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Effects of germination time on the structure,
functionality, flavour attributes, and in vitro
digestibility of green Altamura lentils (Lens
culinaris Medik.) flour

Annalisa Romano, * Lucia De Luca and Raffaele Romano

There has been an increase in the use of adoptable bioprocessing methods for the development of high-

quality leguminous ingredients. The potential use of germinated green Altamura lentils as a food ingredi-

ent is closely related to the resulting properties. The objective of this study was to evaluate the impact of

three germination times − 0 (C), 24 (G) and 48 (H) hours − on the physicochemical, microstructural,

flavour, functional, and nutritional features of lentil flour samples (CF, GF and HF). Lentil flour samples

were obtained by grinding both whole green seeds (C) and germinated seeds (G and H), and then sifting

them to obtain a particle size < 300 μm. The germinated samples – GF (24 h) and HF (48 h) – exhibited

differences (P < 0.05) in the physicochemical and bioactive properties of CF (control). Similarly, compared

with those in the control sample, the total starch, amylose and total phenolic contents in the GF and HF

samples decreased, while the protein content increased (p < 0.05). A decrease in the presence of intact

starch granules was observed via SEM in the germinated samples. The germination time had a significant

(P < 0.05) effect on the colour indices, L*, a*, and b* of the samples. Flavour attributes were significantly

influenced by the germination time. Overall, a total of 14 (CF) and 17 (GF and HF) aromatic compounds

were identified. The technological characteristics of the CF, GF and HF dough samples were studied using

a Brabender farinograph. Germination time affects the flour properties, leading to a significant decrease in

farinographic parameters such as water absorption (WA), dough development time (DT), and dough stabi-

lity (DS) and an increase in the degree of dough weakening (DOS). Differential scanning calorimetry was

employed to examine the gelatinization transition of the samples. Germination strongly influenced all the

thermal properties of the samples. It also had a significant impact on the in vitro starch digestibility, starch

fraction and glycaemic index (eGI) of the samples. In particular, the eGI of germinated lentils was lower

than that of the CF. In conclusion, the germination time could be a key factor modulating some crucial

lentil flour properties.

Introduction

The value-added processing of lentils (Lens culinaris Medik.) is
of growing interest for the development of new food ingredi-
ents, owing to their nutritional composition and promising
technological properties.1

The green Altamura lentils produced in Altamura (Bari,
Apulia, Southern Italy) are a Protected Geographical Indication
(P.G.I.),2 and are quite rich in components essential for good
human health3 such as carbohydrates (50 g per 100 g), pro-
teins (21–26 g per 100 g), dietary fibres (8.4 g per 100 g), min-
erals, vitamins (mainly vitamin B3/niacin) and phenolic com-

pounds.4 In general, green lentils are very popular in the
United States and Europe.5

From lentil seeds, it is possible to produce almost 90%
flour yield, a value similar to that of wheat flour yield.
Lentil flour has been gradually used in bakery (bread,
cake, and crackers), extruded (pasta and snacks) and other
products (dressings, soups, and dairy and meat products)
in recent years. Its use in food formulations is gaining
attention from food industries and popularity among con-
sumers due to its excellent and balanced nutritional com-
position and the absence of gluten.1,6,7 In particular, food
industries are very much interested in the formulation of
novel lentil-based ingredients to satisfy the increasing
demands of vegetarians and vegans and, more generally,
for consumers who are aware of the importance of a
healthy diet.
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The success of using lentil flour as a food ingredient is
closely related to its nutritional, physicochemical, functional
and flavour properties. For example, the addition of lentil flour
can introduce technological problems, off flavours and novel
allergens.1 For these reasons, lentil flour is usually subjected
to different pre-processing and processing methods (e.g.,
cooking, fermentation, soaking, germination, or mechanical
methods such as dehulling and milling), ranging from more to
less intensive, to obtain the desired functionality and
characteristics.8–12

Germination is one of the most common, green and
effective processes for efficiently modifying legumes in terms
of nutritional and functional properties, processing time, and/
or economy13–15 and it is also a great source of nutrients avail-
able in the food industry. Therefore, in recent years, the prefer-
ence for this process has been growing. Germination leads to
significant changes in the nutritional and physiological
characteristics of legumes by activating endogenous enzymes,
removing large amounts of molecular compounds, such as
proteins and starch, and consequently improving plant
bioavailability.15,16 It also plays an important role in reducing
non-nutritive compounds in legumes and increasing the levels
of available carbohydrates, dietary fibre, and other
components.17,18 Several studies carried out on legumes have
shown an increase in antioxidant capacity in relation to their
polyphenolic composition, for instance the germination of
lupines, peas and edible seeds.19,20

In addition, germination has been linked to the reduction
of the formation of off-flavours in legumes.21–24 The study of
the change in the aromatic profile of lentils during germina-
tion is crucial for the further development of lentil flour as a
functional food ingredient, in fact, an acceptable flavour is a
necessary feature of any food.23 Like other legumes, lentils
may have undesirable flavours (e.g., beany and bitter flavours)
due to the presence of some of their volatile constituents.21,22

The beany flavours in raw legume flour samples limit the use
of legumes as functional food ingredients.25,26 These flavours
are mainly derived from the degradation of amino acids and
hydrolytic and oxidative degradation of lipids.27,28 Several
studies have reported the positive impact of germination on
the distinct beany flavour of some pulse flours (lupin and
soybean) and baked food products.29 Therefore, germination
could be a green engineering method for changing the compo-
sition of lentils and thus modifying/improving the quality of
the resulting flour. Details on this approach, however, are
scarce. It is thus interesting to understand the impact of ger-
mination time on the composition of lentil flour samples to
provide additional knowledge on the functionality of these
legumes. Such knowledge will contribute to increasing con-
sumption worldwide, as consumers currently seek more
natural and healthy products as they are particularly con-
cerned about the effect that foods can have on their health.

