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The many faces of membrane tension
for biomembranes and vesicles†

10 Dec 2024

Reinhard Lipowsky∗a

Membrane tension is generated by external forces and constraints that affect the membrane’s sur-
face area. Many studies have been pursued to elucidate this intuitive concept. Here, we focus on
biomimetic model systems, for which the notion of membrane tension can be elaborated in a quan-
titative manner. Bottom-up, these membrane systems are planar bilayers, unilamellar nanovesicles,
and giant unilamellar vesicles (GUVs). For planar bilayers and nanovesicles, we need to distinguish
the mechanical bilayer tension within the whole bilayer from the mechanical leaflet tensions within
the individual bilayer leaflets. In addition, the fluctuation spectrum of the bilayer defines the bilayer’s
fluctuation tension. These different tensions can be determined by molecular dynamics simulations.
On the micron-scale, GUV membranes as observed by light microscopy experience both a mechanical
and a curvature-elastic tension, as follows from the theory of curvature elasticity. The curvature-
elastic tension represents a material parameter whereas the mechanical tension is a kind of hidden
variable that depends on the size and shape of the membrane as demonstrated for multispheri-
cal shapes of GUVs. Furthermore, the excess membrane area stored in the shape fluctuations is
again governed by the fluctuation tension. Many membrane systems exhibit characteristic tension
thresholds. Examples include the fusion of nanovesicles, the shapes of tubular membranes, and the
morphological responses of vesicle membranes to condensate droplets.

1 Introduction
Experimental procedures that generate membrane tension in-
clude osmotic inflation, adhesion, and micropipette aspiration of
vesicles. In order to elucidate the concept of membrane tension,
it is very useful to consider biomimetic model membranes. Here,
we will study three such systems: planar lipid bilayers, unilamel-
lar nanovesicles, and giant unilamellar vesicles (GUVs).

On the nanometer scale, the mechanical tension of the mem-
brane is provided by the bilayer tension as determined by molecu-
lar dynamics simulations. This bilayer tension can be decomposed
into two leaflet tensions, which control the spatio-temporal re-
modeling of lipid bilayers and nanovesicles.1 On the micrometer
scale, the total membrane tension of a biomembrane with trans-
bilayer asymmetry is equal to the sum of its mechanical and its
spontaneous or curvature-elastic tension.2,3

This paper is organized as follows. The next Sect 2 emphasizes
three fundamental aspects of biomembranes as provided by their
molecular bilayer structure, their fluidity, and their shape fluctua-
tions. In Sect 2.3, we remind the reader about the important dif-
ferences between membrane tension and interfacial tension. The

a Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany. Tel: +49
331 5679600; E-mail: lipowsky@mpikg.mpg.de
† Electronic Supplementary Information (ESI) available: Sects S1 – S9, Figs S1 –
S15, and Table 1. See DOI: 00.0000/00000000.

subsequent Sects 3, 4, and 5 elucidate the different notions of
membrane tension for planar bilayers, unilamellar nanovesicles,
and giant unilamellar vesicles (GUVs), respectively. In Sect 6,
we show that the remodeling of GUVs by condensate droplets is
governed by the competition between the curvature-elastic ten-
sions of the membrane segments and the interfacial tension of
the liquid-liquid interface. The last Sect 7 describes the most im-
portant conclusions.

2 Fundamental aspects of biomembranes

2.1 Symmetric and asymmetric bilayer membranes

All biomembranes are based on lipid bilayers, consisting of two
leaflets (or monolayers) of lipid molecules. In general, the two
leaflets may differ in their lipid composition, in the packing den-
sities of these lipids – as described by area per lipid or volume
per lipid – and in the molecular composition of the two aque-
ous solutions adjacent to the two leaflets. All of these differences
contribute to the transbilayer asymmetry and the associated spon-
taneous curvature.

For the closed membrane of a vesicle, the inner leaflet is in
contact with the interior aqueous solution, the outer leaflet with
the exterior aqueous solution. Furthermore, biomembranes typ-
ically contain membrane proteins which often exhibit an aver-
age orientation towards the interior or towards the exterior so-
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lution. Therefore, a symmetric bilayer membrane is obtained
if both leaflets have the same lipid composition and exhibit the
same packing densities for all lipid components. Furthermore,
a symmetric bilayer also requires that the exterior solution has
the same molecular composition as the interior solution. Such a
symmetric membrane represents a highly idealized bilayer state
but also provides a reference states that is useful from a concep-
tual point of view. Furthermore, such a symmetrc bilayer is easy
to prepare in molecular dynamics simulations, provided one uses
a planar bilayer with periodic boundary conditions. Experimen-
tally, a planar membrane geometry is obtained for hole-spanning
or black lipid membranes4 and for pore-spanning membranes5.

(b)

Lorem ipsum

(a)                                                                   (c)

Fig. 1 Two examples for one-component lipid bilayers with transbilayer
asymmetry: (a,b) Planar bilayer consisting of 920 lipids in its upper and
738 lipids in its lower leaflet. The lipids have blue headgroups and red
chains; and (c) Planar bilayer with 832 lipids in the upper and 832 lipids
in the lower leaflet but exposed to two different concentrations of solutes
(grey beads) in the upper and lower solution. The solutes adsorb onto
the bilayer and form different adsorption layers at the two leaflets. The
bilayers have a thickness of about 4 nm. 6

2.2 Fluidity of membranes

The most fundamental property of a biomembrane is its fluidity.
On the molecular scale, the lipid molecules undergo fast lateral
diffusion with a diffusion constant of the order of a few µm2 per
second. Thus, if we consider two lipids that are in contact to
each other, it takes of the order of one or a few nanoseconds
for them to swap their spatial positions. On the nanoscale, fluid
membranes can exhibit two types of elastic deformatioms. First,
they can be stretched and compressed, which leads to different
areas per lipid or different volumes per lipid. Second, they can
attain bent or curved states, which deviate from the essentially
planar states in Fig 1. These two elastic deformations follow from
classical elasticity theory7 for a liquid material with vanishing
shear modulus.

