Xian Wu, Hang Xiao et al. A metabolite of nobiletin, 4’-demethylnobiletin and atorvastatin synergistically inhibits human colon cancer cell growth by inducing G0/G1 cell cycle arrest and apoptosis.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
The data that support the findings of this study are available on request from the corresponding author, [L. Escrivá].
Characterization of lactic acid bacteria isolated from human breast milk and their bioactive metabolites with potential application as a probiotic food supplement

Abel Navarré1, Tiago Nazareth1, Carlos Luz, Giuseppe Meca, Laura Escrivá*
Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av/ Vicent A. Estellés, s/n 46100 Burjassot, Valencia, Spain
*Corresponding author: Laura Escrivá; e-mail: laura.escriva@uv.es
1Both authors contributed equally to the manuscript.

ABSTRACT

Probiotic properties of twenty-five lactic acid bacteria (LAB) isolated from human breast milk were investigated through resistance to gastrointestinal conditions and proteolytic activity. Seven LAB were identified and assessed for auto- and co-aggregation capacity, antibiotics resistance, and behavior during in vitro gastrointestinal digestion. Three Lacticaseibacillus strains were further evaluated for antifungal activity, metabolites production (HPLC-Q-TOF-MS/MS and GC-MS/MS) and proteolytic profile (SDS-PAGE and HPLC-DAD) in fermented milk, whey, and soy beverage. All strains resisted in vitro gastrointestinal digestions with viable counts higher than 7.9 Log CFU/mL after the colonic phase. Remarkable proteolytic activity was shown for 18/25 strains. Bacterial auto- and co-aggregation of 7 selected strains reached values up to 23 and 20%, respectively. L. rhamnosus B5H2, L. rhamnosus B9H2 and L. paracasei B10L2 inhibited P. verrucosum, F. verticillioides and F. graminearum fungal growth, highlighting L. rhamnosus B5H2. Several metabolites were identified, including antifungal compounds such as phenylacetic acid and 3-phenyllactic acid, and volatile organic compounds produced in fermented milk, whey, and soy beverage. SDS-PAGE demonstrated bacterial hydrolysis of the main milk (caseins) and soy (glycines and beta-conglycines) proteins, with no apparent hydrolysis of whey proteins. However, HPLC-DAD revealed alpha-lactoglobulin reductions up to 82% and 54% in milk and whey, respectively, with L. rhamnosus B5H2 showing the highest proteolytic activity. In overall, the three selected Lacticaseibacillus strains demonstrated probiotic capacity highlighting L. rhamnosus B5H2 with remarkable potential generating bioactive metabolites and peptides able to promote human health.

Keywords

1. INTRODUCTION

Lactic acid bacteria (LAB) are a heterogeneous group of Gram-positive and catalase-negative bacteria that produce organic acids, mainly lactic acid, after glucose fermentation. LAB are naturally found in several foods, as well as in human and animal cavities, and many strains have been described as probiotics\(^1\). Human breast milk is an important source of lactic acid bacteria, contains more than 200 strains of which the most important are *Lactobacilli*, *Bacteroides* and *Bifidobacterium*. Among these populations, probiotic bacteria are present in an amount of \(10^1\)–\(10^7\) colony forming units (CFU) per mL\(^2\).

Food fermentation and probiotics industry is rising nowadays for both their organoleptic properties and for their health benefits. In fact, fermented foods and beverages market is expected to grow by $533 million through 2026\(^3\). These foods are increasingly in demand since probiotics have been associated with a healthy immune and digestive system, among other effects\(^4\). An adequate supply of probiotic microorganisms with food supports the proper formation of the microbiological profile and provides maximum benefits from microbiological homeostasis in the gastrointestinal tract, affect the maturation and development of the immune system, the integrity of the gastrointestinal mucosa and the production of secretory IgA antibodies, contribute to the formation of the immune system associated with the gastrointestinal mucosa, and prevent gastrointestinal infections by eliminating or reducing the number of pathogenic microflora\(^2\).

To use a microorganism in food within the European Union it needs to comply specific parameters established by the European Food Safety Authority (EFSA) including strain identification, absence of antibiotic resistance, and production of antimicrobial substances, among others\(^5\). The ability of LAB to produce antibacterial\(^5\) and antifungal substances\(^6\) is known and should be evaluated. According to the International Scientific Association for Probiotics and Prebiotics (ISAPP), a probiotic is a live microorganism that, when administered in adequate amounts, confer a health benefit on the host\(^4\). The probiotic must be identified at specie level (preferably at strain level, as the beneficial effects were shown to be strain-dependent). It must have a proven beneficial effect, like antagonism of pathogenic microorganisms or the production of bioactive metabolites such as organic acids or short-chain fatty acids\(^8\). These effects must occur with a
functional dose, therefore probiotics must be present at $8-9 \log_{10} \text{CFU/g}$ in the product before ingestion to ensure that a sufficient therapeutic minimum of $6-7 \log_{10} \text{CFU/g}$ can reach the colon9. In this line, resistance to stomach acid and tolerance to bile salts are two fundamental properties that allow probiotics to survive during passage through the gastrointestinal tract9. Finally, microorganisms must have auto-aggregation capacity, a requirement to adhere to the intestinal epithelium and perform their function10, as well as co-aggregation with other pathogenic microorganisms, this being directly related with its antimicrobial activity.

LAB generate several bioactive compounds while fermentation and proteolytic hydrolysis of foods, including peptides, amino acids, organic acids, bacteriocin, vitamins, exopolysaccharides, and flavour substances11. LAB bioactive peptides with antioxidant and antimicrobial activity, or inhibitory activity of Angiotensin I-Converting Enzyme (ACE) have been described12. Knowing the proteolytic capacity of LAB strains is essential to determine the possible production of bioactive peptides, as well as other substances such as volatile organic compounds (VOCs) with functional capacity.

The isolation and characterization of LAB with probiotic properties is important to develop fermented products and functional foods with health-promoting properties. Certain probiotic strains such as \textit{Lacticaseibacillus spp.} are commonly used as starters for production of fermented foods, mainly dairy products. Fermented milks are one of the main forms of probiotic consumption worldwide, however, there are other food matrices recently incorporated to the market, such as vegetable beverages, that could be susceptible for fermentation and production of probiotic foods13.

The objective of the present study was to isolate, characterize a select the most relevant LAB based on their probiotic capacity and proteolytic activity to find probiotic candidates to produce bioactive metabolites and peptides during fermentation of food matrices. In this line, after confirming their resistance during \textit{in vitro} simulated gastrointestinal digestions the best three strains were deeply evaluated for their antifungal activity, metabolites and VOCs production, as well as proteolytic capacity in three food matrices; cow milk, soy beverage and milk whey.

2. MATERIALS AND METHODS

2.1. Microorganisms and reagents

LAB used were isolated from breast milk samples obtained from healthy volunteers from a partnership with La Fe Hospital (Valencia, Spain). Mycotoxigenic fungi \textit{Aspergillus}
flavus ISPA8111, Aspergillus niger CECT2088, Fusarium graminearum ITEM126,
Fusarium verticillioides ITEM12043, Penicillium commune CECT20767 and Penicillium
verrucosum VTTD-01847 were acquired from CECT. Milli-Q water (<18 MΩ/cm
resistivity) was obtain from Milli-Q purification system (Millipore, Bedford, MA, USA).
Chromatographic solvents (Milli-Q water, acetonitrile >99.9% and trifluoroacetic acid
99%) were obtained from Thermo Fisher Scientific (Alcobendas, Madrid, Spain). Porcine
bile salts, pepsin, pancreatin and antibiotics (ampicillin, vancomycin, gentamicin,
kanamycin, streptomycin, erythromycin, clindamycin, tetracycline and chloramphenicol)
were obtained from Sigma-Aldrich (Germany). Agela Technologies (Delaware, USA)
supplied the reagents for QuEChERS method. Microorganisms culture media were
provided by Thermo Fisher Scientific (Oxoid, UK).

2.2. Bacterial isolation and phenotypic screening

The isolated bacteria were isolated from human breast milk from women donor
volunteers. Women selection was performed based on specific characteristics including
absence of any pathology, absence of recent hospital admission, and absence of
antibiotics treatment in the last three months. The drug research Ethics Committee of
Hospital Universitario y Politécnico La Fe provided a favorable report for the project.
Informed written consent was obtained from all participants prior to inclusion in the
study. A total of ten breast milk samples were inoculated at 10% in modified MRS Broth
(Oxoid, Ireland) and incubated at 37 ºC for 48 h in anaerobic conditions (Mikrobiologie
Anaerocult A strips). After that, the inoculation of each bacterial solution (10 μL) on MRS
agar plates was performed by the triple streak method and plates were incubated (37 ºC,
48 h) for single colonies growth. To isolate bacterial strains five single colonies of each
plate were then transferred and incubated again (37 ºC, 48 h) in fresh MRS agar plates
until observing under the microscope similar growth and morphology for all colonies in
a plate, obtaining pure bacterial cultures. Then, Gram differential staining was performed
on the 50 isolated strains. Briefly, single colonies were spread on slides with 10 μL of
distilled water, fixed by heat and subjected consecutively to gentian violet dye; lugol
solution; alcohol–acetone (1:1, v/v); and safranin (1 minute each) before microscope
(100×) observation. Moreover, colonies were spread on slides with 10 μL of hydrogen
peroxide (30%) to assess catalase activity. Gram-positive catalase-negative strains were
selected and kept at -80 ºC in MRS broth-glycerol (70:30 v/v).
2.3. *In vitro* proteolytic activity

To assess proteolytic activity of the 25 Gram-positive catalase-negative selected strains, agar plates enriched with skim milk were prepared by mixing the minimal medium (10 g/L glucose, 2.5 g/L ammonium sulfate, 6.25 g/L sodium chloride, 0.25 g/L magnesium sulfate, 2.5 g/L potassium phosphate and 0.0625 g/L manganese sulfate) with 14 and 28 g/L of skim milk powder (Corporación Alimentaria Peñasanta SA, Granada, Spain). Then, 5 μL of each strain solution at exponentially growing culture (37 ºC, 24 h) were inoculated into the center of the plates and incubated (37 ºC for 48 h). Then, the size of the proteolysis halo was measured in triplicate and the most active strains (with the highest proteolysis halo) were selected for further analysis.

