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Biomarkers associated with dietary fibre intake, as complements to traditional dietary assessment tools,

may improve the understanding of its role in human health. Our aim was to discover metabolite bio-

markers related to dietary fibre intake and investigate their association with cardiometabolic risk factors.

We used data and samples from the Danish Diet Cancer and Health Next Generation (DCH-NG) MAX-

study, a one-year observational study with evaluations at baseline, six and 12 months (n = 624, 55%

female, mean age: 43 years, 1353 observations). Direct associations between fibre intake and plasma con-

centrations of 2,6-dihydroxybenzoic acid (2,6-DHBA) and indolepropionic acid were observed at the

three time-points. Both metabolites showed an intraclass-correlation coefficient (ICC) > 0.50 and were

associated with the self-reported intake of wholegrain cereals, and of fruits and vegetables, respectively.

Other metabolites associated with dietary fibre intake were linolenoyl carnitine, 2-aminophenol, 3,4-

DHBA, and proline betaine. Based on the metabolites associated with dietary fibre intake we calculated

predicted values of fibre intake using a multivariate, machine-learning algorithm. Metabolomics-based

predicted fibre, but not self-reported fibre values, showed negative associations with cardiometabolic risk

factors (i.e. high sensitivity C-reactive protein, systolic and diastolic blood pressure, all FDR-adjusted

p-values <0.05). Furthermore, different correlations with gut microbiota composition were observed. In

conclusion, 2,6-DHBA and indolepropionic acid in plasma may better link dietary fibre intake with its

metabolic effects than self-reported values. These metabolites may represent a novel class of biomarkers

reflecting both dietary exposure and host and/or gut microbiota characteristics providing a read-out that

is differentially related to cardiometabolic risk.

Introduction

Dietary fibre refers to plant-derived non-starch polysacchar-
ides, resistant oligosaccharides, lignin, and resistant starch

that are resistant to human digestive enzymes.1 National
dietary guidelines include an optimal dietary fibre intake and
recommendations for adults in Western countries are in the
order of 30–35 g day−1 for men and 25–32 g day−1 for women.2
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However, overall average intakes are below recommendations
in all countries.3 Epidemiological studies have shown that
dietary fibre intake is consistently associated with a reduced
risk of weight gain, as well as for the incidence of non-commu-
nicable diseases such as cardiovascular diseases, type 2 dia-
betes, and some types of cancer.4 Although the mechanisms
for the beneficial effect exerted by dietary fibre intake are not
fully understood, it could be partly explained by physiochem-
ical properties (such as viscosity and bulking) affecting meta-
bolic response to foods (such as glycemia, lipid profiles, etc.),
and its ability to shape gut microbial composition and/or its
metabolic activity.5–7 Ultimately, this may cause the modu-
lation of glycemia, blood lipids, and immune-metabolic path-
ways reducing chronic systemic inflammation,8–10 a central
hallmark in the development of non-communicable diseases.

In observational studies the accurate estimation of dietary
fibre intake from dietary questionnaires is difficult and prone to
systematic and random errors, principally due to the subjective
nature of the assessment. Additionally, same food components
are absorbed and metabolized differently in subjects with
different gut microbiota or genetic backgrounds, making it
difficult to accurately evaluate the correlations between the self-
reported dietary fibre intake and the risk of chronic diseases.11

Under such conditions, dietary biomarkers have emerged as a
complementary strategy which could complement traditional
dietary assessment and a framework for their anthology and vali-
dation have been developed.12 Moreover, metabolite biomarkers
may arise from the dietary fibre × microbiota × host interactions
which may reflect and/or mediate differential risk profiles of non-
communicable diseases.13,14 Such biomarkers may be evaluated
as novel biomarkers to guide future precision nutrition interven-
tions aiming to maximize their health effects, through the identi-
fication of participants with particular host or gut microbiota
metabolic characteristics that interact with dietary fibre
exposure.15