The objective of this work was to analyse the impact of ger-
mination time on the microstructural, chemical, nutritional,
aromatic, and technological properties of whole lentil flour
obtained from green Altamura lentils to expand its technologi-

cal potential for the preparation of high-quality foods (e.g.,
bakery and gluten-free bakery products).

Materials and methods
Materials

The green lentil seeds (Lens culinaris Medik.) (C) used for this
study were obtained directly from producers (Terre di
Altamura, Bari, Apulia, Italy) in the beginning of the 2021 crop
year.

The digestive enzymes: thermostable α-amylase and amylo-
glucosidase were purchased from Megazyme (Megazyme
International, Ireland), and pepsin from porcine gastric
mucosa, pancreatin from porcine pancreas and the bile extract
were all obtained from Sigma Aldrich (St Louis, MO, USA). The
chemicals used in this study were of analytical grade.

Sample preparation

The lentil seeds were washed with tap water and sterilized in a
0.07% (w/v) sodium hypochlorite solution with a 1 : 3 (w/v)
ratio of seeds to distilled water for 30 min. Then, the seeds
were washed several times. Afterwards, they were soaked in a
1 : 3 (w/v) ratio of seeds to distilled water overnight in a dark
chamber under ambient laboratory conditions (22–24 °C).
Finally, the water was drained and the seed samples were
ready to germinate under wet cloth under the dark conditions
for one (G) or two (H) days. The layer of seeds was sprayed with
distilled water at a water-to-seed ratio (w/w) of 1 : 8 every
24 hours.30,31

Lentil flour samples (CF, GF and HF) were obtained by
drying and grinding the undecorticated lentil seeds – C
(control, 0 h), G (24 h) and H (48 h), using a laboratory mill
(mod. 3100, Perten Instruments Ab, Finland) and then sifted
to obtain a particle size <300 μm (Giuliani sifter, Turin, Italy).
The flour samples were packed in airtight polypropylene con-
tainers at 4 ± 3 °C.

Flour microstructural analysis

The samples were dried at the critical point and coated with
gold particles. The microstructure of the samples was exam-
ined by scanning electron microscopy (SEM) (LEO EVO 40,
Zeiss, Germany) with a 20 kV acceleration voltage and a magni-
fication of ×2000.

Chemical characterization

The moisture content of each sample was determined.32 Three
samples, weighing approximately 3 g, were dried for 24 h at
105 °C. The samples were removed from the oven and immedi-
ately placed in a desiccator within 30 min prior to weighing
after cooling. The weight of dried samples was subtracted from
the respective initial weight. The results were calculated as the
percentage of water per sample weight (%).

The total protein content was determined by the Kjeldahl
method via the quantification of total nitrogen.33 The factor
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Nx6.25 was applied to convert total nitrogen into protein
content.34

The soluble nitrogen content (%) was determined by follow-
ing a previous method35 with modifications. Briefly, the
sample was weighed (0.4 g) and 30 mL of deionized water was
added. The pH was adjusted to 5 by the addition of HCl (0.1
M). The mixture was shaken for 1 h at room temperature to
monitor the pH. Subsequently, the mixture was centrifuged at
7000g for 30 min and then filtered using Whatman no. 1
paper. Finally, the soluble nitrogen was determined by follow-
ing the same procedure used for the determination of total
nitrogen.

Total starch (TS) (g per 100 g) was determined using an
enzymatic assay kit (Total Starch Assay Kit, Megazyme
International Ireland).36 The amylose content in flour samples
(CF, GF and HF) was measured using an enzymatic assay kit
(Amylose/Amylopectin Assay Kit, Megazyme Ltd, Bray, Ireland)
based on the specific precipitation of amylopectin by concana-
valin-A lectin. The amylose content (%) was directly calculated
by following the specific Megazyme equation based on the
measured absorbance values, which were read at 510 nm by
means of Jasco, UV-spectrophotometer, V-550 UV/VIS
Spectrometer-PerkinElmer, Lecco, Italy. The average values of
two measurements were calculated for each flour sample.

Polyphenol extraction was performed by following previous
methods.37 Briefly, lentil powder (1 g) was mixed with 20 mL
methanol : water (80 : 20, v/v). The mixture was left for 2 h at
room temperature. Then, the extracts were centrifuged at 6000
rpm for 10 min. The supernatant was filtered through a
0.45 µm membrane filter. To determine the total polyphenol
content (TPC) of the lentils, the Folin–Ciocalteu reagent was
used. To 400 µL extract, 1 mL Folin–Ciocalteu reagent was
added and the mixture was vortexed. Subsequently, 10 mL de-
ionized water and 3 mL 20% sodium carbonate (Na2CO3) were
added and incubated for 1 h in the dark. The total phenol
content was detected at 750 nm. A calibration curve was gener-
ated using gallic acid (0–500 mg mL−1) as the standard. The
results are expressed as mg gallic acid equivalent/100 g (mg
GAE/100 g).

