

A noticeable trend was seen between the measured solvent
polarities and CO, absorption capacity. In general, PG based
solvents showed an inverse correlation between the solvent
polarity/acidity with their CO, absorbing capacities. Although,
a definite trend is not observed for EG-based systems, a higher
CO, absorption capacity is obtained for Ch*ImH and
Ch*PhOH eutectics possessing lower HBD acidity/polarity. A
similar correlation between the Kamlet-Taft parameters and
CO, absorbing capacity is not observed for MEA based sol-
vents. The presence of amine group renders it more nucleophi-
lic towards the CO, compared to the hydroxy group-based
systems.

Electrochemical stability

The electrochemical stability of the developed eutectic solvents
was examined by cyclic voltammetry (CV) using a Pt microelec-
trode with a Fc|Fc' internal reference and a Pt quasi reference
electrode (Fig. S151). The high viscosity of the solvents necessi-
tated the use of a microelectrode to overcome the mass trans-
fer limitations. However, despite the use of a microelectrode,

the eutectic solvents (HBA: HBD, 1:2) with CO, saturation at 1 bar CO,

HBA: HBD (1:2)

Before CO, saturation

After CO, saturation

HBDs  HBAs CO, Capacity (mol kg™") Viscosity (mPa's) Conductivity (mS cm™") Viscosity (mPa's) Conductivity (mS cm™)
EG Ch*ImH 3.25% 200 1.79 191 1.04
Ch*PhOH 2.49% 356 0.75 185 1.00
[ch]'[CNpyr]~ 2.41% 95 2.28 178 1.11
[Ch][Trz]” 2.36> 171 1.53 157 1.44
PG Ch*ImH 2.75 369 0.66 430 0.39
Ch*PhOH 2.35 644 0.36 409 0.42
[Ch]'[CNpyr]™ 1.72 170 1.05 340 0.47
[Ch][Trz]” 2.03 335 0.69 349 0.54
MEA Ch*ImH 4.60 128 1.35 N/A 0.04
Ch*PhOH 3.13 182 0.84 N/A N/A
[Ch]'[Trz]” 4.92 121 1.71 N/A 0.04
Examples of prior reports
“EG*°  [EMIM] "[ONPyr]™  2.59 45 — 88 —
bpg1 [HDBU] [tm]~ 3.20 31.48 — 166.51 —
;none:; [Pssora]” [Cprr] 1.55 360 — 370 —
DEA [MEAH] [cl]” 2.64 262 — ~1500 —
‘MEA**  [Ch]'[Ch]” 6.18 ~25 — — —

“[EMIM]" = 1-ethyl,3- methyllmldazohum

¢ MEA = Monoethaolamine; HBA: HBD (1:5) at 30 °C.

3448 | Green Chem., 2024, 26, 3441-3452

b [HDBUJ'[Im]™ = 1,8-diazabicyclo[5,4 0]undec 7-ene imidazole; HBA : HBD (7: 3) at 40 °C.
Trlhexyl(tetradecyl)phosphomum YMDEA = N- methyldlethanolamme, [MEAH]'[CI]”

[P66614]+ =
Monoethanolamme hydrochloride; HBA: HBD (1:3).

This journal is © The Royal Society of Chemistry 2024
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limitations persisted as of Fc|Fc' redox peaks were only dis-
cernible when scan rate was increased from 10 mV s™' to 1 V
s~! (Fig. S161). While the Fc redox reaction is considered as
representative outer-sphere redox reaction that do not specifi-
cally interact with the electrode surface,** it is a well-known
phenomenon that eutectic solvents components are prone to
adsorption on the electrode surface,**® even controlling the
differential capacitance behavior of the electrode-electrolyte
interface.”” In addition, the anodic limit was difficult to
observe since no significant current occurred with increased
positive polarization. However, an oxidation peak at +0.9 V vs.
Fc|Fc" was seen. This is attributed to deposition of the electro-
lyte breakdown species and deactivation of the electrode that
can explain the lack of any significant anodic current. On the
other hand, all samples displayed a similar onset potential
(—1.24 to —1.43 V) for the cathodic end, indicating that this be-
havior is likely predominantly governed by the reduction of
choline species as the common component. However, the
cathodic current followed the trends in bulk viscosities and
conductivities; those with PG and MEA resulting in the lowest
currents. Accordingly, the electrochemical stability windows
on Pt are estimated to be between —2.1 to —2.3 V, hence these
solvents could be considered for electrochemical conversion of
the captured CO,, specifically when further diluted in aprotic
solvents for increased rates.

QSPR analysis for prediction of viscosity and CO, absorption
capacities

QSPR analysis is a simple tool that correlates and enables pre-
diction of physicochemical properties of compounds through
mathematical models based on their molecular structural
descriptors, thereby facilitating time and cost-effective discov-
ery of new materials and optimization of existing ones. Thus,
to elucidate the correlation between theoretical structural
descriptors of HBAs and HBDs, and experimental properties of
eutectic solvents such as viscosity, density, and CO, capacity,
QSPR analysis was performed. A total of 15 different structural

(a)

600+

450 o

150+

Viscosity (mPa.s) (Calculated)
(O8]
S
S

0 150 300 450 600

VISCOSIty (mPa‘S) (Experimental)
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descriptors were chosen for each cation, anion, and diluent,
summarized in Tables S7 and S8.1 First, ERM algorithm in
MATLAB was employed to find the optimal set of structural
descriptors among the dataset of 45 descriptors to correlate
the experimental properties (viscosity and CO, capacity) of
eutectic solvents, as these two are critical for CO, capture
application. Among the total of 45 descriptors, QSPR analysis
identified a set of five descriptors as the primary structural
parameters determining the viscosity and CO, capacity of
eutectic solvents. Following this, multi-linear regression model
(MLR) was performed for each property to obtain the best fit
linear models that correlates the identified descriptors and the
viscosity and CO, capacity of eutectic solvents along with
regression parameters as expressed by eqn (1) and (2),
respectively.