To our knowledge, biomarkers associated with total dietary
fibre are lacking. Nonetheless, some biomarkers of wholegrain
intake have been suggested and evaluated since cereals com-
prise the main source of dietary fibre in most populations
worldwide.3 Among them, alkylresorcinols, a group of phenolic
lipids present in the bran of wheat and rye, have been exten-
sively assessed and applied as specific biomarkers of whole-
grain wheat and rye intakes.16–18 Both plasma alkylresorcinol
concentrations as well as their metabolites in plasma and
urine may reflect medium to long-term wholegrain wheat and
rye intake in populations with a stable and frequent consump-
tion.19 Alkylresorcinol metabolites have longer half-lives than
native alkylresorcinols, but their performance as biomarkers
in free-living populations are similar.20,21 Other biomarkers
almost exclusively found in wheat and rye are benzoxazinoids
and their phenylacetamide metabolites detected in urine and
plasma after consumption of wholegrains.22 These compounds
are partly affected by food processing and gut microbial
metabolism, thus hindering a direct association with the
amount of wholegrain intake.23 Avenanthramides and avenaco-
sides have been suggested as specific biomarkers of oat intake,

but they appear to have short half-lives.24 However, 2-amino-
phenol sulfate, a gut microbial metabolite derived from ben-
zoxazinoids, has been more extensively described to be elev-
ated in both plasma and urine after high dietary fibre
intake.21,25 This biomarker has been scarcely tested over time
and in free-living individuals in which is necessary before
application in large epidemiologic studies.

Our main aim was to discover and validate metabolite bio-
markers associated with dietary fibre intake and evaluate their
performance or applicability to: (i) predict self-reported dietary
fibre intake, and (ii) be associated with cardiometabolic risk
factors in a validation sub cohort of the Danish Diet, Cancer
and Health - Next Generations (DCH-NG),26 the DCH-NG MAX
study.

Methods
Study design and subjects

The DCH-NG cohort was established in Denmark between
August 2015 and April 2019 and is an extension of the Diet,
Cancer and Health (DCH) cohort.27 The DCH-NG cohort
includes 39 554 participants with complete data collection and
involves biological children (Generation 1), their spouses
(Generation 1-Parent), and the grandchildren (Generation 2) of
the participants in DCH (Generation 0).28 This analysis is
based on a validation subsample called the DCH-NG MAX
study, which consists of 720 participants aged 18 or older
enrolled from August 2017 until January 2018. The main aims
of DCH-NG MAX study are to validate a semi-quantitative food
frequency questionnaire, analyze long-term reproducibility of
plasma and urine metabolites, and assess the stability of the
gut microbiota and its correlations with other measurements.
Both questionnaire data and biological samples were collected
at baseline, 6 and 12 months. All subjects completed two main
questionnaires regarding lifestyle and dietary habits and par-
ticipated in a health examination including the collection of
biological samples, anthropometrics, and blood pressure
measurements. Of the 720 participants enrolled in the
DCH-NG MAX study at baseline, 676 had complete dietary
data, and 624 had clinical measurements and biological
samples available for metabolomics analyses. In total, the
study comprised 1353 observations, out of which 380 were at
6 months, and 349 at 12 months (described with details in ESI
Fig. 1†). The number of participants with complete clinical,
dietary, and metabolomics data at baseline, 6 and 12 months
was 287. The DCH-NG research project was approved by the
Danish Data Protection Agency ( journal number 2013-41-2043/
2014-231-0094) and by the Committee on Health Research
Ethics for the Capital Region of Denmark ( journal number
H-15001257). All participants provided their written informed
consent before enrollment in the study.

Anthropometric and blood pressure measurements

Anthropometric measurements were carried out with subjects
wearing underwear and being barefoot. Height was measured
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to the nearest 0.1 cm using a wireless stadiometer and weight
was measured to the nearest 0.01 kg using a body composition
analyzer (SECA mBCA515, Germany). Waist circumference was
measured midway between the lower rib margin and iliac crest
and to the nearest 0.1 cm. Visceral adipose tissue volume was
measured with a DEXA-validated bioimpedance instrument
(SECA mBCA515, Germany). Height, weight, and the bioelectri-
cal impedance analysis were measured once, while the waist
circumference was measured twice as a standard. If the differ-
ence between the two measurements for waist circumference
was more than 1 cm, a third measurement was taken. Blood
pressure and pulse rate were measured on the left arm, three
times after at least 5 min of rest. The measurement with the
lower systolic blood pressure was considered as valid.