Colour characteristics of flour samples

Colorimetric indices (L*, a*, b*, and ΔE) of flour samples were
measured with an electronic visual analyser (IRIS visual analy-
ser, Alpha MOS, Toulouse, France). The chromatic coordinates
(L, a, and b) are reported as the average of three measurements
for each sample.

From the parameters determined, the total colour differ-
ence (ΔE) was calculated using the following equation:

ΔE ¼ ½ðΔLÞ2þ ðΔaÞ2þ ðΔbÞ2�1=2

Aromatic profile of lentils

Volatile organic compounds (VOCs) were extracted from
samples (CF, GF and HF) by following a previous method28

with modifications. Briefly, 2 g of sample was weighed into a
20 mL vial and 5 mL saturated NaCl solution was added. The

vial was placed in a thermal bath at a temperature of 60 °C for
10 min. Subsequently, the fibre DVB/CAR/PDMS (50/30 μm
layer of divinylbenzene/carboxen/polydimethylsiloxane) was
inserted for 50 min in the vials.

Subsequently, the SPME fibre was introduced directly into
the GC injector, where the thermal desorption of the analytes
was performed at 250 °C for 3 min. A 6890 N GC system
equipped with a 5973 mass detector was used. VOCs were sep-
arated on a 30 m × 0.250 mm capillary column coated with a
0.25 μm polymer of 5% diphenyl 95% dimethylpolysiloxane.
Splitless injection was used for the samples.

The oven temperature was held at 40 °C for 5 min and
increased from 40 °C to 85 °C at 45 °C min−1, 85 to 200 °C at
9 °C min−1 and 200 to 250 to 45 °C min−1. The temperature was
maintained at 250 °C for 3 min. The injection source and ion
temperatures were 250 and 230 °C, respectively. Helium was used
as the carrier gas at a flow rate of 2 mL min−1. The ionizing elec-
tron energy was set to 70 eV and the scanned mass range was set
to 40–450 amu in full scan acquisition mode.

Compounds were identified by comparing the mass spectral
fragmentation patterns with the spectral data from the NIST
Atomic Spectra Database version 1.6 and the retention indices
with those reported in the literature. The relative content of VOCs
was calculated on the basis of peak area ratios.

Farinographic analysis of samples

The farinograph properties of the control (CF) and germinated
(GF and HF) samples were investigated using a Brabender fari-
nograph (Type AT, Brabender OHG, Duisburg, Germany), fitted
with a 50 g mixing bowl. Water absorption (WA, percentage of
water required to reach a standard dough consistency of 500 ±
20 arbitrary Brabender Units, BU), dough development time
(DDT), dough stability (DS) and degree of softening (DOS) were
determined and the results are expressed as the average value
of three replicates for each sample.38

The results are expressed as the means and standard devi-
ations of at least three independent experiments.

In vitro starch digestibility of flour samples

The rapid digestion of starch (RDS), slow digestion of starch
(SDS) and the expected glycaemic index (eGI) were determined by
different enzymatic methods on flour samples (CF, GF and HF).

Specifically, the RDS and SDS contents as well as the eGI
were determined using an enzymatic assay kit (Resistant
Starch Assay Kit, Megazyme Ltd, Bray, Ireland) with minor
modifications.39,40 The RDS was the percentage of total starch
hydrolysed within 30 min of incubation in a shaking water
bath (200 strokes per min, horizontal agitation) at 37 °C.40 SDS
was the percentage of total starch hydrolysed within 30 and
120 min of incubation under the same conditions. The in vitro
digestion kinetics was calculated in accordance with the con-
ventional procedure.41

Statistical analysis

All the experimental results are reported as means and stan-
dard deviations of at least three independent experiments. All
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the data obtained were statistically analysed by one-way ANOVA
using SPSS version 19.0 (SPSS Inc., Chicago, IL, USA).
Differences between samples were evaluated by Duncan’s test
at a significance level of P < 0.05.

Results and discussion
Microstructural properties of lentil flour

Scanning electron microscopy (SEM) was used to determine
the impact of germination time on the microstructure of the
lentil flour samples. The SEM images of the flour samples, CF
(0 h), GF (24 h) and HF (48 h), are shown in Fig. 1. SEM
revealed that the germinated flour samples (GF and HF) had
similar microstructures (i.e., starch granule and protein matrix
structure) to those of the control (CF), with still visible intact
starch granule structures although covered by protein clusters.
In particular, the starch granules in all flour samples had an
oval shape with heterogeneous sizes ranging from 10 to 30 μm
in length and from 10 to 20 μm in width and had a smooth
surface, holding bodies or fragments of the protein matrix
and/or fibre42 attached to their surface.9,43,44 The size of the
protein body granules, which vary from ovoid to spherical, is
generally smaller than that of lentil starch granules when
observed via SEM, as reported by other workers.13,45 The
obvious changes caused by germination included a decrease of
intact starch granules, detachment of the granules from the
protein and fibre networks, and the presence of free protein
wedges in the flour samples (Fig. 1). These results are very
important, because other properties and in vitro starch digesti-
bility are significantly influenced by the structure resulting
from germination.