2.4. Resistance to acid environment and bile salts

A total of 25 Gram-positive catalase-negative strains were tested for their resistance to gastrointestinal environment by their incubation (4 and 6 h) at different conditions: a) MRS Broth (control), b) MRS Broth adjusted to pH 2 with 1 M HCl, c) MRS Broth with 0.3% of bile salts, and d) MRS Broth adjusted to pH 2 with 0.3% of bile salts. Strains at exponentially growth phase (20 μL) were incubated with 200 μL of each media in 96-well plates (8 replicates/condition) at 37 ºC under slight agitation. Control media without bacteria inoculation was also tested for each condition. Optical density (OD) at 600 nm was measured after 4 and 6 h incubation and bacterial growth (%) was calculated by comparing each modified media with MRS control media, assumed as 100% growth.

2.5. Strain identification by MALDI-TOF/MS and 16S rRNA gene sequencing

On the one hand, seven bacterial strains were identified by matrix-assisted laser desorption/ionization with time-of-flight detection mass spectrometry (MALDI-TOF/MS) by the CECT (Universitat de València, Parque Científico, Spain) following the protocol recommended by Bruker Daltonics using the "extended direct transfer" method. The strains were analyzed from the original culture and 3 spectra per strain were obtained. MALDI-TOF/MS profiles were obtained using a Microflex L20 mass spectrometer equipped with an N₂ laser and spectra were acquired in positive linear ion mode with an accelerating voltage of 20 kV. Each spectrum corresponds to the addition of 240 shots per target and the mass range used for the analysis was 2,000-20,000 Da. Identification was carried out following the MALDI Biotyper Realtime Classification (RTC) method with respect to the MBT 7854 and MBT 7311_RUO databases (Bruker Daltonics).
On the other hand, selected strains were then identified by 16S ribosomal (rRNA) gene sequencing by DNA extraction with High Pure PCR Template Preparation Kit (Roche, Madrid, Spain). 16S rRNA sequence was amplified and sequenced by the Applied Biosystems ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (Foster City, CA, USA). DNA amplification templates was performed using polymerase chain reaction (PCR) with universal primers that amplify a 1000 bp region of the 16S rRNA gene: 616V, 50-AGAGTTTGATYMTGGCTCAG-30; and 699R, 50-RGGGTTGCGCTCGTT-30. Primers (616V and 699R), Taq DNA polymerase, and deoxyribonucleotide triphosphate mix were obtained from Thermo Fisher Scientific (Waltham, MA, USA). DNA templates amplification was performed by an initial denaturation (94 °C for 10 min), 40 cycles of denaturation (94 °C for 1 min), annealing (55 °C for 1 min), extension (72 °C for 1 min), and final extension (72 °C for 10 min). PCR products were evaluated for their integrity by single bands development following electrophoresis (1 h at 100 V) in 2% (w/v) agarose gels in Tris–borate ethylenediaminetetraacetic acid buffer. A commercial mi-PCR Purification Kit (Metabion GmbH, Planegg, Germany) was used for amplicons purification, followed by sequencing reactions using the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems), premixed format. The sequences obtained were aligned and compared with the on-line tool BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi), identifying the strains based on the highest scores.

2.6. Auto-aggregation and co-aggregation test

For the aggregation and co-aggregation test, studied LAB strains and the pathogen microorganism Salmonella enterica 554 CECT (S. enterica) were grown in MRS Broth and Tryptic Soy Broth (TSB) all at the same conditions (24 h, 37 ºC). Firstly, for the auto-aggregation test LAB strains were washed twice with PBS buffer 0.01 M at pH 7.2. After that, LAB suspensions were diluted in PBS adjusting turbidity at 0.5 McFarland. Aggregation ability was then determined by measuring the absorbance at 600 nm at different time points, 0 and after 4 h incubation (37 ºC). To calculate the auto-aggregation ratio, the following formula was applied with OD values at 0 and 4h:

\[
\text{Auto-aggregation (\%) = (OD}_{0}\text{h} - \text{OD}_{4}\text{h})/ \text{OD}_{0}\text{h} \times 100
\]

Secondly, coaggregation ability was determined by washing and adjusting turbidity at 0.5 McFarland for both LAB and S. enterica. After 4 h of LAB and S. enterica co-incubation
(37 ºC), the absorbance at 600 nm was determined at 0 and 4 h incubation, calculating co-aggregation rate based on the following formula:

\[
\text{Co-aggregation (\%) = \left(\frac{\text{OD}0h - \text{OD}4h}{\text{OD}0h} \right) \times 100}
\]

Triplicates were performed for each LAB and assay, and *L. plantarum ATCC 14917T* probiotic strain was used as reference control strain in both assays.

2.7. Antibiotic resistance

Antibiotic resistance of studied LAB was evaluated based on the requirements of the European Food Safety Authority (EFSA) by testing their susceptibility against antibiotics of clinical importance, including ampicillin, vancomycin, gentamicin, kanamycin, streptomycin, erythromycin, clindamycin, tetracycline, and chloramphenicol. The Minimum Inhibitory Concentration (MIC) values were determined by the broth microdilution method, according to ISO standard 1093214. A 96 wells plates was prepared with two-fold dilutions in a range of 0.25–256 μg/mL of Mueller Hilton Broth (Oxoid, Ireland). *L. plantarum ATCC 14917T* probiotic strain was used as reference control. Ten microliter of LAB suspension adjusted to a standard turbidity of 0.5 McFarland was inoculated in 11 mL of Mueller Hilton Broth, and 100 μL of this suspension was inoculated in each well (8 replicates per condition). Plates were incubated at 37 ºC for 18 h and the MIC of each antibiotic was established as the concentration where turbidity was not observed, considered as the lowest concentration of the antibiotic causing absence of bacterial growth.

2.8. *In vitro* digestion in MRS broth

To evaluate LAB strains viability during a simulated digestion process, an *in vitro* digestion was performed using the methodology described by Escrivá et al.15 with some modifications. Artificial saliva was prepared beforehand by mixing the inorganic phase \[10 \text{ mL KCl (89.6 g/L), 10 mL KSCN (20 g/L), 10 mL NaH}_2\text{PO}_4 (8.8 g/L), 10 mL NaSO}_4 (57 g/L), 1.7 \text{ mL NaCl (175.3 g/L) and 20 mL NaHCO}_3 (84.7 g/L)] with distilled water at a final volume of 490 mL. The pH was adjusted to 6.8±0.2 with HCl 0.1M and sterilized in autoclave (15 min, 121 ºC). After that, the organic phase (290 mg of *α*-amylase, 25 mg of mucin, and 8 mL of urea 20 g/L) was added aseptically. The sterile pH adjustment solutions consisting of HCl 6 N, HCl 0.1 N, NaHCO\textsubscript{3} 1 N, NaHCO\textsubscript{3} 0.1 N and NaOH 0.5 N, as well as the enzyme mixture consisting of pepsin (1 g in 25 mL of sterile HCl 0.1 N) and pancreatin-bile salts (100 mg of pancreatin and 625 mg of bile salts in 25 mL of sterile
NaHCO₃ 0.1 N) were also prepared. For oral-gastric phase, 10 mL of MRS broth with the bacterial culture at exponential growth (24 h, 37 °C) were introduced in a sterile opaque flask, adding 6 mL of artificial saliva and 84 mL of sterile distilled water. The pH was adjusted to 2±0.2 with 6 N HCl, 0.5 mL of pepsin solution was added, and samples were incubated for 2 h at 37 °C under slight agitation. Subsequently, for duodenal phase, the pH was adjusted to 6.8±0.2 with NaHCO₃ 1 N, 1.25 mL of the pancreatin-bile salts solution was added, and samples were incubated again for 2 h at 37 °C with agitation. Finally, for colonic phase the pH was adjusted to 7±0.2 with NaOH 0.5 N and samples were incubated for 48 h at 37 °C in anaerobiosis. Bacterial counting was performed in all phases, as well as initially prior to the simulated digestion, by seeding serial dilutions in PBS on MRS agar plates in duplicate and incubating at 37 °C for 48 h.