Stretching and compression of membranes. First, let us con-
sider the stretching and compression of a membrane in response
to a mechanical tension, Σ, acting on this membrane. The fluid-
ity of the membrane implies that this mechanical tension must be
spatially uniform and isotropic for any (meta)stable state of the
membrane. Indeed, tension gradients generate lipid flows within
the membrane but these flows decay when the membrane relaxes

towards a stable state.

If the membrane is tensionless, it attains a certain optimal area
A = A0. In general, the membrane area A differs from this optimal
value and is then subject to the mechanical membrane tension

Σ = KA(A−A0)/A0 ≡ KA∆a , (1)

which is proportional to the area compressibility modulus KA and
to the relative area dilation (A−A0)/A0 = ∆a. A positive mechan-
ical tension, Σ > 0, leads to membrane stretching, a negative ten-
sion, Σ < 0, to membrane compression. The Hooke-type relation-
ship between Σ and (A−A0)/A0 has been used, e.g., to analyse
micropipette aspiration experiments.8

The corresponding elastic energy is obtained from Eq (1) by
integration over the membrane area A, which leads to the elastic
stretching energy

Est =
∫ A

A0

dA′
Σ(A′) =

1
2

KA
(A−A0)

2

A0
. (2)

This energy represents the reversible work that we have to per-
form in order to stretch or compress the membrane from its op-
timal value A0 at zero tension to its actual value A. Note that
the elastic energy Est is always positive, both for stretching with
A > A0 and for compression with A < A0.

Bending of membranes. So far, we have not considered bent
or curved states of the membrane and the associated bending en-
ergies. On the nanoscale, the curvature of the membrane is de-
scribed by its principal curvatures, C1 and C2, or equivalently by
the mean and Gaussian curvatures M ≡ 1

2 (C1+C2) and G ≡C1 C2.
As explained in Sect S1†, the shape of a vesicle with volume V and
membrane area A is computed by minimizing the elastic shape
functional

Fel =−∆PV +Σ
′A+2κ

∫
dA(M−m)2 (3)

which depends on the two Lagrange multipliers ∆P and Σ′ as
well as on the area integral over the bending energy density
2κ(M −m)2. This energy density involves two curvature-elastic
parameters, the bending rigidity κ and the spontaneous curva-
ture m.

The Lagrange multiplier Σ′ represents a tension. It can be
shown9 that the Lagrange multiplier tension Σ′ is equal to the
mechanical tension Σ in Eq (1), that is,

Σ
′ = Σ = KA∆a . (4)

This equality applies to all (meta)stable states of the vesicle mem-
brane as obtained by the constrained minimization of the elastic
shape functional Fel in Eq (3). This minimization of Fel leads to
the local shape equation, which has the general form2

∆P ≈ ΣtotM with Σtot ≡ Σ+2κm2 (5)

to first order in the mean curvature M and defines the total mem-
brane tension Σtot and the spontaneous or curvature-elastic ten-
sion 2κm2. The curvature-elastic tension can be directly measured
by micropipette aspiration of tubulated GUVs.10
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Fig. 2 Simulation snapshot of a symmetric and tensionless bilayer. The
lipid bilayer has a thickness of about 4 nm. The smallest curvature radius
of its midsurface (red) is about 6 nm, the radius of the dashed circles. 14

2.3 Shape fluctuations of fluid membranes

In the low tension regime, GUVs exhibit shape fluctuations in the
form of bending undulations that are clearly visible in the opti-
cal microscope. Likewise, these undulations can be observed in
molecular dynamics simulation, see Fig 2. The influence of mem-
brane tension on the membrane’s shape fluctuations led to a long
and controversial debate. This debate started in the early 1980s
with several studies11–13, which considered both liquid-liquid in-
terfaces with low interfacial tension11,13 and fluid membranes
with low membrane tension12,13. These two tensions must be
distinguished, however, because they have fundamentally differ-
ent properties.

Interfacial tension versus mechanical membrane tension.
First, the interfacial tension is always positive as follows from the
thermodynamic stability of the corresponding liquid-liquid inter-
face15, whereas the mechanical membrane tension Σ in Eq (1)
can be positive or negative. Second, the mechanical membrane
tension depends on the size and shape of the membrane, as
demonstrated for multispherical vesicle shapes in Sect 5.1 below.
This shape dependence of Σ also follows when we apply the iden-
tity Σ′ = Σ in Eq (4) to the curvature-elastic theory of vesicle ad-
hesion16. In contrast, the interfacial tension is independent of
the size and shape of the liquid-liquid interface. Third, the shape
fluctuations of membranes and interfaces have very different scal-
ing properties as described in Sect S2†. In particular, in contrast
to interfaces, fluid membranes have a finite persistence length ξp

for the correlations of their normal vectors, with different types
of shape fluctuations on length scales below and above the per-
sistence length.