Chemical composition of the lentil flour samples

Table 1 presents the moisture content, total protein and nitro-
gen content, soluble nitrogen content, total starch and
amylose content, and total phenolic content of the lentil flour
samples.

The moisture content in the control flour (CF) was 7.7%,
which is in good agreement with that reported earlier.37 The
impact of germination on the moisture content of the samples
was significant (P < 0.05) after two days, and moisture content
exhibited an upward trend with increasing germination time
(Table 1). In fact, in HF, the samples with the longest germina-
tion time had the highest moisture content (P < 0.05).

The total protein content of the control and germinated
lentil seeds ranged between 21.2% (control) and 26.9% (HF).
An increase of the protein percentage depends on a decrease
in the total dry weight rather than the absolute protein
content. An increase in the protein content is in fact possible

Fig. 1 Scanning electron micrographs of flour samples: CF (control,
0 h), GF (24 h), and HF (48 h).

Table 1 Chemical composition of lentil flour samples: CF (control), GF (24 h), and HF (48 h). Each value is expressed as mean ± s.d

Parameters CF (0 h) GF (24 h) HF (48 h)

Moisture content (%) 7.71 ± 0.51a 7.91 ± 0.57a 8.90 ± 0.31b
Proteins (%) 21.19 ± 0.51a 25.88 ± 0.98b 26.87 ± 0.01b
Soluble nitrogen (%) 2.65 ± 0.15b 3.41 ± 0.10c 1.94 ± 0.10a
Total Starch (TS) (%) 34.83 ± 0.82b 32.95 ± 0.19a 32.89 ± 0.53a
Amylose (%) 23.77 ± 0.23c 22.05 ± 0.54b 20.02 ± 0.22a
Total phenolic content (mgGAE per 100 g) 190.85 ± 0.75b 173.3 ± 0.04a,b 158.9 ± 0.22a

a–cDifferent letters in the same row indicate significant differences (P <0.05).
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if germination is performed with the supplementation of a
nitrogen source.46 In this case, only pure water was used for
germination. Several authors47–49 have shown an increase in
protein content during germination, probably due to the loss
of carbohydrates through respiration during germination.50

The soluble nitrogen content was the lowest in HF (1.9%),
while the highest value was observed in GF (3.4%). Therefore,
after 24 h of germination, an increase in these parameters was
observed compared to that in the control (P < 0.05).

The total starch (TS) and amylose contents decreased sig-
nificantly (P < 0.05) during germination. In particular, the TS
content varied between 35% (control) and 33% (germinated
lentils), while the amylose content ranged from 24% (CF) to
20% (HF).

These decreases are due to a marked increase in the total
spectrum of hydrolytic enzymes during lentil germination.
These hydrolytic enzymes are responsible for the conversion of
starch into oligosaccharides or monosaccharides, resulting in a
reduction in the total starch and amylose contents. Hydrolytic
enzymes, including α-amylase, glucosidase, and dextranase are
generated from the aleurone layer of pulse seeds and β-amylase
in the endosperm is activated during pulse seed germination.51,52

In general, lentils have a high total phenolic content,5 but this
content decreased (P < 0.05) during germination from 191 ±
0.75 mg GAE per 100 g for the control and to 159 ± 0.22 mg GAE
per 100 g for HF (Table 1). There are few studies on the phenolic
components of germinated lentils. It has been reported that the
decrease in the quantity of phenolic components is due to the
mobilization of stored phenolics by the activation of enzymes
such as polyphenol oxidase during the sprouting process.10

Differences in phenolic compound levels after germination
depend on the type of seed, the presence or the absence of light,
and the processing conditions such as germination time.53 A
similar trend has also been reported during the germination of
green mung plants.54

Physical and thermal properties

The physical properties, namely colour, and thermal pro-
perties of the samples were investigated. The colour para-
meters recorded for CF, GF and HF are shown in Table 2.

The colour analysis of flour samples revealed significant
differences (P < 0.05) between samples with regard to all
colour values. L* and b* values decreased significantly as ger-
mination progressed, while a* values increased (Table 3).

Compared to that of the control flour, the total colour differ-
ence (ΔE) decreased from 36.0 (CF) to 30.9 (GF) and −30.4
(HF) after germination. The changes in both the a* and b*
parameters are probably related to the increase in the dark
colour of the lentil seeds during germination and the change
in colour from green to brown yellow due to the growth of the
germ. In particular, the decreases in L* and b* and increase in
a* could be due to the migration and percolation of pigments,
such as uranidins and flavonoids, from the testa of the seeds
into the endosperm because of increased enzymatic hydrolysis
during germination.55

Volatile organic compounds

The study of the change in the aromatic profile of lentils
during germination is an interesting topic for practical
purposes.