Dietary data

Participants in the DCH-NG MAX study completed a 24 h
dietary recall (24-HDR) at each time point (baseline, 6 and
12 months) using the web-based tool myfood24 (https://www.
myfood24.org/) developed by the Leeds University.29 Data from
myfood24 was linked primarily with the Danish National Food
Database, which currently contains approximately 1600
Danish food items, including a recipe maker.30 The partici-
pants reported all food consumed the day before the examin-
ation at the study center in grams by total portion size (as
specified/selected by each participant). The portion sizes were
based on reports from the Danish Food Institute.30 The intake
of macronutrients was expressed as percentage of calories
using the energy equivalents for carbohydrates, proteins, and
fats. Plant-based foods, as main sources of dietary fibre, were
classified into 6 groups: total fruits (citrus fruits, dried fruits,
preserved fruits, fruit juices, and other fruits), total vegetables
(fruiting vegetables, leafy vegetables, cruciferous, stalk veg-
etables and sprouts, potatoes, other root vegetables, salads
and prepared vegetable dishes, and vegetable juices), legumes,
wholegrain cereals (porridge and ready-to-eat wholegrain
cereals, wholegrain bread, wholegrain pasta, and wholegrain
rice), refined cereals (breads, rice, pasta, bulgur, tortillas,
ready-to-eat refined cereals, crackers, and cakes and biscuits),
and nuts and seeds.

Blood sampling and analysis of cardiometabolic risk factors

At baseline (n = 624), six months (n = 380), and twelve months
(n = 349), blood samples were drawn in tubes with lithium
heparin at examination, and they were processed within
2 hours after extraction. Briefly, they were centrifuged for
10 min, 1800 g at 21 °C and stored overnight at 4 °C. The fol-
lowing day, they were separated and divided into aliquots of
plasma and stored at −80 °C at the Danish National Biobank
(DNB). For metabolomics analysis, plasma samples were
shipped on dry ice to Chalmers University of Technology
where they were stored at −80 °C prior to analysis.

Hemoglobin A1c (HbA1c), serum lipids and high sensi-
tivity-C reactive protein (hsCRP) were measured in an auto-ana-
lyzer as previously described.31

Metabolomics analysis of plasma samples

Plasma metabolomics analysis was performed following the
semi-targeted procedure described by González-Domínguez
et al.32 In brief, plasma samples were prepared for UHPLC-MS/
MS analysis by a protein precipitation protocol with ACN con-
taining 1.5% v/v formic acid and 10 mM of ammonium formi-
ate. Sciex OS 2.1.6 software was used for data acquisition and
processing.

Metabolomics data preproccesing

Metabolomics data preprocessing was performed using the
POMA R/Bioconductor package (https://github.com/nutrimeta-
bolomics/POMA).33 Data pre-processing included the removal
of metabolites with more than 40% missing values, and those
with a coefficient of variation (CV) > 30% in an internal quality
control. The imputation of the remaining missing values was
conducted using the KNN algorithm, the correction of batch-
effects using the ComBat function (‘sva’ R package),34 and data
normalization using the auto-scaling. Afterwards, distances to
the group centroid were computed based on Euclidean distances
to remove outliers from the data matrix (±1.5 × IQR). The
working metabolomics dataset comprised 411 metabolites.

Fecal microbiota

Stool samples were collected by the participants using a collec-
tion kit, including an EasySampler Stool Collector (GP Medical
Devices, Denmark) and a sampling tube with a spoon-lid with
no preservatives. Stool samples were stored at −80 °C prior to
freeze-drying of the samples. Freeze-dried stool samples were
used for extraction of DNA and 16S rRNA gene amplicon
sequencing.

For DNA extraction, the QIAamp DNA Stool Mini kit from
Qiagen GmbH (Hilden, Germany) was used. Bead beating was
performed using 0.1 mm Silica/Zirconia beads from Bertin
Technologies in Montigny-le-Bretonneux, France, and utilized
a Precellys homogenizer from Bertin Technologies to conduct
two rounds of bead-beating for 45 seconds. The V3 and V4
regions of the 16S rRNA gene were amplified with PCR using
the 341F and 806R primers. An Illumina HiSeq 2500
Sequencer from Illumina in San Diego, CA, USA, was used for
sequencing, producing 250 bp paired-end reads.