Persistence length of fluid membranes. Below their persis-
tence length, fluid membranes undergo fluctuations with rela-
tively small amplitudes around their average shape as in Fig 2.
In contrast, the membranes attain crumpled states with no aver-
age orientation of their normal vectors when their sizes are large
compared to the persistence length ξp. Likewise, boundary con-
ditions imposed on the membrane have no effect on those mem-
brane segments that have a large spatial separation ∆L ≫ ξp from
this boundary.

The persistence length ξp of a fluid membrane grows exponen-
tially with the ratio of the bending rigidity κ to the thermal energy

kBT according to12,13,17

ξp = ℓ exp[cpκ/kBT ] with a molecular length scale ℓ (6)

and the dimensionless coefficient cp = 4π/3 as determined by
Monte Carlo simulations of discretized fluid membranes17.

From a conceptual point of view, the persistence length as given
by Eq (6) provides an important cross-over length between two
different regimes of shape fluctuations. In practise, this length
scale is not relevant for lipid bilayers. Indeed, using the bending
rigidity κ ≃ 20kBT for lipid bilayers at room temperature and the
molecular length scale ℓ ≃ 6nm, corresponding to the smallest
curvature radius in Fig 2, we obtain the estimate that ξp is of the
order of 1023 km which is astronomical compared to the size of the
largest biomembranes. In fact, a fluid membrane is likely to form
a pore across the bilayer when the lateral size of the membrane is
still much smaller than the persistence length. Indeed, as shown
in Sect 3.3 below, any small but finite mechanical tension Σ > 0
leads to poration for a sufficiently large membrane.

3 Membrane tensions of planar bilayers
We now model the membranes as molecular bilayers assembled
from one or several lipid components. These bilayers can be stud-
ied by molecular dynamics simulations. Using such simulations,
one can determine several types of tensions: the mechanical bi-
layer tension, the mechanical leaflet tensions, and the fluctuation
tension. The mechanical tensions are computed via the stress pro-
file across the bilayer. The fluctuation tension is deduced from the
spectrum of bending undulations on length scales that are small
compared to the persistence length.

In order to reduce boundary effects, all simulation results for
planar bilayers as described here have been obtained for periodic
boundary conditions. Thus, we will not consider any “frame ten-
sion” as sometimes discussed in the literature. In fact, if we fixed
the edge of the membrane by a frame, we would also have to
prescribe the normal vectors of the membrane along this frame.

3.1 Mechanical tensions of planar bilayers and leaflets

Each planar bilayer consists of two leaflets, the lower and the
upper leaflet labeled by ll and ul, respectively. Both leaflets rep-
resent two-dimensional liquids, which are subject to the leaflet
tensions Σll and Σul . In mechanical equilibrium, each of these
leaflet tensions must be laterally uniform. As a consequence, the
bilayer tension Σ can be decomposed according to

Σ = Σll +Σul . (7)

The computation of these tensions from the stress profile across
the bilayer is described in Sect S3†.

3.2 Leaflet tension space for planar bilayers

Planar bilayers with a fixed total number of lipids, Nll +Nul , define
a two-dimensional leaflet tension space, as depicted in Fig 3 for
Nll +Nul = 1682. The origin of this leaflet tension space as given
by Σil = Σul = 0 defines the relaxed reference state with two ten-
sionless leaflets. This reference state of the planar bilayers can be
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Fig. 3 Leaflet tension space for planar bilayers that contain a total
number of Nll +Nul = 1682 lipids. 18 The two coordinates are the leaflet
tensions Σll and Σul in the lower and upper leaflets. Negative and positive
leaflet tensions describe compressed and stretched leaflets. The reference
state with tensionless leaflets, corresponding to Σll = Σul = 0, is obtained
for the symmetric bilayer with Nll = Nul = 841 lipids. The red data points
describe elastic deformations with equal leaflet tensions (ELTs), Σll = Σul .
The black data represent bilayers with opposite leaflet tensions (OLTs),
Σll =−Σul and Σ = 0. All OLT states can be obtained from the reference
state by reshuffling lipids from one leaflet to the other and adjusting the
base area of the simulation box to obtain tensionless bilayers.

obtained by focusing on symmetric bilayers with Nll = Nul = 841
and identifying the unique bilayer with vanishing bilayer tension
Σ = 0. To characterize the elastic response of the reference state,
it is useful to distinguish two types of elastic deformations, corre-
sponding to the red and black data in Fig 3.

The red data represent elastic deformations of the reference
state with equal leaflet tensions (ELTs), that is, with

Σll = Σul (equal leaflet tensions). (8)

The ELT states are located along the main diagonal of the leaflet
tension space in Fig 3. These ELT states are described in more
detail in Sect S4† and Figs S2† – S4†. On the other hand, the black
data in Fig 3 correspond to elastic deformations of the reference
state with opposite leaflet tensions (OLTs), that is, with

Σll =−Σul (opposite leaflet tensions), (9)

The OLT states are located on the diagonal which is orthogonal to
the main diagonal in Fig 3. All OLT states can be obtained from
the reference state by reshuffling lipids from one leaflet to the
other, keeping the total lipid number Nll +Nul constant and im-
posing the constraint of vanishing bilayer tension Σ=Σll +Σul = 0.
As a consequence, one leaflet becomes compressed by a negative
leaflet tension whereas the other leaflet becomes stretched by a
positive leaflet tension.