To determine the volatile organic compound (VOC) profiles,
G and H were analysed. A total of 13 (C) and 16 (G and H) aro-
matic compounds were identified through SPME-GC/MS ana-
lysis (Table 3). In lentils, various concentrations of aldehydes,
alcohols, esters and ketones were found. Aldehydes ranged
from 53.78% in the control group to 64.33% in the G group,
alcohols ranged from 15.05% in the control group to 20.03%
in the HF group, esters ranged from 1.24% in the G group to
2.75% in the control group and ketones ranged from 2.73% in
the control group to 3.33% in the HF group. Furthermore,
other compounds belonging to the furanoid, alkane and aro-
matic hydrocarbon classes were found. The most common
compounds identified in lentils were aldehydes, alcohols, and
ketones as previously reported.22,28

Germination positively influenced the aldehyde concen-
tration, except for nonanal and benzaldehyde which were nega-
tively influenced. Among the aldehydes, hexanal was the most
common and ranged from 32.62% in the control group to
43.11% in the GF group, thus, germination influenced the
content of this compound at the highest concentration after
24 h of germination. Similar to like what has been previously
reported, hexanal is also present in beans, soybeans, and
peas56 and influences lentil flavour through the use of odorous
notes of green and glass.57 This compound is derived by the
oxidation of unsaturated fatty acids, particularly linoleic
acid.58 The oxidation reaction increases during pulse germina-
tion and lipoxygenase is a family of different enzymes involved
in lipid degradation.59,60 The lipoxygenase pathway plays an
important role in the formation of volatile organic compounds
from unsaturated fatty acids.61 Although lentils have a low fat
content, the oxidation of fatty acids is the dominant contribu-
tor to the formation of volatile organic compounds during the
pulse treatment.62

Heptanal was found only in GF (2.72%) and HF (4.16%),
indicating that it was formed during germination as has been
reported24 in the faba bean cultivar. Additionally, benzene
acetaldehyde was formed during germination and was present
in GF at a concentration of 2.40% and in HF at a concentration
of 3.43%. This compound was also found in fermented lentil
flour as previously reported.63 Furthermore, the benzaldehyde

Table 2 Colour values (L, a, b and ΔE) of flour samples, expressed as
means ± s.d

Colour values CF (0 h) GF (24 h) HF (48 h)

Lightness (L*) 79.29 ± 0.43b 79.74 ± 0.81b 77.95 ± 0.18a
Redness (a*) −2.44 ± 0.06a −1.82 ± 0.06b −1.12 ± 0.13c
Yellowness (b*) 29.33 ± 0.69c 23.24 ± 0.25b 20.91 ± 0.54a
ΔE 36.00 ± 0.49b 30.86 ± 0.72a 30.39 ± 0.53a

a–c Means within the same row with different letters differ
significantly at P < 0.05.
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concentration decreased during germination ranging from
7.35% in ungerminated lentils to 3.10% in GF. It can be
derived from the amino acid phenylalanine62 and was also
found in Pardina lentil flour63 and in germinated pulses influ-
encing the almond flavour.28

Finally, it is interesting to note the reduction in nonanal
content during germination (from 7.81% in CF treatment to
4.07% in HF and GF treatment) because this compound nor-
mally increases during germination and influences the aroma
of the plants.24

Regarding the alcohols, the germination increased the
alcohol content in lentils (Table 3). These compounds influ-
ence the green, mushroom and fruity aromas of plants.29,59,64

Free fatty acid breakdown and amino acid degradation are
involved in the formation of these compounds.62 Among the
alcohols, 1-hexanol, 1-octen-3-ol and benzyl alcohol were
found. The first compound ranged between 8.38% in CF treat-
ment to 9.49% in HF treatment and its concentration
increased with the germination process. It is derived from the
oxidation of linoleic acid,28 while 1-octen-3-ol was present only
in the germinated sample GF (2.88%) and HF (3.64%). Finally
benzyl alcohol ranged between 6.09% in CF and 6.90% in HF,
and could be derived from phenylalanine metabolism.62

Interestingly, 1-octen-3-ol was not present in the control group
so it was formed during the germination. This compound is
generated by the oxidation of unsaturated fatty acids through
the lipoxygenase (LOX) pathway and its activity increases with
germination in plant seeds.59

Among ketones, 3,5-octadien-2-one was found to be
increased during germination, in this way its presence in ger-
minated legumes was also reported.28 Ketones are formed not
only by oxidation of fatty acids, but also by amino acid degra-
dation and carotenoid breakdown.62

Furthermore, 2-pentylfuran was found to be a marker of
beany aroma, and its concentration was negatively influenced
by germination (Table 3).23 From a technological point of view,
a decrease in this compound for food applications is needed,
as it is among those that influence the unpleasant beany
flavour.46

Finally, other compounds such as decane, dodecane, m-di-
ter-butylbenzene, oxirane, and heptadecyl- and 3,3-dimethyl-
hexane, were found.

Farinographic properties

The use of lentil flour as a food ingredient is generally based
on its technological and nutritional properties. Considering
that lentil flour samples can be used in the preparation of
bakery products,1 it is fundamental to evaluate the effect of
germination time on dough mixing properties. For this
purpose, the processability of flour samples in the preparation
of bakery products was determined using a farinographic
instrument. It is very useful in the rheology characterization of
dough systems from grains, pseudocereals, and pulses.76 The
results for the flour water absorption (WA), dough develop-
ment time (DDT), dough stability (DS), and degree of dough
softening (DOS) are presented in Table 4.