The deML pipeline was used to demultiplex 25 359 895
amplicon sequences and removal of primers, ambiguous
sequences, and chimeric sequences using dada2 within
QIIME2. The obtained amplicon sequence variants (ASVs) were
assigned taxonomy using the Silva 165 rRNA Database at
≥97% identity. ASVs sharing taxonomic identity were merged,
and phylotypes represented by a single read were excluded.
Relative abundances of taxa were calculated as the proportion
of reads for the taxon in percent of all reads for the individual,
and the prevalence as the proportion (%) of individuals where
the taxon was identified. For analyses we selected the genera
with a relative abundance greater than 1% in the whole
sample and with an intraclass correlation coefficient (ICC) >
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0.50 among the three time-points of the study. The final
dataset comprised 150 gut bacteria genera.

Statistical analyses

Mean and standard deviation, or median (Q1–Q3) were used to
describe variables following a Gaussian or skewed distribution,
respectively. Number of participants (%) were used for categ-
orical variables. Dietary fibre intake was categorized by tertiles
at each evaluation and sociodemographic characteristics and
cardiometabolic risk factors were compared using linear
mixed models with random intercepts for the participant ID
and adjusted for age, sex, BMI, and time of the evaluation
(baseline, 6, or 12 months).

The associations between dietary fibre intake and metab-
olites were assessed by linear mixed models with random
intercepts for the participant ID and adjusted for age, sex,
BMI, and time of the evaluation. P-Values were adjusted for
multiple comparisons using the Benjamini-Hochberg false dis-
covery rate (FDR). An FDR-adjusted p-value <0.05 was con-
sidered significant. ICCs were estimated for dietary fibre
intake and for selected metabolites using random intercept
linear mixed models.35

Multivariate analyses were conducted using Mixed
Graphical Models (MGM) with the ‘mgm’ R-package. MGMs
are undirected probabilistic graphical models, where each
node corresponds to one variable, and the edges between two
nodes represent a conditional dependency between them given
all other variables in the model.36 MGM specifications were set
to allow the maximum number of interactions in the network.
Variables in the model were dietary fibre intake, age, sex, BMI
and the whole metabolomic set of variables. Separate MGM
models were fitted for the baseline, 6 months, and 12 months
data. MUVR-PLS analysis37 was conducted with the ‘MUVR’
R-package.

Associations between metabolomics-derived biomarkers
and intakes of major and minor food groups were assessed
using age-, sex- and BMI-adjusted linear mixed models with
random intercepts and slopes (time). Similar analyses were
conducted for the association between metabolomics-based
predicted and self-reported fibre intake and cardiometabolic
risk factors. Spearman correlations were conducted between
self-reported fibre, metabolomics-based predicted fibre, and
gut microbiota genera.

All statistical analyses were performed using R version 4.2.3
(R foundation, Austria).

Results
Study population and characteristics according to dietary fibre
intake

Clinical, sociodemographic and cardiometabolic risk factors of
the population according to self-reported dietary fibre intake
tertiles during the one-year study are shown in Table 1. No stat-
istically significant differences in sociodemographic and clini-
cal characteristics were observed across tertiles of self-reported

dietary fibre intake, except for high-sensitivity C-reactive
protein (hsCRP), where participants in the highest tertile were
those with the lowest values (Table 1). Dietary characteristics
are shown in the ESI Table 1.† Participants in the highest
tertile of dietary fibre intake presented higher energy, polyun-
saturated fatty acids (PUFAs), total carbohydrates (as % of
energy) and sodium intake than the other participants.
Moreover, they showed a lower consumption of saturated fatty
acids (SFAs) and protein (as % of energy). Particularly, food
groups with the highest contribution to total dietary fibre
intake were wholegrain cereals and vegetables (41% and 22%,
respectively), followed by fruits, refined cereal foods (including
cakes and biscuits), nuts and seeds, and legumes (18%, 12%,
5%, and 1%, respectively). During the one-year study period,
there were no statistically significant changes in dietary fibre
intake (p < 0.05), and participants reported a stable intake of
dietary fibre (ICC = 0.39, ESI Fig. 2†).