2.9. Antifungal activity

Three LAB strains (Lactcaseibacillus rhamnosus B5H2, Lactcaseibacillus rhamnosus B9H2 and Lactcaseibacillus paracasei B10L2) were selected for further assays based on the results obtained for proteolytic activity and simulated gastrointestinal digestions in MRS broth. To evaluate the antifungal activity of the three selected LAB the overlay assay was performed. Ten microliters of an exponentially growing culture (MRS broth, 37 °C, 24 h) were placed at the center of MRS agar plates and incubated at 37 °C for 48 h. After that, plates were covered with Potato Dextrose Agar (PDA) for antifungal activity determination against Aspergillus flavus ISPA8111, Aspergillus niger CECT2088, Fusarium graminearum ITEM126, Fusarium verticillioides ITEM12043, Penicillium commune CECT20767 and Penicillium verrucosum VTT D-01847. Fungi were incubated at 25 °C for 48 h, and the inhibition halo produced was measured in triplicate.

2.10. LAB metabolites analysis by HPLC-Q-TOF-MS/MS.

To analyze the metabolites produced by LAB fermentation, MRS broth was fermented (37 °C, 24 h) and samples were diluted (1/4) with Milli-Q water and purified by QuEChERS method. Briefly, 10 mL of sample was gently mixed with 4 g MgSO₄, 1 g f NaCl, and 10 mL of acetonitrile. Then, samples were centrifuged (4000 rpm, 10 min, 4 °C), and the supernatant was collected and mixed with 150 mg C18 and 900 mg MgSO₄. After that, samples were centrifuged, the supernatant was dried in a Turbomav (LV, Zymark, Runcorn, UK), and the dry extract was reconstituted in 2 mL of Milli-Q water with 10% acetonitrile prior filtration (0.22 μm) and injection into the HPLC-Q-TOF-
MS/MS. The chromatographic instrument consisted of an Agilent 1200 LC (Palo Alto, CA, USA) equipped with a vacuum degasser, binary pump, autosampler and a bioZen peptide C18 column (50 x 2.1 mm, 2.6 μm, Phenomenex, Madrid, Spain). Mobile phases were Milli-Q water 0.1% formic acid (A) and acetonitrile 0.1% formic acid (B), with a flow rate of 0.4 mL/min and an elution gradient (A:B) as 95:5% (0 min), 5:95% (30 min) and 95-5% (37 min). Sample injection, performed in duplicate, was 20 μL. Detection instrument consisted of an Agilent 6540 ultra-high definition accurate-mass Q-TOF mass spectrometer equipped with an Agilent dual jet stream ESI interface in positive and negative ionization mode. Mass spectrometer operated in scan range 100-3000 m/z, 13 L/min drying gas flow (N₂), 35 psi nebulizer pressure, 325 °C gas drying temperature, 4 kV capillary voltage, 175 V fragment voltage and 10, 20 and 40 eV collision energy values. The spectrum generated were analyzed using a LAB metabolites personal database (METLIN PCDL B.08.00) for untargeted metabolome analysis considering compounds with score > 95% and delta error < 5 ppm. A heatmap of metabolites was performed for each sample using the MetaboAnalyst software.

2.11. Analysis of volatile organic compounds by GC-MS/MS

The analysis of the volatile organic compounds (VOCs) was performed by gas chromatography coupled to a triple quadrupole mass spectrometer (GC-MS/MS) following the methodology described by Lafuente et al.¹⁶ with some modifications adapted to the samples. Firstly, 10 mL of CFS were placed in a 20 mL glass vial and incubated 45 min at 50 °C in a water bath under constant agitation. VOCs were extracted from the vial headspace by solid-phase microextraction (SPME) through a silica fiber (80 μm x 10 mm) coated with divinylbenzene/carbon-wide range/polydimethylsiloxane (DVB/C-WR/PDMS) (Supelco, Bellaflonte, PA, USA). The fiber was introduced into the GC-MS/MS in spitless mode for the desorption at 250 °C for 10 minutes twice. The GC (Agilent 7890A) was equipped with an HP-5MS column (30 m x 0.25 mm, 0.25 μm 5% diphenyl/95% dimethylpolysiloxane) (J&W Scientific, Folsom, CA, USA), which was used for the chromatographic separation. The temperature programed started for 2 min at 40 °C and reached 160 °C at 6 °C/min. Then, temperature increased to 260 °C at 10 °C/min and was kept constant for 40 min. The collision and quenching gas were nitrogen (1.5 mL/min) and helium (2.5 mL/min), respectively, both at 99.999% purity (Carburos Metálicos S.L., Barcelona, Spain). Compounds were detected by a range m/z of 40-50 Da in full scan mode. Data was acquired by Agilent Masshunter software (version B.04.00)
and compounds were identified by NIST Atomic Spectra Database version 1.6 (Gaithersburg, MD, USA) with a spectral similarity of 80%. Linear retention index (LRI) was obtained by the time retention of an alkane solution (C8-C20) injected at the same condition. A heatmap of VOCs was performed for each sample using the MetaboAnalyst free software.

2.12. LAB fermentation in food matrices

Three food products were selected to evaluate LAB proteolytic activity during fermentation process in human eatable matrices, as well as to analyze the VOCs produced by LAB strains; skimmed cow milk (Calidad Pascual SAU, Aranda de Duero, Spain), goat milk whey (ALCLIPOR Company SAL, Benassal, Spain) and soy drink (Esnelat SL, Gipuzkoa, Spain). Food matrices were prepared by adjusting the protein content at 0.325% (w/v) with minimal medium (10 g/L glucose, 2.5 g/L ammonium sulfate, 6.25 g/L sodium chloride, 0.25 g/L magnesium sulfate, 2.5 g/L potassium phosphate and 0.0625 g/L manganese sulfate). Food matrices were pasteurized (80 °C, 30 min) and inoculated individually with the three selected LAB at 5%, with a control sample without bacterial inoculation. Samples were incubated at 37 °C for 72 h under agitation, after which they were centrifuged (4000 rpm, 10 min) and the cell-free supernatant (CFS) was frozen (-18 ºC) for further analysis.

2.13. LAB proteolysis by SDS-PAGE electrophoresis and HPLC-DAD

The protein hydrolysis degree of food matrices after fermentation (37 °C, 72 h) with LAB strains was evaluated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis - SDS-PAGE (Mini-Protean TGX Gels, Bio-Rad Laboratories Inc., USA). Briefly, 1 mL of CFS from each fermented food matrix was centrifuged (14000 rpm, 10 min, 25 °C), and 200 µL of the supernatant were transferred to an eppendorf tube, mixed with 800 µL of cold acetone, and kept at -20 °C for 24 h for protein precipitation. After that, samples were centrifuged (14000 rpm, 10 min) and the supernatant was removed. The resulting protein pellet was resuspended in 50 µL of Milli-Q water, mixed 1:1 with dithiothreitol 1.6% in sample buffer (2% SDS, 20% glycerol, 625 mM Tris-HCl and 0.01% bromophenol blue in Milli-Q water), and heated to 95 °C for 5 min. Then, 20 µL of each sample was loaded into each gel column, as well as 10 µL of a protein marker (Precision Plus Protein [All Blue], Bio-Rad Laboratories Inc., USA). After performing the electrophoresis (30 min at 80 V, and 50 min at 100 V) with the running buffer 10x (3%
Trizma base, 14.4% glycine, and 1% SDS in Milli-Q water), gels were washed with a fixing solution (water-methanol-glacial acetic acid, 50:40:10) for 35 min under agitation, then with a staining solution (0.1% Brilliant Blue R-250, 50% water, 40% MeOH, 10% acetic acid) for 35 min under agitation, and finally with a destaining solution (water-methanol-glacial acetic acid, 70:20:10) for 24 h under agitation. Finally, protein bands were visualized and identified by comparison with the protein marker.

On the other hand, CFS from fermented food matrices were centrifuged (11000 rpm, 10 min), filtered (0.22 μm) and vialized prior chromatographic analysis in an Agilent 1100 chromatograph equipped with an LC-7100 pump, an autosampler L-2200 coupled to DAD L-7455 detector (Hitachi, Tokyo, Japan) set at 214 nm. Mobile phases consisted of Milli-Q water 0.1% trifluoroacetic acid (A) and acetonitrile 0.1% trifluoroacetic acid (B) and injection volume was 20 μL. Elution gradient was set at 5% at 0 min, 35% at 10 min, 100% at 30 min and finally 5% at 50 min, with B phase. Column used for chromatographic separation was the Aeris peptide XB-C18 (100 x 4.6 mm, 3.6 μM ID, Phenomenex, Madrid, Spain) 1 mL/min flow rate. Standard curves (25-200 μg/mL) of alpha-lactoglobulin and beta-lactoglobulin (Sigma-Aldrich, Germany) were also injected to calculate samples protein concentration, as well as percentage of reduction in fermented food matrices with respect to the non-fermented control.

3. RESULTS AND DISCUSSION

3.1. In vitro proteolytic activity

From the 50 isolated strains, 25 were Gram-positive catalase-negative, so they were selected to continue with the proteolytic activity study. As it is shown in Table 1, all strains but two (B10H2 and B23L4) produced proteolysis to a greater or lesser degree, showing proteolytic halos from 0.93 to 1.40 cm, with 18 strains generating halos higher than 1 cm. The strains with higher proteolytic activity were B9H2 (1.40 cm), B5H2 (1.37 cm), and B10L2 (1.29 cm); followed by B2H2, B3H2, B8H2, B1H2 and B7L4, all with proteolysis halos higher than 1.25 cm (Table 1).