The different OLT states of the planar bilayer can be distin-

guished by their stress asymmetry6,19

∆Σ ≡ Σul −Σll . (10)

The stress asymmetry ∆Σ vanishes for all ELT states of the planar
bilayer, for which both leaflets contain the same number of lipids,
i.e., for which Nul = Nll . In contrast, all OLT states of the planar
bilayer exhibit a nonzero stress asymmetry, which increases in
magnitude as we move away from the reference state with Σil =

Σul = 0. Furthermore, all bilayer states with the same nonzero
value of the stress asymmetry, ∆Σ = const, are located on a line
parallel to the main diagonal. Stress asymmetry in planar bilayers
has also been studied by Deserno and coworkers20,21, who used
the term “differential stress” instead of “stress asymmetry”. The
elastic response of the planar bilayer leaflets to the leaflet tensions
can be described both in terms of area per lipid and of volume
per lipid (Sect S4†, Figs S2†, and S3†), where volume per lipid is
obtained via Voronoi tessellation (Fig S4†).

3.3 Formation of stable bilayer pores

For a sufficiently large and positive bilayer tension Σ, the bilayer
will rupture and form a pore. To illustrate this poration process,
we now consider a planar and symmetric bilayer, which contains
N/2 identical lipid molecules in each leaflet. We assume that the
membrane area stored in the shape fluctuations of the bilayer can
be ignored. As a consequence, the surface area A of the bilayer
membrane is close to its projected area A∥, which can be directly
controlled in molecular dynamics simulations by the geometry
of the simulation box. Indeed, for a planar bilayer that spans a
cubic simulation box, the projected area of the bilayer is equal
to the base area of this box. Furthermore, the bilayer has an
optimal projected area A∥ = A0 for which the mechanical tension
Σ = (A∥−A0)/A0 as given by Eq (1) vanishes. When A∥ is larger
than A0, the bilayer is stretched by a positive mechanical tension
Σ > 0.

Now, let us compare, for a given projected area A∥ > A0, two
different bilayer states: State (Un) corresponds to the unporated
state with constant area per lipid, a = 2A∥/N, state (Po) to a po-
rated bilayer with a single circular pore of radius R. The stretch-
ing free energy of state (Un) is equal to

Fun =
1
2 KA(A∥−A0)

2/A0 (State (Un) (11)

as follows from Eq (2). The free energy Fpo of the porated bilayer
state (Po) has two contributions: (i) the stretching energy of the
remaining bilayer with area A∥−A0−πR2 and (ii) the edge energy
of the pore with circumference 2πR and edge tension λ , which
implies22,23

Fpo =
1
2

KA(A∥−A0 −πR2)2/A0 +2πRλ (State (Po). (12)

The free energy difference ∆F between (Po) and (Un) is

∆F(R) = Fpo −Fun = 2πRλ −πΣR2 + 1
2 π2KAR4/A0 (13)

with the mechanical tension Σ = KA(A∥ − A0)/A0 = KA∆a as in
Eq (1). The free energy difference ∆F depends on the pore radius
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R and involves two material parameters, the area compressibility
modulus KA and the edge tension λ . In addition, ∆F depends on
the mechanical tension Σ, which is proportional to the relative
area dilation ∆a = (A∥−A0)/A0 and, thus, represents a geometric
control parameter that can be varied by changing the base area
A∥ of the simulation box.

When the bilayer is compressed by a negative value of Σ, all
terms on the right hand side of Eq (13) are positive and ∆F(R)
is a monotonically increasing function of R, which implies that
the unporated bilayer state (Un) is always the state of lower free
energy. On the other hand, when the bilayer is stretched by a
positive value of Σ, the free energy difference ∆F(R) in Eq (13)
develops an inflection point for mechanical tension

Σ1 = c1K1/3
A λ

2/3/A1/3
0 (14)

with c1 = 3π1/3/22/3 = 2.77. For Σ > Σ1, the inflection point splits
up into a maximum and a minimum of ∆F(R). The minimum at
R=R2 describes a bilayer with a stable pore, which becomes more
stable with increasing Σ until it attains the same free energy as the
unporated state. This coexistence of the porated and unporated
state is obtained for the mechanical tension

Σ2 = c2K1/3
A λ

2/3/A1/3
0 (15)

with c2 = 21/3c1 = 3.49. For Σ > Σ2, the porated bilayer provides
the state of lower free energy.

Therefore, as we vary the mechanical bilayer tension Σ within
a symmetric bilayer, the stretched bilayer has no pore for Σ ≤ Σ1,
forms a metastable pore for Σ1 < Σ< Σ2, and a globally stabe pore
for Σ > Σ2. The threshold values Σ1 and Σ2 as given by Eqs (14)
and (15) are in good agreement with the results of molecular
dynamics simulations.23 It is important to note that both tension
thresholds Σ1 and Σ2 are proportional to 1/A1/3

0 and thus go to
zero for large bilayer area A0. As a consequence, sufficiently large
bilayers can always lower their free energy by forming a stable
pore,

3.4 Leaflet tensions of tensionless planar bilayers

In order to avoid pore formation and bilayer rupture, we will now
focus on tensionless bilayers with Σ = Σll +Σul = 0 or Σll = −Σul ,
corresponding to OLT states of the bilayer. For bilayers with a
total lipid number Nll +Nul = 1682 as in Fig 3, the tensionless
bilayers or OLT states are given by the black data points in this
figure. The corresponding leaflet tensions are displayed in Fig 4 as
functions of the lipid number Nul assembled in the upper leaflet.
As shown in this figure, tensionless leaflets are obtained for the
symmetric bilayer with Nll = Nul = 841.