Metabolites associated with dietary fibre intake

Association between dietary fibre intake and plasma metab-
olites are shown in Fig. 1. The following wholegrain-related
metabolites were positively associated with total dietary fibre
intake: 2,6-dihydroxybenzoic acid (2,6-DHBA); 3,4-dihydroxy-
benzoic acid (3,4-DHBA);38 3-(2-hydroxyphenyl)-propionic acid
(2-HPPA); the benzoxazinoid metabolite, 2-aminophenol;39

and pipecolic acid betaine.40,41 In addition, the following
metabolites related with plant foods were positively associated
with total dietary fibre intake: conjugated enterolactones (both
glucuronide and sulfate), that are lignans produced by gut
microbial fermentation of dietary plant foods;42 hippuric
acid;43 4-hydroxyhippuric acid;44 catechol-sulfate; proline
betaine;45 hypaphorine;46 and α-tocopherol.47 Other metab-
olites positively associated with total dietary fibre intake
included the gut microbial metabolite of tryptophan, indole-
propionic acid;48 a metabolite commonly related with olives
and olive oil, hydroxytyrosol;49 the amino acid aspartic acid;
and linoleoyl-carnitine. Last, one metabolite was negatively
associated with total dietary fibre, ethyl glucuronide, a metab-
olite associated with alcohol intake.50

When applying MGMs at baseline data, 4 metabolites (indo-
lepropionic acid, 2,6-DHBA, 3,4-DHBA and linoleoyl-carnitine)
were found associated with total dietary fibre intake after
adjustment for age, sex, BMI, and the set of metabolites
(Fig. 2). At 6 months, 2,6-DHBA, linoleoyl-carnitine and ethyl-
glucuronide were associated with total dietary fibre intake,
while at 12 months 2,6-DHBA and indolepropionic acid were
significantly associated with total dietary fibre intake (Fig. 2).
Similar results were obtained by other multivariate analysis
using MUVR algorithm (ESI Fig. 3†). Indeed, 2,6-DHBA, lino-
leoyl-carnitine and indolepropionic acid were the metabolites
with the highest importance in MUVR analysis.

Plots showing the stability of repeated measurements over
time of these metabolites are shown in ESI Fig. 2.† In particu-
lar, 2,6-DHBA, and indolepropionic acid had an ICC > 0.50,
which is considered moderately reliable and stable on repeated
measurements over time.51 On contrary, ICC of linolenoyl-car-
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nitine was 0.08, showing high variability between measure-
ments. Additionally, we analyzed the association between
dietary sources of dietary fibre intake and metabolites selected
in univariate and multivariate analyses (ESI Fig. 4†).
Consumption of wholegrain cereals was directly associated
with 2,6-DHBA, 2-aminophenol and linoleoyl-carnitine levels,
while it was inversely associated with ethyl-glucuronide levels.
Total vegetable intake was directly related with indolepropionic
acid. Consumption of fruiting vegetables, leafy vegetables, and
root vegetables other than potatoes were associated with 3,4-
DHBA, and linoleoyl-carnitine. Total fruits intake was directly
associated with proline betaine, indolepropionic acid, and 3,4-
DHBA. Consumption of citrus fruit and fruit juices were posi-
tively related with proline betaine. Last, legumes intake was
positively associated with 3,4-DHBA, and linoleoyl-carnitine
(ESI Fig. 4†).

We estimated fibre intake values using the MGM models at
each time-point and we compared the associations of metabo-
lomics-based predicted and of self-reported fibre intake values
with cardiometabolic risk factors (Fig. 3). Metabolomics-based
predicted fibre intake was negatively associated with diastolic
blood pressure, systolic blood pressure and high sensitivity-C
reactive protein (hsCRP) (Fig. 3). Conversely, self-reported fibre
intake showed no significant association with any cardiometa-
bolic risk factor (Fig. 3).

To gain insight into the differences between self-reported
and metabolomics-based predicted fibre, we analyzed their
correlations with gut microbiota composition at the genus
level. Fig. 4 shows the statistically significant correlations
(FDR-adjusted p-value <0.05) for self-reported and metabolo-
mics-based predicted fibre with gut microbiota genera.
Although correlations with several genera were shared among
both fibre variables, Ruminococcaceae (UCG-002, UCG-005,
UCG-013), and Eubacterium eligens were positively correlated
only with metabolomics-based predicted fibre. but not with
the self-reported one. Interestingly, Bacteroides, a genus
involved in polysaccharide metabolism,52 was negatively corre-
lated both with both self-reported and metabolomics-based
predicted fibre.