<table>
<thead>
<tr>
<th>LAB strain</th>
<th>Halo (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1H2</td>
<td>1.22±0.15</td>
</tr>
</tbody>
</table>
The proteolytic activity of LAB has garnered great interest due to its ability to enhance many desirable food qualities, and it has been extensively studied in several matrices for their industrial importance and essential role in ensuring bacteria survival17. Many LAB are known to have proteolytic activity in milk and whey17. Atanasova et al.18 reported proteolytic activity of 58 LAB strains in goat milk, highlighting strains from \textit{Lactobacillus lactis}, \textit{Lactococcus lactis}, and \textit{Streptococcus thermophilus}. Proteolytic activity of LAB (specifically \textit{Lactobacillus} strains) in milk agar by proteolytic halo measurement has been previously reported19, as well as LAB proteolytic activity in gelatin20 and vegetable proteins, such as legumes21.
3.2. Resistance to acid environment and bile salts

The 25 Gram-positive catalase-negative strains were assessed to evaluate their resistance to the gastrointestinal conditions including acid pH and bile salts at two incubation times (4 and 6 h), simulating harsher conditions than those found in the gastrointestinal tract, where it is estimated that the ingested compounds start to leave the stomach (with acidic pH) after 1-3 h222. LAB strains survival (% viability) was evaluated in modified MRS media including acid conditions (pH=2) and bile salts (0.3%) with acid media (pH=2); and it was compared to strains resistance in control MRS broth.

As it is shown in Table 2, all strains were able of growth at strong acid conditions (pH=2) as well as in the presence of bile salts (0.3%), after 4 and 6 h incubation. Survivance rate, expressed as viability (%), varied considerably depending on the studied strain and as expected, it decreased as the incubation time increased in all strains. Viability after 4 h incubation under acid conditions ranged between 50.8% and 112.7% compared to the control, with 16 strains showing viabilities higher than 75%. Interestingly, three strains (B2H2, B3H2 and B5H2) manage to slightly increase viability compared to the control (100%). Survival values decreased after 6 h incubation between 36.8 and 67.8%, where 17 strains demonstrated survival rates higher than 50%. The most resistant strains to acid media at both incubation times were B5H2 and B3H2, followed by B2H2 and B9H2.

When bile acids were added to the acid media a slight increased was observed in strains survival. After 2 h incubation with bile acids at pH=2 strains viability ranged between 51.7 and 109.1%, with 20 strains reaching viabilities higher than 75%. When exposure time increased up to 6 h survival rates decreased between 34.7 and 105.0%, with all strains but three reaching survival values higher than 50%. The slight increase observed in strains viability in the presence of bile salts may be explained due to the strains bile salt hydrolase activity that may influence the survival rate by using bile salts as metabolic substrate23,24. Although all strains showed to be resistant to the studied gastrointestinal conditions including bile salts (0.3%) and/or acid environment (pH=2), a more complete \textit{in vitro} simulated digestion assay should be performed to evaluate their behavior during the different digestion steps and to confirm strains resistance under the gastrointestinal digestion process.
Table 2. Strains viability (%) in MRS at acid conditions (pH=2) and bile salts (0.3%) presence after 4 and 6 h incubation (37 ºC). It is shown the average and standar deviation of eight replicates (n=8).

<table>
<thead>
<tr>
<th>Strain</th>
<th>Viability (%) - 4 h incubation</th>
<th>pH=2</th>
<th>Viability (%) - 6 h incubation</th>
<th>pH=2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>pH=2</td>
<td>Bile salts (0.3%)</td>
<td>Control</td>
</tr>
<tr>
<td>B1H2</td>
<td>100.0±6.8</td>
<td>83.8±6.5</td>
<td>94.4±9.5</td>
<td>100.0±5.6</td>
</tr>
<tr>
<td>B2H2</td>
<td>100.0±8.8</td>
<td>100.1±6.9</td>
<td>103.5±9.6</td>
<td>100.0±6.2</td>
</tr>
<tr>
<td>B3H2</td>
<td>100.0±8.9</td>
<td>109.2±13.7</td>
<td>109.1±12.8</td>
<td>100.0±6.3</td>
</tr>
<tr>
<td>B5H2</td>
<td>100.0±10.0</td>
<td>112.7±12.3</td>
<td>93.9±10.0</td>
<td>100.0±7.0</td>
</tr>
<tr>
<td>B7H2</td>
<td>100.0±9.5</td>
<td>79.0±8.7</td>
<td>106.4±12.3</td>
<td>100.0±10.5</td>
</tr>
<tr>
<td>B8H2</td>
<td>100.0±6.9</td>
<td>85.3±13.5</td>
<td>101.4±4.7</td>
<td>100.0±4.0</td>
</tr>
<tr>
<td>B9H2</td>
<td>100.0±8.2</td>
<td>83.1±7.0</td>
<td>104.6±6.3</td>
<td>100.0±9.0</td>
</tr>
<tr>
<td>B10H2</td>
<td>100.0±5.0</td>
<td>79.8±6.3</td>
<td>107.2±10.2</td>
<td>100.0±5.0</td>
</tr>
<tr>
<td>B1L2</td>
<td>100.0±4.6</td>
<td>50.8±3.1</td>
<td>58.7±1.7</td>
<td>100.0±3.5</td>
</tr>
<tr>
<td>B2L2</td>
<td>100.0±10.8</td>
<td>52.0±4.3</td>
<td>60.0±5.2</td>
<td>100.0±6.9</td>
</tr>
<tr>
<td>B3L2</td>
<td>100.0±4.9</td>
<td>50.8±1.6</td>
<td>51.7±2.0</td>
<td>100.0±5.5</td>
</tr>
<tr>
<td>B6L2</td>
<td>100.0±4.9</td>
<td>78.1±3.6</td>
<td>88.3±4.1</td>
<td>100.0±4.0</td>
</tr>
<tr>
<td>B7L2</td>
<td>100.0±6.1</td>
<td>78.6±3.6</td>
<td>89.4±5.5</td>
<td>100.0±4.8</td>
</tr>
<tr>
<td>B9L2</td>
<td>100.0±5.3</td>
<td>57.7±3.2</td>
<td>74.5±3.8</td>
<td>100.0±4.4</td>
</tr>
<tr>
<td>B10L2</td>
<td>100.0±3.8</td>
<td>81.3±4.4</td>
<td>87.0±10.9</td>
<td>100.0±3.5</td>
</tr>
<tr>
<td>B5L4</td>
<td>100.0±14.4</td>
<td>53.5±9.9</td>
<td>71.0±14.0</td>
<td>100.0±12.3</td>
</tr>
<tr>
<td>B6L4</td>
<td>100.0±14.3</td>
<td>70.2±9.0</td>
<td>106.5±7.6</td>
<td>100.0±11.4</td>
</tr>
<tr>
<td>B7L4</td>
<td>100.0±14.2</td>
<td>77.9±13.5</td>
<td>102.8±8.9</td>
<td>100.0±9.4</td>
</tr>
<tr>
<td>B8L4</td>
<td>100.0±17.0</td>
<td>73.4±16.4</td>
<td>104.2±11.5</td>
<td>100.0±13.4</td>
</tr>
<tr>
<td>B11L4</td>
<td>100.0±15.3</td>
<td>74.3±14.9</td>
<td>103.6±19.1</td>
<td>100.0±11.1</td>
</tr>
<tr>
<td>B13L4</td>
<td>100.0±10.1</td>
<td>63.9±14.7</td>
<td>106.6±10.4</td>
<td>100.0±14.6</td>
</tr>
<tr>
<td>B14L4</td>
<td>100.0±14.9</td>
<td>87.5±14.7</td>
<td>107.5±15.8</td>
<td>100.0±12.8</td>
</tr>
<tr>
<td>B15L4</td>
<td>100.0±15.4</td>
<td>76.5±10.6</td>
<td>103.3±14.5</td>
<td>100.0±10.2</td>
</tr>
<tr>
<td>B20L4</td>
<td>100.0±7.9</td>
<td>78.2±29.5</td>
<td>100.1±17.3</td>
<td>100.0±14.4</td>
</tr>
<tr>
<td>B23L4</td>
<td>100.0±12.2</td>
<td>84.2±12.8</td>
<td>103.7±14.9</td>
<td>100.0±14.6</td>
</tr>
</tbody>
</table>
LAB resistance to gastrointestinal conditions has been described in previous studies with related methodology reporting similar survival percentages, between 55-90\%\(^2\); however, resistance seems to directly depend on the specific type of strain, what could explain the high variability observed between strains (i.e. from 34.6\% for B3L2 at pH=2 and bile salts during 6 h of incubation, to 105\% for B15L4 at the same conditions).