Viscosity( =28754.501 — 199.983 x CPK Areacation

mPas)
+ 4.977 x CPK Volume,pjon + 312.872
x HBA Countg,pjon + 791.741
x CPK Volumegiuent — 893.136 X CViluent

(1)

CO, Capacity, = —0.057 — 2.033 X ELUMO,tion
—1.299 x ELUMOgnion + 0.108
X Polarizabilty, ;.. + 7.911

X ELUMOyilyent — 0.017 x CPK Areagiiyent

(2)

Fig. 6 demonstrate the correlation between the experi-
mental and calculated values of viscosity and CO, capacity of
eutectic solvents using QSPR model. Fig. 6a shows an excellent
correlation between the experimental and calculated viscos-
ities of eutectic solvents in terms of goodness of prediction
(R? = 0.99). Fig. 6b shows a slightly lower, but still acceptable,
correlation (R*> = 0.63) between the experimental and predicted
CO, capacities of eutectic solvents. To further validate the pre-

molkg ™)

(b)
3 6
B 4 °
g 4
g 3 ¢
> &
.gz. °
S o
0 1 2 3 4 5 6

CO, Capacity (mol/kg) (Experimental)

Fig. 6 Comparison between experimental and predicted values of the viscosity (a) and CO, gravimetric capacity (b) of the eutectic solvents. Hollow
symbols represent comparison between experimental data for different eutectic solvents obtained from literature and those predicted by the MLR

model.

This journal is © The Royal Society of Chemistry 2024
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diction capability of the model, additional experimental vis-
cosity and CO, capacity values of other eutectic solvents
reported in the literature were checked.?®*!*® Specifically, the
structural descriptors were calculated (summarized in
Table S8f) and used in eqn (1) and (2) to predict viscosities
and CO, capacities. The predicted values demonstrated a
reasonably good agreement with experimental values, which
further demonstrate the utility of these models for a first esti-
mation. We also performed MLR for density data to obtain the
best fit linear model (eqn (S12)f) that correlates the experi-
mental and calculated values of density of eutectic solvents.
Similarly, model exhibited excellent correlation between the
predicted and experimental densities of eutectic solvents (R> =
0.90). However, the correlation between experimental density
data obtained from literature and predicted values by our
model was notably poor, as shown in Fig. S17.F The primary
reason for the relatively poor predictions of the QSPR model is
the limited literature data that comes from DESs with a narrow
structural diversity used to train the models (i.e., one cation,
four anions, and three hydrogen bond doners). Furthermore,
the IL descriptors used in the QSPR analysis were calculated
separately for the cation and anion for simplicity; however, in
practice, the cation and anion of the IL should be considered
together (proton sharing could not be captured in descriptors).
Therefore, calculation of IL descriptors should also make sig-
nificant contribution to the error of QSPR models. In order to
further improve the predictive capability of the QSPR model,
future studies should focus on expanding the dataset by
including a wide range of eutectic solvents and evaluate the
models under different testing conditions such as varied
moisture, temperature, and pressure. This will improve optim-
ization of eutectic solvent properties for specific applications.

Conclusion

In summary, choline based eutectic solvents containing imid-
azole, phenol, pyrrole-2-carbonitrile, and 1,2,4-triazole based
HBAs were investigated with alcohol/amine-based HBDs
including ethylene glycol, 1,2-propylene glycol, and monoetha-
nolamine. The thermal, physical, electrochemical, and solvato-
chromic properties of the eutectic solvents formed was
observed to depend strongly on the HBD and the HBA-HBD
interactions. With CO, saturation, the viscosities had an
overall increase, except for interestingly the phenol based
eutectic solvents. Phenol HBA based solvents with EG and PG
HBDs experienced significant decrease in viscosity upon CO,
saturation, whereas the pyrrole-2-carbonitrile based solvents
experienced an increase in viscosity. These contrasting trends
are attributed to the robustness of the intermolecular inter-
actions where a weakening occurs with chemisorbed CO, in
phenol-based eutectics. The monoethanolamine based eutec-
tic solvents in general possessed lower viscosity and decreased
thermal stability owing to the decreased hydrogen bond donat-
ing ability of the amine compared to other solvents studied;
however, a gel like material was obtained after saturation with

3450 | Green Chem., 2024, 26, 3441-3452
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CO,, due to significantly increased H-bonding. Finally, multi
linear regression analysis was performed to identify simple
molecular descriptors for estimating physical properties, in
particular for viscosity and CO, capacities that can inform
future designs of green eutectic solvents for reactive CO,
capture and electrochemical conversion processes.
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