The stability regime for planar tensionless bilayers as displayed
in Fig 4 is bounded by two instability lines, the left instability line
at Nul = 957 and Nll = 725 as well as the right instability line at
Nul = 725 and Nll = 957. For Nul > 957, the lipids in the com-
pressed upper leaflet start to undergo flip-flops into the stretched
lower leaflet. For Nul < 725, the lipids in the compressed lower
leaflet start to flip-flop into the stretched upper leaflet. In ad-
dition to flip-flops of lipid molecules, tensionless planar bilayers
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Fig. 4 Leaflet tensions of tensionless planar bilayers: Upper leaflet tension
Σul (blue) and lower leaflet tension Σll (red) versus lipid number Nul for
constant total lipid number Nul +Nll = 1682. 19 The lipid number Nul is
reduced by moving lipids from the upper to the lower leaflet, thereby
increasing the upper leaflet tension and decreasing the lower one. Both
leaflet tensions vanish for Nul = 841 (vertical dashed line) which defines
the relaxed reference state of the planar bilayers. The green data display
the bilayer tension Σ = Σul +Σll , which is close to zero. For 945 ≥ Nul ≥
737, the bilayer remains stable but becomes unstable (i) for Nul ≥ 957 via
flip-flops from the compressed upper to the stretched lower leaflet and
(ii) for Nul ≤ 725 via flip-flops from the compressed lower to the stretched
upper leaflet.

undergo structural instabilities outside of the stability regime in
Fig 4. Data for lipid flip-flops and structural instabilities are dis-
played in Figs S5† and S6†. On the other hand, if a multicom-
ponent and tensionless lipid bilayer contains a lipid species such
as cholesterol that undergoes frequent flip-flops, these flip-flops
act to decrease the stress asymmetry between the bilayer leaflets
(Sect S5† and Fig S7†).24

3.5 Fluctuation tension of planar bilayers
In this last subsection on planar bilayers, we briefly look at the ef-
fect of the membrane’s shape fluctuations. These fluctuations can
be decomposed into Fourier modes, which leads to the fluctuation
spectrum

S(q)≈ 1
A∥

kBT
Σflq2 +κq4 (16)

for small wavenumber q. The prefactor of the q2-term defines
the fluctuation tension Σfl. For large q-values, the spectrum is
changed by molecular protrusions.

One interesting and open question is the relation between the
fluctuation tension Σfl in Eq (16) and the mechanical bilayer ten-
sion Σ. In our original molecular dynamics study of the fluctua-
tion spectrum14, we assumed that vanishing mechanical tension,
Σ = 0, implies vanishing fluctuation tension, Σfl = 0. This assump-
tion has been confirmed by the fluctuation spectra of planar bi-
layers with two lipid components, see simulation data in Fig S8†.

On the other hand, several molecular dynamics simulations
found small differences between the numerical values of the two
tensions Σ and Σfl

25–27, in agreement with the theory described in
Ref 28. However, the most recent study29, which addressed this
issue by Monte Carlo simulations, came to the conclusion that the
two tensions are, in fact, identical, that is, that Σfl = Σ, in agree-
ment with our original assumption14.
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4 Membrane tensions of nanovesicles
For a closed vesicle, we distinguish the inner from the outer leaflet
by the subscripts il and ol and denote the corresponding leaflet
tensions by Σil and Σol . The bilayer tension Σ is again equal to the
sum of the two leaflet tensions, that is, Σ = Σil +Σol .

4.1 Mechanical tensions of spherical bilayers and leaflets

For a spherical bilayer, the stress profile depends on the radial
coordinate r, which measures the distance from the center of the
sphere. The corresponding mechanical tension Σ can be obtained
from the stress profile s = s(r) via

Σ =
∫ +∞

0
dr s(r) , (17)

The bilayer tension Σ of a spherical vesicle depends on the vesi-
cle volume in close analogy to the experimental procedures of
osmotic deflation and inflation. Osmotic deflation leads to a re-
duction of the bilayer tension whereas osmotic inflation increases
this tension.

The inner leaflet occupies a certain range of r-values, which lie
below the r-values for the outer leaflet. The molecular interface
between these two leaflets defines the midsurface of the spherical
bilayer at r = rmid.1 The leaflet tensions are then obtained from

Σil =
∫ rmid

0
dr s(r) and Σol =

∫ +∞

rmid

dr s(r) . (18)

4.2 Leaflet tension space for spherical bilayers

Now, consider an ensemble of spherical vesicles, which all have
the same total lipid number Nil +Nol . The corresponding leaflet
tension space is displayed in Fig 5 for total lipid number Nil +

Nol = 2525. The origin of this space, corresponding to the relaxed
reference state with tensionless leaflets Σil = Σol = 0, is obtained
for Nil = 840 lipids in the inner leaflet and Nol = 1685 lipids in
the outer leaflet. Therefore, the bilayer state with two tensionless
leaflets is obtained when the outer lipid number Nol is about twice
as large as the inner lipid number Nil .