Table 3 Volatile organic compounds (%) of lentil flour samples: CF (control), GF (24 h), and HF (48 h). The results are expressed as mean ± SD

Identified VOCs (%) CF (0 h) GF (24 h) HF (48 h) RI
Column
used for RI Odor descriptor

Alcohols ∑15.05 ± 0.45a ∑17.35 ± 0.74b ∑20.03 ± 0.39c
1-Hexanol 8.61 ± 0.73a 8.38 ± 0.86a 9.49 ± 0.56b 1364 159 Green, herbal29

1-Octen-3-ol nd 2.88 ± 0.78a 3.64 ± 0.73b 1433 259 Mushroom59

Benzyl alcohol 6.44 ± 0.26a 6.09 ± 0.68a 6.90 ± 0.08b 1027 365 Sweet, floral, fruity64

Aldehydes ∑53.78 ± 2.21a ∑64.33 ± 1.98c ∑61.11 ± 0.78b
Hexanal 32.62 ± 4.03b 43.11 ± 1.93c 36.59 ± 0.65a 1127 128 Green grass, fat57

2-Hexenal 6.05 ± 0.94a 8.93 ± 1.08b 8.22 ± 0.57b 1238 428 Mild marzipan, floral29

Heptanal nd 2.72 ± 0.15a 4.16 ± 0.10b 1186 528 Beany66

Benzaldehyde 7.35 ± 0.74c 3.10 ± 0.12a 4.64 ± 0.73b 1564 628 Almond-flavored66

Nonanal 7.81 ± 1.23b. 4.07 ± 0.41a 4.07 ± 0.39a 1412 428 Fat, citrus, green beany66

Benzeneacetaldehyde nd 2.40 ± 0.79a 3.43 ± 0.92b 1663 728 Harsh, green, honey, cocoa57

Esters ∑2.75 ± 0.71b ∑1.24 ± 0.33a ∑2.26 ± 0.32b
Octyl formate 2.75 ± 0,71b 1.24 ± 0.33a 2.26 ± 0.32b 1117 867 —
Furanoids ∑4.72 ± 0.23b ∑2.61 ± 0.52a ∑2.85 ± 0.92a
2-Pentylfuran 4.72 ± 0.23b 2.61 ± 0.52a 2.85 ± 0.92a 990 968 Fruity,66 green and bean28

Ketones ∑2.73 ± 0.52a ∑2.74 ± 0.84a ∑3.33 ± 0.38b
3,5-Octadien-2-one 2.73 ± 0.52a 2.74 ± 0.84a 3.33 ± 0.38b 1093 969 Creamy, fruity smell, spicy,

earthy, green pepper28,70

Others ∑20.92 ± 1.34b ∑11.73 ± 1.10a ∑10.43 ± 1.20a
Decane 8.59 ± 1.53c 5.91 ± 1.36a 6.76 ± 1.83b 159.6 871 —
Dodecane 3.13 ± 0.83b 1.65 ± 0.38a 1.35 ± 0.48a 1263 872 —
m-Di-tert-butylbenzene 3.73 ± 0.82b 1.06 ± 0.14a 1.05 ± 0.14a 987.1 873 —
Oxirane, heptadecyl- nd 3.11 ± 0.63b 1.27 ± 0.09a — — —
3,3-Dimethyl-hexane 5.47 ± 0.62 nd Nd 742.9 1074 Tea-type flavor75

a–c Different letters in the same row indicate significant differences (P < 0.05). nd: not detected. 1: ZB-Wax 60 m × 0.25 mm × 0.25 μm; 2: ZB-Wax
60 m × 0.32 mm × 0.25 μm; 3: DB-1 30 m × 0.53 mmI × 3.0 µm; 4: ZB-Wax 60 m × 0.32 mm × 0.50 μm; 5: DB-Wax 60 m × 0.25 mm × 0.25 μm; 6:
ZB-Wax column 60 m × 0.25 mm i.d., 0.25 μm; ZB-Wax; 7: h, Innowax FSC 60 m × 0.25 mm × 0.25 μm; 8: DB5 30 m × 0.25 mm × 0.25 µm; 9:
HP-5MS 30. m/0.25 mm/0.25 μm; 10: OV-101 50 m × 0.25 mm.
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The germination process caused significant changes in the
farinograph properties. In fact, the mixing properties of CF
(control), GF and HF significantly differed (P < 0.05) with
clearer differences between the control (CF) and the two germi-
nated samples (Table 4). In particular, the germination
process markedly diminished the water absorption (WA) of the
samples, with HF reaching a value of 46.8 g per 100 g. The
decrease in WA could be the result of the loss of starch during
germination, as well as protein structural changes.77 Similar
results were reported by other authors for the WA of germi-
nated samples such as yellow pea77 and highland barley.78

The DDT and DS of the samples exhibited the same trend
as that of WA. In particular, the DDT and DS of CF significantly
decreased from 1.9 min (CF) to 1.3–1.5 min (GF and HF,
respectively) and from 6.1 min (CF) to 1.4–1.5 min in GF and
HF, respectively. The decrease in DDT may be correlated with
the decrease in WA (Table 4) which indicates that dough
absorbs less water and, therefore, requires less mixing time.
The DS value is a measure of dough strength (the lower it is
the weaker the dough is). The reduction in the DS of the ger-
minated samples (GF and HF) in the present study may have
been caused by a reduction in starch content (Table 1) or the
presence of proteolytic enzymes.79