Discussion

The present study positions indolepropionic acid and 2,6-
DHBA as metabolite biomarkers linking dietary fibre intake
with its cardiometabolic effects in an observational study with
three repeated measurements over one year. For the first time,
we report associations between self-reported dietary fibre
intake and metabolites that were consistent for one year.
Furthermore, we showed that a set of these metabolites may

Table 1 Clinical, sociodemographic and cardiometabolic risk factors of the DCH-NG MAX study population according to tertiles of dietary fibre
intake

All
Fibre <16 g day−1 (T1) Fibre: 16–25 g day−1 (T2) Fibre >25 g day−1 (T3)n = 624

k = 1353 k = 451 k = 452 k = 450

Sociodemographic characteristics
Age (y) 43 ± 12 44 ± 12 43 ± 13 43 ± 13
Sex, female (n, %) 742 (55) 251 (56) 275 (61) 216 (48)
BMI (kg m−2) 25 ± 4 26 ± 4 25 ± 4 24 ± 3
WC (cm) 88 ± 12 90 ± 12 87 ± 12 86 ± 12
VAT (l) 1.4 (0.7–2.4) 1.5 (0.9–2.8) 1.3 (0.7–2.2) 1.1 (0.7–2.3)
Physical activity (n, %)
Not regular 213 (16) 91 (20) 73 (16) 49 (11)
1/month last 6 months 104 (8) 37 (8) 37 (8) 30 (7)
1/month last 12 months 1035 (76) 322 (72) 342 (76) 371 (82)
Smoking status (n, %)
Never 732 (54) 238 (53) 233 (51) 261 (58)
Former 374 (28) 119 (26) 132 (29) 123 (27)
Current 246 (18) 93 (21) 87 (19) 66 (15)
Cardiometabolic risk factors
DBP (mmHg) 81 ± 11 81 ± 11 80 ± 10 79 ± 11
SBP (mmHg) 117 ± 16 117 ± 16 115 ± 14 116 ± 16
HbA1c (mmol mol−1) 34.5 ± 6.0 35.2 ± 7.0 33.9 ± 5.0 34.2 ± 5.6
TG (mmol L−1) 1.1 (0.8–1.7) 1.1 (0.8–1.7) 1.0 (0.8–1.4) 1.1 (0.7–1.6)
TC (mmol L−1) 5.0 ± 1.0 5.1 ± 1.0 4.9 ± 1.0 4.9 ± 0.9
HDL-C (mmol L−1) 1.54 ± 0.42 1.54 ± 0.54 1.58 ± 0.43 1.56 ± 0.43
LDL-C (mmol L−1) 3.0 ± 0.9 3.1 ± 0.9 3.0 ± 0.9 2.9 ± 0.8
hsCRP (mg L−1) 0.7 (0.3–1.5) 0.9 (0.4–1.7) 0.8 (0.3–1.7) 0.5 (0.2–1.3) **

BMI, body mass index; WC, waist circumference; VAT, visceral adipose tissue; DBP, diastolic blood pressure; SBP, systolic blood pressure; HbA1c,
hemoglobin A1c; TG, triglycerides; TC, total cholesterol; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein cholesterol;
hsCRP, high-sensitivity C-reactive protein. Mean and standard deviation, or median (Q1–Q3) were used to describe continuous variables
following a Gaussian or skewed distribution, respectively. *p for trend <0.05, ** p for trend <0.01, *** p for trend <0.001 using generalized linear
models adjusting for age-, sex- and BMI. Variables with skewed distribution were log-transformed before entering the analyses. n = number of
subjects, k = total number of observations.
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summarize information from diet, host and gut microbiota
metabolism allowing the identification of individuals with
altered levels of cardiometabolic risk factors. As such, we pro-
posed these metabolites as part of a new group of biomarkers
that reflect both dietary fibre exposure and, at least to a higher
extent than self-reported fibre intake values, its metabolic
effects.