3.3. MALDI-TOF/MS and 16S rRNA gene sequencing identification
The strains that showed the highest proteolytic activity, as well as high resistance at the studied gastrointestinal conditions were selected for identification. Seven strains namely B6L2, B7L2, B10L2, B2H2, B3H2, B5H2 and B9H2 were identified at species level after MALDI-TOF analysis by the MBT database with the highest Log (score) values. Moreover, strains identification at species level was confirmed by obtaining >99\% of 16S rRNA sequence similarity after comparing the obtained full sequence with the on-line BLAST tool. The seven identified strains belonged to Lactcaseibacillus spp. (Table 3), specifically identifying to two species, L. rhamnosus (B2H2, B3H2, B5H2 and B9H2) and L. paracasei (B6L2, B7L2 and B10L2).

Table 3. Identification of seven selected LAB strains.

<table>
<thead>
<tr>
<th>LAB strain identification</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B6L2</td>
<td>Lactcaseibacillus paracasei DSM 2649</td>
</tr>
<tr>
<td>B7L2</td>
<td>Lactcaseibacillus paracasei DSM 20020</td>
</tr>
<tr>
<td>B10L2</td>
<td>Lactcaseibacillus paracasei DSM 20244</td>
</tr>
<tr>
<td>B2H2</td>
<td>Lactcaseibacillus rhamnosus DSM 20711</td>
</tr>
<tr>
<td>B3H2</td>
<td>Lactcaseibacillus rhamnosus DSM 20021T</td>
</tr>
<tr>
<td>B5H2</td>
<td>Lactcaseibacillus rhamnosus D155 ZZMK</td>
</tr>
<tr>
<td>B9H2</td>
<td>Lactcaseibacillus rhamnosus DSM 20245</td>
</tr>
</tbody>
</table>

3.4. Auto-aggregation and co-aggregation assays
On the one hand, the auto-aggregation assay evidenced values between 10.79 ± 0.73 and 24.30 ± 1.60; highlighting L. rhamnosus B3H2, L. rhamnosus B5H2, L. paracasei B10L2 (with values > 20\%), and L. rhamnosus B2H2, all four strains above the auto-aggregation values obtained for L. plantarum ATCC 14917T, used as probiotic control. On the other hand, values for co-aggregation with the pathogenic strain S. enterica ranged between 9.15 ± 0.45 and 19.86 ± 1.70, with the highest levels for L. rhamnosus B9H2, L. paracasei
B6L2, and L. rhamnosus B5H2, all higher than 19% and above the control strain co-aggregation levels (Table 4). The obtained values for auto-aggregation and co-aggregation to S. enterica were similar to those reported in other studies at the same incubation time. The higher auto-aggregation percentages obtained for the studied strains compared to the reference control may indicate greater adhesion capacity to the intestinal epithelium. Moreover, higher co-aggregation to S. enterica may lead to a higher competition capacity against pathogenic microorganisms of the digestive tract. In overall, all analyzed strains showed auto-aggregation and co-aggregation capacity against S. enterica, being a preliminary indication of adhesion to the intestinal epithelium and potential antimicrobial capacity; highlighting L. rhamnosus B3H2 as the one that showed the greatest auto-aggregation, although with scarce co-aggregation, and L. rhamnosus B9H2 as the one with the greatest co-aggregation and moderate auto-aggregation capacity. However, L. rhamnosus B5H2 was the only strain that reached higher values for both auto-aggregation and co-aggregation assays than the reference strain used as probiotic control.

Table 4. Auto-aggregation (%) and co-aggregation (%) with S. enterica of the 7 LAB strains studied and the L. plantarum ATCC 14917T control strain.

<table>
<thead>
<tr>
<th>LAB strain</th>
<th>Auto-aggregation (%)</th>
<th>Co-aggregation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. paracasei B6L2</td>
<td>18.30 ± 1.41</td>
<td>19.68 ± 0.77</td>
</tr>
<tr>
<td>L. paracasei B7L2</td>
<td>10.79 ± 0.73</td>
<td>15.06 ± 1.21</td>
</tr>
<tr>
<td>L. paracasei B10L2</td>
<td>20.13 ± 0.93</td>
<td>13.74 ± 1.71</td>
</tr>
<tr>
<td>L. rhamnosus B2H2</td>
<td>19.98 ± 0.71</td>
<td>16.80 ± 1.66</td>
</tr>
<tr>
<td>L. rhamnosus B3H2</td>
<td>24.30 ± 1.60</td>
<td>9.15 ± 0.45</td>
</tr>
<tr>
<td>L. rhamnosus B5H2</td>
<td>22.95 ± 1.69</td>
<td>19.43 ± 0.09</td>
</tr>
<tr>
<td>L. rhamnosus B9H2</td>
<td>16.95 ± 1.25</td>
<td>19.86 ± 1.70</td>
</tr>
<tr>
<td>L. plantarum ATCC 14917T (reference control)</td>
<td>19.63 ± 1.38</td>
<td>19.01 ± 0.35</td>
</tr>
</tbody>
</table>

3.6. Antibiotic resistance

Resistance to antibiotic treatment of the seven identified strains and the reference control was evaluated according to EFSA recommendations. No growth of any tested LAB strain, as well as reference control strain, was observed above the minimum antibiotic concentration (0.25 mg/L), so this concentration was established as the MIC. Thus, all
seven strains showed MIC values below the cut-off level established by EFSA for the 9 tested antibiotics, confirming their potential safe use as probiotics.

3.7. LAB in vitro digestion in MRS broth and LAB strains selection

To confirm the strains resistance to the gastrointestinal digestion, the selected LAB were subjected to a simulated *in vitro* gastrointestinal digestion in MRS broth. All seven strains were able to withstand the conditions of the simulated digestion at all gastrointestinal steps; gastric, duodenal and colonic phases. Bacterial counts, expressed as Log$_{10}$ CFU/mL, were performed after each digestion phase as well as immediately before of the digestion process (initial count). As it is shown in Table 5, initial bacterial count was similar for all strains ranging from 9.3 to 9.8 Log$_{10}$ CFU/mL except *L. rhamnosus B2H2* with 8.8 Log$_{10}$ CFU/mL as initial counting. Greater differences were observed after the gastric phase, where bacterial count decreased for all strains to values between 0.2 and 5.9 Log$_{10}$ CFU/mL. These means viability reductions from 3.5 (*L. paracasei B10L2*) up to 9.3 Log$_{10}$ units (*L. paracasei B6L2*). At this point, the most resistant strain was *L. paracasei B10L2* followed by *L. rhamnosus B5H2* and *L. rhamnosus B9H2*, all with reductions lower than 6 Log$_{10}$ from the initial counting. This considerable decrease is explained by the effect of pepsin and acid pH, unfavorable conditions to which the strains are subjected during the 2 h of gastric digestion. It is well known that, throughout the passage through the stomach the viable cell count and the survival rate of probiotic microorganisms are reduced due to the extreme pH of stomach acid. Decreases of probiotic viability between 1-4 Log$_{10}$ CFU/g during the passage through the gastrointestinal tract have been previously reported9. The low acidity of the stomach is mainly the first barrier against microorganisms survival in the gastrointestinal tract and many ingested bacteria die or considerably reduce their viable counts. In fact, when probiotics reach the stomach is the point at which the greatest loss of bacteria viability is expected due to acid environment as well as, pepsin released, a proteolytic enzyme which breaks down proteins27.

After the duodenal digestion all strains considerably increased their counting reaching values from 1.5 to 6.1 Log$_{10}$ CFU/mL, meaning viability increases between 0.2 and 1.7 Log$_{10}$ units from the gastric phase, with again the most resistant strains being *L. paracasei B10L2*, *L. rhamnosus B5H2* and *L. rhamnosus B9H2* (Table 5). After passing through the stomach, probiotics reach the small intestine where abundant pancreatic juice and bile acid are present. Under the neutralizing effect of intestinal fluid, the pH in the small
The return to a pH close to neutral (pH = 6.8) during the two hours of duodenal digestion step could explain the strains growth and the corresponding bacterial counting increase. However, bile acids and digestive enzymes can also impact probiotic viability through cell membrane disruption and DNA damage, therefore, as it was expected, viable counts obtained after duodenal digestion were still far from the initial counting, prior the simulated gastrointestinal digestion.

Finally, after the 48 h of colonic incubation under anaerobic conditions bacterial counting reached values close to the initial concentration, between 7.7 up to 9.8 Log_{10} CFU/mL (Table 5). This supposed a huge viable count recovery, with increases between 5 up to 8.3 Log_{10} from the gastric counting. Moreover, some strains reached the same values as the initial counting (*L. rhamnosus* B9H2) or even exceeded it as was the case of *L. paracasei* B10L2 and *L. rhamnosus* B2H2, increasing in 0.1 Log_{10} units the initial viable count. The favorable colonic conditions for LAB growth explained this remarkable counting increase observed at the end of the simulated digestion. Other studies reported recoveries of up to 9 Log_{10} units in commercial *Lactobacillus* strains, although showing high variability among strains and higher initial concentrations, in all cases there was a difference of at least 1 Log_{10} between the initial and colonic counts. Similar reductions were observed for *L. paracasei* B6L2, *L. paracasei* B7L2 and *L. rhamnosus* B3H2, the only strains that reduced their viability at the end of simulated *in vitro* digestion (Table 5). However, since the colon is where the largest bacterial density is expected to be found (11-12 Log_{10} CFU/mL) when considering the whole human organism, probiotics might face resistance to commensal bacteria colonization, competing for nutrients and adhesion sites with the host microbiota to successfully colonize the mucosa and proliferate, therefore these factors should be further considered when extrapolating data to *in vivo*.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Concentration (Log_{10} CFU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial</td>
</tr>
<tr>
<td>L. paracasei B6L2</td>
<td>9.5±0.1</td>
</tr>
<tr>
<td>L. paracasei B7L2</td>
<td>9.3±0.1</td>
</tr>
</tbody>
</table>
In overall, all seven strains showed to be resistant to the *in vitro* gastrointestinal digestion process, highlighting *L. rhamnosus* B5H2, *L. rhamnosus* B9H2 and *L. paracasei* B10L2 reaching the highest viable count (higher than 9 Log_{10} CFU/mL) at the colonic phase, therefore they were selected to continue their characterization by evaluating their antifungal activity, and deeply analyzing the produced metabolites after fermentation in MRS broth, as well as in whole cow milk, soy drink and milk whey as representative food matrices.