Because the reference state has a large lipid number asymme-
try, it is difficult to identify the ELT states with Σol = Σil for spher-
ical bilayers. In contrast, it is relatively simple to generate the
OLT states with Σol = −Σil from the relaxed reference state with
Σol = Σil = 0 by (i) reshuffling lipids between the two leaflets
and (ii) adjusting the vesicle volume to obtain a tensionless bi-
layer.18,19,30 The resulting OLT states correspond to the black
data points in Fig 5. The different OLT states are distinguished
by the stress asymmetry

∆Σve ≡ Σol −Σil (19)

which increases in magnitude as we move away from the refer-
ence state with Σil = Σol = 0 along the black data points in Fig 5.

To generate the green data points for vesicle inflation or de-
flation (VID) in Fig. 5, we start again from the reference state
with Σil = Σol = 0 but now change the vesicle volume in order to
increase or decrease the bilayer tension, thereby mimicking the
experimental procedure of osmotic inflation or deflation. Note

Fig. 5 Leaflet tension space for vesicle bilayers with a total number
of Nil +Nol = 2525 lipids in both leaflets. The two coordinates are the
leaflet tensions Σil and Σol in the inner and outer leaflets. The reference
state with tensionless leaflets, corresponding to Σil = Σol = 0, is obtained
for a vesicle bilayer with Nil = 840 lipids in the inner leaflet and Nol =

1685 lipids in the outer one. 18 Negative and positive leaflet tensions
describe compressed and stretched leaflets. The black data correspond to
elastic OLT deformations obtained from the reference state by reshuffling
lipids from one leaflet to the other and adjusting the vesicle volume
to obtain tensionless bilayers with Σ = Σil + Σol = 0. The green data
represent the elastic deformations arising from changes in vesicle volume,
corresponding to vesicle inflation or deflation (VID).

that the green data do not follow the main diagonal, in contrast
to the equal leaflet tension (ELT) data in Fig 3, but become paral-
lel to the main diagonal for large leaflet tensions, which implies a
constant stress asymmetry ∆Σve.

4.3 Leaflet tensions of tensionless vesicle bilayers

The leaflet tensions of tensionless vesicle bilayers, which are as-
sembled from a total number of Nil +Nol = 2875 lipids, are dis-
played in Fig 6. For these vesicle bilayers, the relaxed reference
state with tensionless leaflets is obtained for Nol = 1921 lipids in
the outer leaflet and Nil = 954 lipids in the inner leaflet, corre-
sponding to the dashed vertical line in Fig 6. Thus, when both
leaflet tensions vanish, the lipid number Nol in the tensionless
outer leaflet is more than twice as large as the lipid number Nil in
the tensionless inner leaflet.

The white stability regime in Fig 6 is bounded by two instabil-
ity lines. When we reach the left instability line at Nol = 2105,
lipids start to flip-flop from the compressed outer leaflet to the
stretched inner leaflet. Likewise, at the right stability line with
Nol = 1755, the compressed inner leaflet becomes instable with
respect to flip-flops from the inner to the outer leaflet. The cu-
mulative distribution function for the first flip-flop is displayed in
Fig S9†. In addition to flip-flops, tensionless vesicle bilayers un-
dergo structural instabilities outside of their stability regime as
illustrated in Fig S10†.
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Fig. 6 Leaflet tensions for tensionless vesicle bilayers with a total number
of Nil +Nol = 2875 lipids. The vesicles have a diameter of 23.8d or 19 nm.
The blue and red data represent the outer and inner leaflet tensions. 19

The green data correspond to the bilayer tension Σ = Σol + Σil , which
is close to zero. During the run time of the simulations, we observed
no flip-flops within the stability regime (white), corresponding to 1775 ≤
Nol ≤ 2095. The left vertical line at Nol = 2105 represents the instability
line at which the lipids start to undergo flip-flops from the compressed
outer to the stretched inner leaflet. The right vertical line at Nol = 1755
represents the instability line at which the lipids start to undergo flip-flops
from the compressed inner to the stretched outer leaflet.

4.4 Volume per lipid and lateral volume compressibility
The elastic response of a planar bilayer to mechanical tension can
be described in terms of area per lipid or in terms of volume per
lipid. In order to determine area per lipid for nanovesicles, we
need to introduce some projection onto the curved surfaces of the
vesicle bilayers, which represents an ambiguous procedure. Such
an ambiguity can be avoided by using the volume per lipid, v, to
characterize the lipid bilayer.18

The volume per lipid can be obtained from the following proce-
dure based on Voronoi tessellation. In the coarse-grained molec-
ular model, the molecules are built up from different types of
spherical beads. Voronoi tessellation assigns a polyhedral cell to
each bead, such that all points in this cell are closer to the cen-
ter of the chosen bead than to the center of any other bead. In
Fig S4†, we illustrate the tessellation method for a planar bilayer
and for an individual lipid molecule. Next, the volumes Vil and
Vol of the inner and outer leaflets are computed by summing up
the volumes of all polyhedral cells that belong to the respective
leaflet. Finally, the volumes per lipid, vil and vol , of the inner and
outer leaflets are then obtained by dividing the leaflet volumes by
the lipid numbers, Nil and Nol , which leads to

vil =
Vil

Nil
and vol =

Vol

Nol
. (20)

These lipid volumes vary with the leaflet tensions Σil and Σol in
the inner and outer leaflets.