The DOS was significantly lower (P < 0.05) for the control
dough than for the GF and HF dough samples, which indi-
cates that the germination process may negatively affect the re-
sistance of the dough to mechanical mixing negatively. A
higher BU in germinated samples is related to weak dough
strength, whereas small values are associated with strong
dough strength.80 Thus, germination did not improve the fari-
nograph properties of the samples. However, the potential use
of germinated flour samples for bakery products is promising,
because even a 10% wheat flour substitution with lentil flour
can generally result in a significant improvement in the nutri-
tional profile of the final product.1,81 Currently, only low
amounts (usually less than 25%) of lentil flour samples are
adequately incorporated into wheat bread formulations
without negatively affecting the quality or technological
properties.4,81,82

Thermal properties of lentil flour samples

The thermal properties of starch systems such as lentil flour
samples include gelatinization. Differential scanning calorime-
try (DSC) was employed to examine the gelatinization tran-
sition temperature-onset temperature (To), peak temperature
(Tp), end temperature (Tend) and enthalpy (ΔH) of the CF

(control), GF (24 h), and HF (48 h) samples with the addition
of excess water (Table 5).

A single endothermic transition, corresponding mainly to
the starch gelatinization transition, was observed in the DSC
profiles of all the tested samples. The gelatinization transition
temperatures (To, Tp and Tend) and the enthalpy of gelatiniza-
tion (ΔH) were influenced by the germination time. The Tp
and Tend of the samples increased over the course of germina-
tion (p < 0.05) (Table 5). Among the samples, HFs after long-
term germination (48 h)-presented higher To (64. 1 °C), Tp (77.
4 °C) and Tend (82. 2 °C) values than did the control. The
increased gelatinization temperatures could be attributed to
the activation of protease and α-amylase, the presence of
damaged starch absorbing more water, the decrease in
amylose content (Table 1)83,84 and the increase in acid concen-
trations,11 as also observed by the reduced pH of the lentil
samples after germination.12

The ΔH of the CF samples decreased from 2.6 J g−1 to 2.2 J
g−1 (GF and HF) after germination, suggesting that a reduction
in the energy was required to convert the chemical compo-
sition of the samples from an ordered to disordered form. In
fact, ΔH can be used to predict the energy required to break
down the intermolecular hydrogen bonds of starch granules.85

During germination, the partial hydrolysis of starch by acti-
vated endogenous enzymes reduces the intermolecular hydro-
gen bonds of starch, allowing it to easily detach during
heating. Therefore, the highest ΔH value (2.6 J g−1) suggested
greater granule structure stability in the control flour samples
than in the germinated flour samples (P < 0.05). From a tech-
nological point of view, the thermal results obtained in the
present work are interesting, because the high gelatinization
enthalpy limits the use of leguminous coal.85

Table 5 Thermal properties of CF (control), GF (24 h), and HF (48 h)
flour samples. Each value is expressed as mean ± SD

Parameters CF (0 h) GF (24 h) HF (48 h)

To (°C) 62.88 ± 0.3a 63.34 ± 1.1a,b 64.05 ± 0.2b
Tp (°C) 76.41 ± 0.8a 77.16 ± 0.16a,b 77.41 ± 0.15b
Tend (°C) 80.46 ± 0.44a 81.86 ± 0.13b 82.17 ± 0.43b
ΔH (J g−1) 2.61 ± 0.10b 2.21 ± 0.11a 2.18 ± 0.13a

a–cDifferent letters in the same row indicate significant differences (P <
0.05).

Table 4 Farinographic parameters (WA-water absorption; DDT-dough development time; DS-dough stability; DOS-degree of softening) of the
dough samples made with CF (control), GF (24 h), and HF (48 h). Each value is expressed as mean ± SD (n = 3)

Dough samples WA (%) DDT (min) DS (min) DOS (BU)

CF (0 h) 57.53 ± 0.32c 1.87 ± 0.12b 6.12 ± 1.03b 56.67 ± 7.63a
GF (24 h) 49.87 ± 0.35b 1.30 ± 0.17a 1.36 ± 0.16a 74.33 ± 5.86b
HF (48 h) 46.80 ± 0.30a 1.50 ± 0.11a 1.47 ± 0.14a 86.33 ± 4.16b

a–c Different letters in the same column indicate significant differences (P < 0.05).
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In vitro starch digestibility

The effects of germination time on the in vitro starch digestion
rate were investigated by measuring the released glucose
content during starch digestion. According to the available lit-
erature, the hydrolysis kinetics curves of lentil samples are
rarely reported. Fig. 2 shows the hydrolysis curves of the lentil
flour samples that were compared with those of the reference
food (white bread).