3.8. Antifungal activity

To continue the study of the selected LAB strains, their antifungal activity against mycotoxigenic fungi was evaluated by the overlay assay. After fungi and LAB superimposed growth, the halos observed indicated fungal growth inhibition exerted by the studied LAB (Figure 1).

Figure 1. Overlay assay against mycotoxigenic fungi. 1: *L. rhamnosus* B5H2 inhibiting *P. verrucosum*; 2: *L. paracasei* B10L2 inhibiting *F. graminearum*; 3: *L. rhamnosus* B5H2 inhibiting *A. niger*.

As it is shown in Table 6, all three LAB were able to inhibit at least three different fungal strains. *L. rhamnosus* B9H2 and *L. paracasei* B10L2 showed growth inhibition of *P. verrucosum*, *F. verticilloides* and *F. graminearum*; while *L. rhamnosus* B5H2 also
reduced *A. niger* growth. This means that *P. verrucosum*, and *F. verticillioides* were inhibited by all three LAB strains showing inhibition halos higher than 0.5 cm. Also *F. verticillioides* growth was inhibited by all three strains, with higher activity for *L. rhamnosus* B5H2 and *L. paracasei* B10L2 (halos > 0.5 cm); while *A. niger* growth was strongly inhibited (halo > 1 cm) by *L. rhamnosus* B5H2. On the other hand, two fungal strains (*P. commune* and *A. flavus*) were not inhibited by any of the studied LAB (Table 6).

Table 6. Inhibition halo (cm) of three selected LABs against mycotoxigenic fungi.
- (no inhibition halo), + (<0.5 cm halo), ++ (0.5-1 cm halo), +++ (>1 cm halo).

<table>
<thead>
<tr>
<th>Mycotoxigenic fungi</th>
<th>L. rhamnosus B9H2</th>
<th>L. rhamnosus B5H2</th>
<th>L. paracasei B10L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. verrucosum</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>P. commune</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F. verticillioides</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>F. graminearum</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>A. flavus</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A. niger</td>
<td>-</td>
<td>+++</td>
<td>-</td>
</tr>
</tbody>
</table>

Such antifungal activity has been extensively described for many LAB strains and it is explained due to several metabolites produced by LAB, especially organic acids and phenolic acids, among others. Furthermore, the overlay technique has been widely used in numerous studies to qualitatively evaluate the direct antifungal capacity of *Lacticaseibacillus* spp. strains, reporting antifungal activity against *Aspergillus* and *Penicillium* genera as in the present work, showing greater resistance of *Aspergillus* species against LAB strains, in accordance with the observed results for *A. flavus* and *A. niger*.

3.9. Metabolites analysis by HPLC-Q-TOF-MS/MS.

To study LAB metabolites, samples obtained from MRS broth fermentation were diluted and purified by QuEChERS method for HPLC-Q-TOF-MS/MS analysis. A total of 25 metabolites were found in fermented samples. From them, 14 metabolites were not detected in control (non-fermented) samples confirming that their production is due to LAB metabolism. Specifically, 13 compounds were produced by *L. rhamnosus* B5H2
fermentation, 11 by *L. rhamnosus* B9H2, and 12 by *L. paracasei* B10L2. From these LAB metabolites 6 were commonly produced by all three strains (phenylacetic acid, 4-hydroxyphenyllactic acid, benzoic acid, 3-phenyllactic acid, methyl nicotinate and 2-ethyl-2-hydroxybutyric acid), as shown in **Figure 2**.

Several bioactive metabolites, mainly organic and phenolic acids, were found in fermented samples. Citric acid, an organic acid frequently used as food preservative due to its antimicrobial activity, was produced by *L. paracasei* B10L2 and *L. rhamnosus B9H2*. Five phenolic acids (phenylacetic acid, 4-hydroxyphenyllactic acid, benzoic acid, 3-phenyllactic acid and hydroxybenzoic acid) were found in LAB fermented samples. The highest abundance of benzoic acid, with described properties such as improving intestinal function and antimicrobial activity, was observed by *L. rhamnosus B9H2*, although it was also produced by all other strains. 3-phenyllactic acid and phenylacetic acid, both described with antifungal activity, were generated by all three strains. Although phenylacetic acid is a metabolite commonly produced by plants its production by microorganisms has been previously reported. Moreover, 10-hydroxy-cis-12-octadecenoic acid, with anti-inflammatory and antimicrobial effects, was found mainly produced by *L. paracasei B10L2* and *L. rhamnosus B9H2*. In addition, it has been reported that this metabolite produced by microorganisms could improve the deterioration of the intestinal barrier.

On the other hand, as shown in **Figure 2** a decrease in bile acid concentration compared to MRS control was observed for all strains, highlighting *L. rhamnosus B5H2*. This decrease is in agreement with previous results on in vitro digestion, and may indicate a possible use of bile acid as a metabolic substrate by LAB. Moreover, there was a correlation between the direct antifungal activity observed (overlay assay) and the produced metabolites identified, since several of them, such as 3-phenyllactic acid and phenylacetic acid, have been described with antifungal activity. Indeed, other metabolites with functional capacity in the intestinal function, such as benzoic acid and 10-hydroxy-cis-12-octadecenoic acid, have been detected pointing to the studied LAB strains as potential probiotics.

Figure 2 shows a heatmap of the identified metabolites produced by *L. rhamnosus B5H2*, *L. rhamnosus B9H2*, *L. paracasei B10L2* and in non-fermented MRS broth (control).
3.10. Analysis of volatile organic compounds (VOCs) by GC-MS/MS

To continue evaluating LAB metabolites, the VOCs produced after food matrices (milk, whey and soy drink) fermentation were determined by GC-MS/MS. VOCs produced in fermented matrices were compared to their respective non-fermented foods, as controls. In general, several acids, alcohols, aldehydes and ketones were found in fermented samples, identifying the metabolites specifically produced by LAB fermentation, as they were not found in control non-fermented samples.

After milk fermentation a total of 28 VOCs were found in LAB fermented samples, of which 19 were not detected (or detected at very low concentration) in control milk, therefore they were produced by LAB metabolism with milk as substrate. The LAB strain that produced more VOCs was *L. rhamnosus* B5H2 (16 metabolites), followed by *L. paracasei* B10L2 (13 metabolites) and *L. rhamnosus* B9H2 (12 metabolites). From those
compounds 5 were commonly found in all LAB fermented milk samples; namely 2-heptanone, 2-Tridecanone, 2-Undecanone, Octanoic acid, and Phenol, 4-(1,1-dimethylpropyl); so they were common metabolism products of all three studied LAB. Interestingly, other metabolites present in non-fermented milk were not detected in fermented samples (i.e. Tetradecanoic acid, Butanoic acid 3-methyl, n-Decanoic acid, and Ethanone 1-(2,3-dihydro-1H-inden-5-yl)) therefore they were possibly metabolized to other compounds during LAB fermentation. Figure 3a shows a heatmap of the identified VOCs in fermented milk samples by L. rhamnosus B5H2, L. rhamnosus B9H2 and L. paracasei B10L2, as well as in non-fermented milk (control).

LAB fermentation of whey samples produced a total of 24 different VOCs, 14 of which were confirmed as produced by LAB metabolism. Each strain was able to produce 7 (L. rhamnosus B9H2), 8 (L. rhamnosus B5H2) and 11 (L. paracasei B10L2) metabolites, highlighting 2-Tridecanone, acetoin, and γ-Dodecalactone, produced by all three strains. As found in milk samples, some compounds present in non-fermented whey were not detected after LAB fermentation, such as Dodecanoic acid, Benzeneacetaldehyde, 1-Decanol, 2-Nonanone, Butanoic acid 2-methyl, 2(3H)-Furanone, 5-heptyldihydro; suggesting that these compounds may serve as substrate for LAB metabolism. Figure 3b shows a heatmap of the identified VOCs in fermented whey samples by all three studied LAB, as well as in non-fermented whey (control).