One example for this dependence is shown in Fig. 7 for a vesi-
cle bilayer assembled from a total number of Nil + Nol = 1500
lipids. Inspection of this figure shows that the optimal lipid vol-
umes for the outer and inner leaflet have almost identical but
slightly different values as given by18 vil,0 = (3.5790± 0.0004)d3

for the inner leaflet and by vol,0 = (3.5612 ± 0.0003)d3 for the
outer leaflet of the vesicle, corresponding to the vertical dashed
lines in Fig. 7. Therefore, the optimal lipid volumes for the inner

Fig. 7 Leaflet tensions versus volume per lipid for nanovesicles with a
total number of Nil +Nol = 1500 lipids. 18 Leaflet tensions Σle = Σol and
Σle = Σil of the outer (black triangles) and inner leaflets (red triangles)
versus volumes per lipid, vle = vil and vle = vol , in the two leaflets of
the tensionless bilayers. The two dotted vertical lines are located at the
optimal lipid volumes v = v0

ol ≃ 3.56d3 and v = v0
il ≃ 3.58d3 of the outer

and inner leaflet.

and outer leaflets differ by less than one percent.
The deviations of the lipid volumes from their optimal values

define the relative volume dilations

∆vil ≡
vil − v0

il

v0
il

and ∆vol ≡
vol − v0

ol

v0
ol

(21)

for the inner and outer leaflets. The elastic response of the two
leaflets to the leaflet tensions Σil and Σol is then described by the
tension–volume relations

Σil ≈ Bil∆vil = Bil
vil − v0

il

v0
il

(22)

and

Σol ≈ Bol∆vol = Bol
vol − v0

ol

v0
ol

(23)

to first order in the relative volume dilations, which define the
lateral volume compressibilities Bil and Bol . These two elastic
moduli are significantly different for the two leaflets as follows
from the data in Fig 7.18

4.5 Tension-induced fusion of nanovesicles

Membrane fusion of two nanovesicles can be induced by their bi-
layer tensions or by their leaflet tensions. A particularly interest-
ing fusion process is observed for tensionless bilayers with Σ = 0
and Σol = −Σil , which avoids bilayer rupture as an alternative
pathway to fusion.

Membrane fusion induced by bilayer tension. Experimen-
tally, tension-induced fusion was originally studied by osmotic
swelling of vesicles that adhere to a planar bilayer.31 The
molecular mechanisms underlying tension-induced fusion have
been visualized and elucidated by molecular dynamics simula-
tions.32–34 More recently, several experimental studies provided
additional evidence for tension-induced fusion35–38, which can
be strongly enhanced by electrostatic interactions between oppo-
sitely charged membranes36. In the simulations, the close prox-
imity of two lipid bilayers can lead to a variety of alternative out-
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Fig. 8 Fusion of nanovesicle with planar bilayer: The vesicle bilayer
consists of 6869 lipids (orange heads, yellow chains) and has a diameter
of about 30 nm, while the planar bilayer contains 6911 lipids (red heads,
green chains). The water beads originally inside the vesicle are blue, the
water beads in the exterior compartment are not shown for clarity. . The
figure displays four time lapse snapshots which illustrate the development
of the fusion process from 78.5 ns, when the first contact between the
two membranes occurs and lipid tails start to undergo interbilayer flip-
flops, until the opening of the fusion pore after 1334 ns. 33

comes such as stable hemifused bilayers and bilayer rupture but
fusion events are always observed within a certain range of posi-
tive bilayer tensions.

One example for membrane fusion as observed in molecular
dynamics simulations is depicted in Fig 8 for a nanovesicle in
contact with a planar bilayer.33,39 In order to visualize the fusion
pathway, the lipids in the planar bilayer have red head groups
and green tails whereas the lipids in the vesicle have orange head
groups and yellow tails.

The observed fusion pathway proceeds via three distinct sub-
steps. After the vesicle and the planar bilayer have come into con-
tact at time t = 78.5ns, the vesicle starts to spread onto the bilayer,
thereby forming a highly curved membrane segment along the
contact line with the planar bilayer. The lipids along the contact
line then undergo interbilayer flip-flops from the vesicle to the
planar bilayer, see the yellow lipid tails that appear in the lower
leaflet of the planar bilayer. These flip-flops lead to intermixing
and partial fusion of the two bilayers, followed by the nucleation
of a bean-shaped hemifusion diaphragm at about t = 1177ns. The
bean-shape of the diaphragm can be clearly seen when one looks
at sections across the planar bilayer, which are perpendicular to
the side views in Fig. 8. Finally, this diaphragm ruptured close
to the contact line at t = 1334ns, thereby opening up a strongly
asymmetric fusion pore that provides a water channel between
the interior vesicle solution (blue) and the water compartment
(white) above the planar bilayer.

The fusion process displayed in Fig 8 was induced by increas-
ing the area per lipid, a, of the planar bilayer, thereby increasing
the mechanical tension Σ experienced by this bilayer. The re-
sulting fusion process competes with several alternative pathways
such as membrane adhesion, hemifusion, and rupture. Because
of these alternative pathways, the fraction of successful fusion

Fig. 9 Two identical vesicles with tensionless bilayers undergo fusion,
when their outer leaflets are stretched by a sufficiently large leaflet ten-
sion Σol and their bilayers experience a sufficiently large stress asymme-
try. Each vesicle contains Nil = 4500 lipids in its inner and Nol = 5600
lipids in its outer leaflet, corresponding to the outer leaflet tension
Σol =+1.02kBT/d2 and the inner leaflet tension Σil =−1.02kBT/d2. The
vesicles come into contact at time t = 0 and undergo fusion within 0.3 µs. 1

events, which defines the fusion probability, depends strongly on
the area per lipid, a, and on the mechanical tension Σ within the
planar bilayer. Indeed, as shown in Fig S11†, the fusion probabil-
ity increases linearly with increasing a ∼ Σ, reaches a maximum,
and then decreases again for larger values of a ∼ Σ. The decay of
the fusion probability for large a is caused by bilayer rupture.