As expected, all the uncooked lentil samples showed lower
starch hydrolysis than the bread that was used as a reference.
In particular, the hydrolysis kinetics of the lentil samples is
more evident in the enlarged image shown in Fig. 2. The rate
and degree of starch digestion were the highest in the flour
germinated for 2 days (HF) and 1 day (GF) in comparison to

those in the control (CF) within the first 30 min as supported
by other authors.86,87 A rapid increase in the percentage of
starch hydrolysed from the control was observed during
in vitro digestion (60–180 minutes). After 90 minutes of diges-
tion, the overall and endpoint in vitro digestibility values of the
germinated samples were lower than those obtained for the
control (p < 0.05). An increase in endogenous α-amylase
activity and a decrease in phytates which inhibit the amylase
activity during germination8,10,88,89 could be possible expla-
nations for the total starch and amylose losses (Table 1), the
initial high extent of starch hydrolysis in GF and HF samples
(Fig. 2) and the effects of germination on starch fractions (RDS
and SDS), resistant starch and the expected glycaemic index
(eGI) (Table 6). Specifically, the greater degree of hydrolysis in
the germinated samples (within the first 30 min) than in the
control could be attributed to their lower amylose content90

and low ΔH in the germinated samples (Table 5).
Starch and starchy food can be classified according to their

digestibility.38 In detail, the amounts of RDS, SDS, resistant
starch and eGI in the samples are reported in Table 6.

RDS is the starch fraction that is rapidly and totally digested
in the gastrointestinal tract (after 30 minutes of digestion) and
is associated with a rapid increase in postprandial plasma
glucose, while SDS is more slowly digested in the small intes-
tine.3 As reported in Table 6, the HF samples had the highest
RDS content followed by the GF and control samples. This
parameter was significantly lower (P < 0.05) for the control and
higher for the germinated samples, ranging from 2.7 ± 0.03 to
3.3 ± 0.01 g per 100 g. Unlike SDS, which is the starch fraction
that is slowly digested in the gastrointestinal tract, RDS signifi-
cantly decreased (p < 0.05) with the increasing of germination
time, ranging from 1.3 ± 0.1 for HF to 2.9 ± 0.4 g per 100 g for
the control. There was also a statistically significant decrease
(P < 0.05) in the amount of resistant starch in the germinated
samples (GF and HF), which may also be related to both the
use of starch as an energy source in the germination process
and the larger space within the matrix due to the partial
removal of phytic acid and tannins during germination, which
increased the susceptibility to the enzymatic attack and conse-
quently improved the digestibility of starch.9

The highest glycaemic index eGI (p < 0.05) was determined
for the CF samples (50.6). Although starch digestibility sub-

Fig. 2 Total starch hydrolysis rate of reference (▲bread) and lentil flour
samples: (◊) CF (control), (○) GF (24 h) and (□) HF (48 h).

Table 6 Effect of germination on the starch nutritional fraction (RDS,
rapidly digestible starch and SDS, slowly digestible starch) and expected
glycemic index (eGI) of flour samples: CF (control), GF (24 h), and HF
(48 h). Each value is expressed as mean ± SD

Nutritional parameters CF (0 h) GF (24 h) HF (48 h)

RDS (g per 100 g) 2.72 ± 0.03a 3.09 ± 0.05b 3.34 ± 0.01c
SDS (g per 100 g) 2.94 ± 0.40c 1.58 ± 0.27b 1.32 ± 0.01a
Resistant starch (%) 29.2 ± 0.27b 28.3 ± 0.08a 28.2 ± 0.01a
eGI 50.62 ± 0.35b 49.12 ± 0.01a 48.77 ± 0.07a

a–cDifferent letters in the same row indicate significant differences (P <
0.05).
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sequently increased during germination, the eGI significantly
decreased (Table 6), as reported10 for the raw and germinated
lentil plants. The eGI is affected by the amount of TS, the
amylose content (Table 1) and the amount of resistant starch
(Table 6). In fact, germination significantly changes the nutri-
tional quality of legumes, including the starch content and the
amount of free sugars (e.g., glucose and fructose). This differ-
ence is related to the germination process conditions such as
time and temperature, which change the content of the
induced compounds.10,91

Considering the in vitro digestibility results of the germi-
nated samples, GF and HF might be potential ingredients in
the formulation of products for diabetes treatment and weight
management and could lead to the formulation of novel foods
characterized by the slow release of glucose, that is the low gly-
caemic index and the prevention of fasting hypoglycaemia.

Conclusions

The effects of germination time on the properties of lentils
were investigated. The findings of this study indicated that ger-
mination can be a practical and effective treatment for improv-
ing the nutritional profiles of lentils, with the potential use of
germinated lentil flour as a novel ingredient suitable for
people with special nutritional needs (i.e., elderly and diabetic
patients). The total starch and amylose contents and the gly-
caemic index of the germinated samples were in fact lower (P <
0.05) than those of the control flour. The technological and
thermal properties of the flour samples were also modified by
germination time. Farinographic results revealed that the ger-
mination time had a negative impact on dough mixing pro-
perties, causing undesirable dough weakening. However, the
thermal results of the germinated samples were better than
those of the control, particularly concerning gelatinization
enthalpies. Moreover, the germination treatment affects the
aromatic profile of the samples, with a strategic decrease in
2-pentylfuran and nonanal in the germinated samples.

Overall, the results of the present study may help us to
better understand and use a sustainable, inexpensive and
plant-based protein ingredient such as lentil flour to develop
high-quality foods (e.g., bakery products).
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