VOCs produced after LAB fermentation in soy beverage were also evaluated as example of vegetal origin food and non-dairy product. In total, 29 different VOCs were detected, with 22 identified as LAB metabolism products since they were not originated in control soy beverage. As for milk and whey samples, L. rhamnosus B5H2 and L. paracasei B10L2 were the strains that produced the highest number of metabolites (17 and 14 VOCs, respectively), followed by L. rhamnosus B9H2 that produced 12 metabolites. The VOCs simultaneously produced by all three strains included Octanoic acid, 2-heptanone, Ethanone, 1,1’-(1,4-phenylene)-bis, and 2-Tridecanone. Compounds such as 1-Hexanol, 2-ethyl, and 2-Octenol were exclusively produced in non-fermented soy samples. Figure 3c shows a heatmap of the identified VOCs in fermented soy beverage samples by all three studied LAB, as well as in non-fermented soy drink (control).
Figure 3a. Heatmap of VOCs identified in fermented milk by *L. rhamnosus* B5H2, *L. rhamnosus* B9H2 and *L. paracasei* B10L2, as well as in non-fermented milk (control).
Figure 3b. Heatmap of VOCs identified in fermented milk whey by \textit{L. rhamnosus} B5H2, \textit{L. rhamnosus} B9H2 and \textit{L. paracasei} B10L2, as well as in non-fermented whey (control).
Figure 3c. Heatmap of VOCs identified in fermented soy beverage by *L. rhamnosus* B5H2, *L. rhamnosus* B9H2 and *L. paracasei* B10L2, as well as in non-fermented soy (control).

Regarding the VOCs profile observed in dairy samples (milk and whey), similarities and disparities were observed with previous studies. As in the present work, Zhang et al. evaluated the metabolites produced in dairy samples fermented by *Lacticaseibacillus* spp. species, reporting an increase in benzaldehyde and organic acids (i.e. hexanoic acid, octanoic acid...) production in fermented samples compared to non-fermented control. However, other metabolites such as nonanal, 2-tridecanone or 2-undecanone that showed an increased in fermented samples of the present study, were reported to decrease after fermentation. These differences may be explained by the specificity of VOCs production by each single strain, as well as by the type of matrix used, despite being all dairy products differences may be found, for example the production of hexanoic acid by *L. rhamnosus B5H2* differs between milk and whey in the present work, as seen in Figures 3a and 3b.
Several identified metabolites have been reported as bioactive compounds; 2-heptanone (produced by all strains in milk and soy samples, as well as by \textit{L. paracasei} B10L2 and \textit{L. rhamnosus} B5H2 in whey), was attributed with antifungal character against several species of \textit{Fusarium} genus after being produced by \textit{Bacillus} strains40; 1-octen-3-ol (produced by \textit{L. rhamnosus} B5H2 and \textit{L. rhamnosus} B9H2 in soy beverage) showed antifungal activity against \textit{Fusarium spp.} fungi as well as antimicrobial activity against foodborne pathogenic bacteria such as \textit{Staphylococcus aureus} or \textit{Escherichia coli}41; and 2-tridecanone, produced by all strains in all samples, was described as biostimulant in plants42.

Previous studies have reported a relationship between production of LAB metabolites, mainly organic acids and VOCs, and the strain antifungal activity. The interaction between fungi and LAB may produce an increase in organic acids and other compounds that, associated with VOCs, can increase the antifungal capacity43. In addition to the generated bioactivity, organic acids, alcohols, ketones, and esters are some of the flavoring compounds made by LAB with multiple metabolic pathways involved. The citric acid pathway (Krebs cycle) is one of the metabolic pathways that synthesize intermediate compounds such as citric acid and succinic acid, which contribute to flavor formation. In addition, sugar metabolism leads to the production of sugar alcohol, which contributes to the food sweet taste11.

As previously reported, production of LAB metabolites is closely dependent to the strain as well as the fermented matrix. In the present work, \textit{L. rhamnosus} B5H2 was the strain that produce the highest number of VOCs during fermentation, especially in milk and soy matrices, were 15 and 14 VOCs were identified, respectively; front of 8 VOCs identified after whey fermentation. Similar trend was found for \textit{L. paracasei} B10L2 with 12 VOCs produced in milk and soy beverage, while 8 VOCs produced in whey; as well as for \textit{L. rhamnosus} B9H2 that produced 9 VOCs in milk and in soy; but 7 VOCs in whey. This milk matrix preference could be explained since dairy products are considered primary dietary sources for LABs as probiotics being highly suitable substrate for LAB growth and fermentation, where they can be naturally found or added afterwards44. Interestingly, despite their similarities, milk matrix showed to be more appropriate for VOCs formation than whey, although many studies have successfully reported whey fermentations by LAB. Moreover, soy beverage showed high potential as fermentation substrate for VOCs production.
In summary, the strains potential for VOCs production was \textit{L. rhamnosus} B5H2 > \textit{L. paracasei} B10L2 > \textit{L. rhamnosus} B9H2 in all three studied matrices, while the more suitable matrices for all studied strains were milk > soy beverage > whey.

3.11. Proteolysis analysis by SDS-PAGE electrophoresis and HPLC-DAD

To evaluate the hydrolysis degree of food proteins after LAB fermentation SDS-PAGE electrophoresis and HPLC-DAD analysis was performed. Firstly, SDS-PAGE showed that all three strains had proteolytic activity over the main proteins of the tested food matrices, except for whey (Figure 4). The main protein groups in the analyzed food samples were identified based on their molecular weight. As shown in Figure 4, ‘A’ band corresponds to the beta-conglycines region, and ‘B’ to glycines region in soy beverage45; while in dairy matrices (milk and whey) ‘C’ band was identified as the albumin region, ‘D’ as the casein region, ‘E’ as beta-lactoglobulin region, and ‘F’ as alpha-lactoglobulin region46.

In soy beverage, similar proteolysis was observed between \textit{L. rhamnosus} B9H2 and \textit{L. paracasei} B10L2 strains, hydrolyzing glycines more markedly, while \textit{L. rhamnosus} B5H2 strain produced higher proteolysis, hydrolyzing more noticeably the main proteins (‘A’ and ‘B’ bands). For dairy products (milk and whey), high hydrolysis of caseins (‘D’) was observed for all strains, especially in milk, also showing high proteolysis of albumins (‘C’) and moderate proteolysis of lactoglobulins (‘E’ and ‘F’), with \textit{L. rhamnosus} B5H2 as the most proteolytic strain. However, no apparent hydrolysis of albumins and lactoglobulins was evidenced in whey by any of the studied strains (Figure 4). In overview, hydrolysis of the main milk proteins (caseins) and soy proteins (glycines and beta-conglycines) was observed, however, whey proteins (alpha-lactoglobulins and beta-lactoglobulins) did not reveal apparent protein hydrolysis (Figure 4).
Figure 4. SDS-PAGE gels of food matrices fermented by LAB strains, as well as non-fermented matrices (control). From left to right, soy drink, cow milk and whey gels. M: protein marker, C: control, 1: *L. rhamnosus* B5H2, 2: *L. rhamnosus* B9H2, 3: *L. paracasei* B10L2. Marked bands correspond to: A’ beta-conglycines; ‘B’ glycinines; ‘C’ albumin; ‘D’ casein; ‘E’ beta-lactoglobulin; ‘F’ alpha-lactoglobulin.

Other studies reported proteolytic activity of several LAB after 6 and 24 h incubation in whey by SDS-PAGE, where the majority digested protein fractions of 69 and 50 kDa the most, however, some strains poorly hydrolyzed this fraction and preferentially hydrolyzed the 25 kDa or 80 kDa frations, confirming different casein and whey protein degradation degrees for different strains or species; variability of protein degradation previously observed in milk proteins. In the present work, since electrophoresis does not allow to quantify protein hydrolysis degree, a peptide screening through the analysis of the hydrolyzed proteins by HPLC-DAD was performed to confirm the observed protein hydrolysis in milk and soy matrices as well as to verify whether there was hydrolysis of proteins other than milk caseins (lactoglobulins), soy glycines and soy beta-conglycines.

Figures 5a and 5b shows the HPLC-DAD chromatograms milk and whey, respectively, were the peaks corresponding to alpha-lactoglobulin (red frame) and beta-lactoglobulin (green frame) were identified by their retention time after injecting the corresponding protein standards (Sigma-Aldrich, Germany). As it is shown in **Figure 5a**, alpha-lactoglobulin (red frame) control peak was clearly reduced in fermented samples, especially with *L. rhamnosus* B5H2 and *L. rhamnosus* B9H2; while beta-lactoglobulin (green frame) protein peak did not show relevant change. Protein concentration was calculated by area interpolation in a standard curve confirming a reduction of alpha-lactoglobulin from 205.15 µg/mL in the control to 116.80 µg/mL (*L. paracasei* B10L2), 55.47 µg/mL (*L. rhamnosus* B9H2), and 37.67 µg/mL (*L. rhamnosus* B5H2) in fermented samples, which corresponded to a protein reduction from 100% (control) up to 57, 27 and 18%, respectively (**Table 7**).

Similar protein hydrolysis pattern was observed in whey samples, although less markedly and not evidenced after SDS-PAGE electrophoresis (**Figure 4**). HPLC-DAD analysis showed a higher alpha-lactoglobulin peak in control sample compared to LAB fermented samples confirming bacterial protein hydrolysis at some extent for all three studied LAB.
in milk whey (Figure 5b). Indeed, a reduction from 929.35 µg/mL in the control, up to 762.95 µg/mL (L. rhamnosus B9H2), 562.22 µg/mL (L. paracasei B10L2), and 424.05 µg/mL (L. rhamnosus B5H2) was observed in LAB fermented whey samples; which represent reductions from 100% (control) up to 82% (L. rhamnosus B9H2), 61% (L. paracasei B10L2), and 46% (L. rhamnosus B5H2), as shown in Table 7. On the other side, beta-lactoglobulin did not show apparent reduction with any LAB strain, neither in milk nor whey samples.