The scientific rationale for dietary fibre intake recommen-
dations relies on its health benefits.53 However, the key physio-

logical effects elicited by dietary fibre are still not fully unre-
vealed, and the effects will vary depending on chemical and
functional heterogeneity between different types of dietary
fibre. In general, dietary fibre is known to contribute to shape
gut microbiota composition and functionality, and to increase
the output of fermentative end-products, such as short-chain
fatty acids.54 Thus, the beneficial effect of the interactions
between dietary fibre and gut microbiota can result from the
modulation of the production of microbial metabolites, and/or

Fig. 1 Association between dietary fibre intake and plasma metabolites in the DCH-NG MAX study (n = 624, k = 1353). According to linear mixed
models with random intercepts (defined by participant ID), adjusted for age, sex, BMI, and time. FDR-adjusted p-value <0.05 were considered signifi-
cant. 2,6-DHBA, 2,6-dihydroxybenzoic acid; 2-APh, 2-aminophenol; PipB, pipecolic acid betaine, El-G, enterolactone-glucuronide; 2-HPPA, 3-(2-
hydroxyphenyl)-propionic acid; HA, hippuric acid; El-S, enterolactone-sulfate; 3,4-DHBA, 3,4-dihydroxybenzoic acid; ProB, proline betaine; Hyp,
hypaphorine; Asp, aspartic acid; HTyr, hydroxytirosol; 4-HHA, 4-hydroxyhippuric acid; CAT-S, catechol-sulfate; α-toc, α-tocopherol; Et-G, ethyl glu-
curonide. n = number of subjects, k = total number of observations. Dot colours were assigned according to previous studies showing associations
between metabolites and food groups.

Fig. 2 First-order neighborhood of dietary fibre intake according to Mixed Graphical Models in participants with metabolomic analyses at baseline
(panel a), and 6 (panel b) and 12 months (panel c, n = 624, k = 1353). Edge intensity reflects the strength of an association from strong positive (dark
green) to strong negative association (dark red). Variables included in the mixed graphical model were dietary fibre intake, age, sex, BMI, and all the
metabolomic variables. 2,6-DHBA, 2,6-dihydroxybenzoic acid; 3,4-DHBA, 3,4-dihydroxybenzoic acid; IPA, indolepropionic acid; Et-G, ethyl-glucuro-
nide. n = number of subjects, k = total number of observations. Dot colours were assigned according to previous studies showing associations
between metabolites and food groups.
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from changes in the composition and functions of the gut
microbiota supposed to mediate its health benefits.54

Therefore, it is crucial to identify relevant biomarkers that
could reflect the physiological effects of specific dietary fibre
in combination with gut microbiota and host characteristics
relevant to cardiometabolic health. In our analysis, we used a
machine-learning algorithm (MGM) for selecting metabolites
associated with dietary fibre, and these results were in line
with those obtained by univariate analysis. The importance of
these metabolites was confirmed using other machine-learn-
ing method for variable selection, such as MUVR algorithm.37

Furthermore, we used MGM to calculate predicted dietary fibre
intake levels and, up to some extent, these values showed
more relevant associations with cardiometabolic risk factors
than self-reported dietary fibre intake values per se. In part,
this could be a result from inaccurate self-reported dietary
fibre intake. However, a physiological explanation can also be
proposed in relation with different capacities of gut microbiota
to metabolize differently complex carbohydrates, driving
different effects in the host cardiometabolic health. In
addition, we assessed gut microbiota correlations with both
self-reported and metabolomics-based predicted dietary fiber
intakes. We observed how both variables shared most of the
significant correlations with gut microbiota at genus level.
However, some genus such as Ruminococcaceae UCG-002, UCG-
005, UCG-013, and Eubacterium eligens, were exclusively corre-
lated with metabolomics-based predicted fibre.
Ruminococcaceae UCG-005 has been specifically associated with

circulating levels of the short-chain fatty acid acetate,55 and
has also been reported to attenuate obesity.56 In addition, its
relative abundance has been described to increase in response
to resistant starch intake in normal weight individuals.57

Eubacterium eligens has been linked to a higher adherence to
the Mediterranean diet58 and it was suggested to exhibit a
positive impact on intestinal inflammation.59 Conversely,
Bacteroides, one of the main polysaccharide degrading bacteria
genus in humans,60 negatively correlated with self-reported
and predicted dietary fibre values. Several species of
Bacteroides are well-known dietary fibre fermenters, but not
having information at the species level may have been an
important limitation at this point. Overall, these differences
between self-reported and metabolomics-based fibre intake
values may be relevant to explain divergent health effects and
interindividual variability, since low- to high-inflammatory
responses were observed during a high-fibre intervention.61