Figure 5a. HPLC-DAD chromatograms of milk samples; control (non-fermented) and fermented by L. rhamnosus B5H2, L. rhamnosus B9H2 and L. paracasei B10L2. Alpha-lactoglobulin (red frame) and beta-lactoglobulin (green frame) are highlighted.
Figure 5b. HPLC-DAD chromatograms of whey samples; control (non-fermented) and fermented by *L. rhamnosus* B5H2, *L. rhamnosus* B9H2 and *L. paracasei* B10L2. Alpha-lactoglobulin (red frame) and beta-lactoglobulin (green frame) are highlighted.

Table 7. Concentration (μg/mL) and variation with respect to control (%) of alpha-lactoglobulin and beta-lactoglobulin in milk and whey samples analyzed by HPLC-DAD.

<table>
<thead>
<tr>
<th>Samples</th>
<th>alpha-lactoglobulin</th>
<th>beta-lactoglobulin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration (μg/mL)</td>
<td>Variation (%)</td>
</tr>
<tr>
<td>Milk Control</td>
<td>205.15</td>
<td>100</td>
</tr>
<tr>
<td>L. rhamnosus B5H2</td>
<td>37.67</td>
<td>18</td>
</tr>
<tr>
<td>Strain</td>
<td>Area (mm²)</td>
<td>Peak Position</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>L. rhamnosus B9H2</td>
<td>55.47</td>
<td>27</td>
</tr>
<tr>
<td>L. paracasei B10L2</td>
<td>116.80</td>
<td>57</td>
</tr>
</tbody>
</table>

Whey

<table>
<thead>
<tr>
<th></th>
<th>Area (mm²)</th>
<th>Relative Area (%)</th>
<th>Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>929.35</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>L. rhamnosus B5H2</td>
<td>424.05</td>
<td>46</td>
<td>101</td>
</tr>
<tr>
<td>L. rhamnosus B9H2</td>
<td>762.95</td>
<td>82</td>
<td>104</td>
</tr>
<tr>
<td>L. paracasei B10L2</td>
<td>562.22</td>
<td>61</td>
<td>105</td>
</tr>
</tbody>
</table>

With regard to soy beverage samples, four major peaks were observed in control samples with retention times: 7.1 min (peak 1; yellow frame); 12.3 min (peak 2; orange frame); 14.9 min (peak 3; purple frame); and 16.2 min (peak 4; blue frame); that were notably reduced in all LAB fermented soy samples, especially in the case of peaks 1, 3 and 4 (Figure 5c); reaching reductions from 100% in the control up to 14.81% (peak 1, by *L. rhamnosus* B5H2), 56.58% (peak 2, by *L. rhamnosus* B9H2), 37.71% (peak 3, by *L. rhamnosus* B9H2), and 19.53% (peak 4, by *L. paracasei* B10L2).
Figure 5c. HPLC-DAD chromatograms of soy samples; control (non-fermented) and fermented by *L. rhamnosus* B5H2, *L. rhamnosus* B9H2 and *L. paracasei* B10L2. Major protein peaks are highlighted.

Compared to the highly studied LAB proteolytic systems in dairy milk, less research has been focused on proteins from plant-based foods, where available research has been mainly conducted on soy as one of the most used plant-based dairy alternatives until recently\(^48\). The benefits of peptides derived from soy beverage LAB fermentation have been previously described\(^49\), and include increased antioxidant activity, increased bioavailability of amino acids, and increased inhibition of angiotensin-converting
enzyme. However, the study of fermented non-dairy beverages is novel, giving rise to use LAB strains to ferment plant-based products with beneficial properties for health, since the study of strains with proteolytic capacity on these matrices could allow the creation of new probiotic food supplements. Thus, from previous studies it is known that LAB proteolytic system can degrade the main soy proteins, especially beta-conglycins, and the proteolysis degree is related to the viability when fermenting the matrix48, which agrees with the results shown in Figure 5c, where intense hydrolysis was observed due to fermentation by all strains, especially of the protein framed in yellow.

The proteolytic activity of \textit{Lactcaseibacillus} \textit{spp.} is commonly used for dairy production to manufacture fermented dairy products such as cheese, yogurt, kefir, among others. The intricate proteolysis mechanism enables these LAB to effectively break down casein into smaller peptides and free amino acids, making them a widely employed starter culture that enhances the flavor and texture of numerous dairy products50. Moreover, many studies indicated that milk proteolysis by \textit{Lactobacillus} \textit{spp.} produce bioactive peptides, such as angiotensin-converting enzyme inhibitory peptides that can prevent cardiovascular disease related to hypertension50. Other studies demonstrated the ability of LAB strains (specifically \textit{L. plantarum}) to produce bioactive peptides in soy beverage51. Moreover, the revalorization of industrial by-products, such as whey, and the production of new fermented foods with novel matrices, like soy, with a positive impact on consumer health is increasing attention nowadays15,51. However, due to the diversity of LAB strains and the complexity of the fermentation substrates50, further studies should evaluate the bioactive peptides originated at each specific combination of LAB strain and food substrate.

4. CONCLUSIONS
All the 25 isolated LAB showed resistance to pH 2 and bile salts, with 18 strains showing proteolytic activity. The seven most remarkable strains were identified and showed absence of antibiotics resistance, as well as auto-aggregation (up to 23%) and co-aggregation (up to 20%) capacity. Their resistance during \textit{in vitro} simulated gastrointestinal digestion was confirmed, highlighting \textit{L. rhamnosus B5H2}, \textit{L. rhamnosus B9H2} and \textit{L. paracasei B10L2}, which reached bacterial viable count higher than 9 Log\textsubscript{10} CFU/mL after the colonic phase. All three LAB showed antifungal activity against \textit{P.
verrucosum, *F. verticillioides* and *F. graminearum*, with *L. rhamnosus* B5H2 as the most active; and produce bioactive metabolites after MRS broth fermentation including the antifungal compounds phenylacetic acid and 3-phenyllactic acid, as well as metabolites with antimicrobial and anti-inflammatory activity (10-hydroxy-cis-12-octadecenoic acid and benzoic acid). Moreover, all three strains produced VOCs in fermented milk, soy beverage and milk whey; highlighting *L. rhamnosus* B5H2 in all food matrices. The hydrolysis of the main milk (caseins) and soy proteins (glycines and beta-conglycines) by the studied LAB was evidenced, with alpha-lactoglobulin reductions in milk (82%) and whey (54%), highlighting *L. rhamnosus* B5H2 proteolytic activity. In overall, the three selected strains demonstrated probiotic capacity with *L. rhamnosus* B5H2 as remarkable potential for further investigation.

AUTHOR CONTRIBUTIONS

Abel Navarré: formal analysis; data curation; writing – original draft. Tiago Nazareth: formal analysis; data curation; writing – original draft. Carlos Luz: writing – review and editing. Giuseppe Meca: methodology; supervision. Laura Escrivá: methodology; supervision; writing – review and editing.

ACKNOWLEDGEMENTS

The study was supported by the Ministry of Science and Innovation; projects PID2022-140722OB-I00/AEI/10.13039/501100011033/Unión Europea NextGenerationEU/PRTR and PCI2022-132937.

CONFLICT OF INTEREST STATEMENT

There are no conflicts to declare.

REFERENCES

3 A. F. El-Sheikha, Why Fermented Foods are the Promising Food Trends in the Future? *Current Research in Nutrition and Food Science*, 2022, 10(3). http://dx.doi.org/10.12944/CRNFSJ.10.3.1

19 C. Raveschot, B. Cudennec, B. Deracinois, M. Frémont, M. Vaeremans, J. Dugersuren, S. Demberel, D. Drider, P. Dhuistle, F. Coutte & C. Flahaut, Proteolytic activity of *Lactobacillus* strains isolated from Mongolian traditional

23 Y. Yang, Y. Liu, S. Zhou, L. Huang, Y. Chen, H. Huan, Bile salt hydrolase can improve Lactobacillus plantarum survival in gastrointestinal tract by enhancing their adhesion ability, FEMS Microbiology Letters, 2019, 366(8), fnz100. https://doi.org/10.1093/femsle/fnz100

38 H. Abouloifa, I. Hasnaoui, Y. Rokni, R. Bellaouchi, N. Ghabbour, S. Karboune, M. Brasca, A. Abousalham, B. Jaouadi, E. Saalaoui & A. Asehraou, Chapter Two—Antifungal activity of lactic acid bacteria and their application in food
biopreservation, En G. M. Gadd & S. Sariaslani (Eds.), *Advances in Applied Microbiology*, 2022, 120, 33-77. https://doi.org/10.1016/bs.aambs.2022.07.001

51 B. P. Singh & S. Vij, Growth and bioactive peptides production potential of *Lactobacillus plantarum* strain C2 in soy milk A LC-MS/MS based revelation for peptides biofunctionality, *LWT-Food Science and Technology*, 2017, 86, 293-301. https://doi.org/10.1016/j.lwt.2017.08.013