This latter report and our results suggest that some subjects
may benefit (or not) from elevated intakes of dietary fibre due
to an specific interaction between dietary fibre and host/gut
microbiota characteristics. Future studies are needed to find
metabolite profiles uniquely reflecting the interactions
between these features and their relation to risk factors for dis-
eases. Such profiles could be used to guide tailored fibre rich
foods to those that benefit the most, i.e., personalized nutri-
tion. In summary, plasma levels of 2,6-DHBA and the
microbial metabolite indolepropionic acid may represent a
new type of surrogate biomarker that reflect the outcome of an

Fig. 3 Heatmap showing the association between metabolomics-based predicted fibre intake and self-reported fibre intake with cardiometabolic
risk factors in the DCH-NG MAX study. Coefficients calculated using age-, sex-adjusted linear mixed models with random intercepts and slopes
(time) in the whole study population (n = 624, k = 1353). *FDR-adjusted p-value <0.05, *** FDR-adjusted p-value <0.001. hsCRP, high sensitivity-C
reactive protein; HDL-C, HDL-cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure; VAT, visceral adipose tissue; BMI, body mass
index; WC, waist circumference; HbA1c, hemoglobin A1c; TC, total cholesterol; TG, triglycerides; LDL-C, LDL-cholesterol.
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interaction between intestinal microbial community and fibre-
rich plant-based foods that is beneficially associated with car-
diometabolic risk markers. Further analyses of the gut micro-
biota characteristics using shotgun metagenomics are war-
ranted. The metabolite and clinical biomarker profile need
validation in other studies from different populations but
holds the potential to be used for tailoring personalized
dietary fibre interventions for cardiometabolic diseases
prevention.

Discussion on the association between the individual
metabolites and dietary fibre and previous studies with similar
and supporting findings are in the ESI.† One of the strengths
of the study is the use of a high-throughput, comprehensive
targeted metabolomics method with three assessments during
a one-year study period. For the first time we were able to
report reliability indicators (reproducibility) of plasma
microbial metabolites for one year. Moreover, our targeted
metabolomics method showed a low coefficient of variation in
quality control samples for these metabolites (5.1% for 2,6-
DHBA and 6.2% for indolepropionic acid). On the other hand,
the use of 24 h dietary recalls could be considered as an advan-
tage because the quantification of intakes is more precise com-
pared with food frequency questionnaires. However, a one day

24 h dietary recall may not reflect typical diet and are limited
in its generalizability. Dietary 24 h recalls were reported the
day before the blood sample was drawn, and this could have
affected the associations between diet and metabolomic vari-
ables. Moreover, our results need to be confirmed in other
populations. At the same time, the analyses and predictions
were conducted assessing total dietary fibre, but dietary fibre
represents a heterogeneous group with large variations in phy-
siochemical–physiological functions of importance to
health.62,63 In addition, although hs-CRP and increased blood
pressure are well established cardiometabolic risk factors, our
study design did not allow us to evaluate different rates of
cardiovascular events for participants grouped according to
clinical variables and metabolites. Likewise, the cumulative
effects of dietary fibre intake on cardiometabolic risk factors
cannot be assessed rigorously because 12 months is not a
sufficient follow-up time, and previous dietary habits of the
participants were unknown. More studies are needed to
provide external validation of the proposed biomarkers and
better characterize their differential production.

In conclusion, 2,6-DHBA and indolepropionic acid may rep-
resent a new set of biomarkers that reflect diet and host/gut
microbiota interactions relevant to the cardiometabolic effects

Fig. 4 Heatmap showing the significant correlations between gut microbiota (genus level) and metabolomics-based predicted fibre and self-
reported fibre (n = 561, k = 1213). *FDR-adjusted p-value <0.05, ** FDR-adjusted p-value <0.01, *** FDR-adjusted p-value <0.001. Only significant
correlations (FDR-adjusted p-value <0.05) are plotted.
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of dietary fibre. Biomarkers reflecting the interactions between
specific food components (dietary fibre) and host/gut micro-
biota may represent a novel measure to guide tailored diets for
improved cardiometabolic health.
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