Vesicle fusion driven by leaflet tensions. Bilayer rupture
is strongly suppressed when we consider tensionless bilayers
with vanishing mechanical tension, Σ = 0, corresponding to one
stretched and one compressed leaflet. Somewhat surprisingly,
two nanovesicles with Σ = 0 also undergo fusion, provided the
outer leaflet is stretched by a sufficiently large leaflet tension Σol .
One example for such a fusion process is displayed in Fig 9.

The fusion of nanovesicles with tensionless bilayers but
stretched outer leaflets can be understood as follows. First, within
the emerging contact area, the shielding of the hydrophobic cores
of the two bilayers is reduced by stretching the two outer leaflets
and increasing their areas and volumes per lipid. Second, both
leaflet tensions drive the subsequent opening of the fusion pore.
Indeed, the stretched outer leaflet tries to reduce its area, thereby
pulling on the emerging fusion pore, whereas the compressed in-
ner leaflet tries to increase its area, thereby curving the rim of
the pore. Furthermore, recent molecular dynamics simulation
show that this fusion process proceeds without bilayer rupture
and without leakage of vesicle contents (Bartosz Rozycki, Rikhia
Ghosh, and Reinhard Lipowsky, in preparation).

5 Membrane tensions of giant vesicles

In this section, we will address membrane tensions of giant vesi-
cles and will focus on multispherical and two-sphere shapes as
well as on different shapes of tubular membranes. All of these
shapes involve closed membrane necks, which also represent the
necessary initial step for vesicle division. Additional aspects of
multispherical shapes are discussed in Sect S6†, more details on
positive two-sphere shapes are provided in Sect S7†, which also
describes the experimentally observed division of positive two-
sphere shapes40. Negative two-sphere shapes are further exam-
ined in Sect S8†.
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(a)                               (b)                                 (c)                     (d)

(e)                                     (f )                       (g)                      (h)

Fig. 10 (a-d) (1+Ns)-spheres for positive spontaneous curvatures, con-
sisting of one large sphere and Ns small spheres, all with positive mean
curvature. The scale bars in (a) and (d) are 10 µm, the scale bar in (a)
applies to (a-c); and (e-h) (1+Ns)-spheres for negative spontaneous cur-
vatures, consisting of one large sphere with positive mean curvature and
Ns small spheres with negative mean curvature. The membrane necks
of the positive and negative multispheres have a positive and negative
effective mean curvature, respectively, as follows from Eq (24). The scale
bar in (e) is 5 µm and applies to (e-h). 41

5.1 Multispherical shapes of giant vesicles
Multispherical shapes of giant vesicles can be obtained by expos-
ing the two leaflets of the vesicle membranes to two different
sugar solutions which generate a spontaneous curvature within
the membranes.41,42 If the inner leaflet is in contact with sucrose
and the outer leaflet exposed to glucose, the spontaneous curva-
ture m is positive. On the other hand, the GUV membrane aquires
a negative spontaneous curvature, m< 0, when the interior leaflet
is exposed to glucose whereas the outer leaflet is in contact with
sucrose. Some examples for the resulting multispheres are dis-
played in Fig 10.

Multispheres consist of large and small spheres. Inspection
of Fig 10 reveals that each multisphere involves only two types
of spheres, a large sphere with radius Rl and positive mean cur-
vature Ml = +1/Rl as well as small spheres with identical radius
Rs and identical mean curvature Ms = ±1/Rs. This general prop-
erty of multispheres is a direct consequence of the local shape
equation for spherical membrane segments as given by Eq (S24)†,
which is quadratic in the constant mean curvature of the spher-
ical segment. For positive spontaneous curvature, multispheres
can also consist of several equally sized spheres, corresponding to
a degenerate (double) root of the quadratic shape equation, see
the example in Fig 12c below.

Limit shapes versus persistent shapes. Each multispherical
shape can be characterized by its stability regime, that is, by a
certain subregion of the morphology diagram, which depends on
two dimensionless shape parameters, the volume-to-area ratio v̄
and the rescaled spontaneous curvature m̄ as defined by Eqs (S9)†

and (S10)†. The stability regime of each multisphere is bounded
by two lines of limit shapes. When we leave the stability regime
by crossing a line of limit shapes, at least one closed membrane
neck opens up. On the other hand, away from these limit shapes,
the multispherical shapes represent persistent shapes that depend
only on v̄ but are independent of m̄.43

Positive and negative multispheres. Each closed neck be-
tween two connected spheres i and j with mean curvature Mi

and M j can be characterized by its effective mean curvature as
given by43

Meff
i j ≡ 1

2
(
Mi +M j

)
= 1

2

(
± 1

Ri
± 1

R j

)
. (24)

This effective curvature represents a purely geometric quantity
that can be directly obtained from microscopy images as in Fig 10.
Therefore, we can distinguish positive necks with Meff

i j > 0 from
negative necks with Meff

i j < 0.

In fact, for each multisphere, all necks have the same sign. In-
deed, all membrane necks are positive for each multisphere in
Fig 10a-d and negative for each multisphere in Fig 10e-h. As a
consequence, we can distinguish positive multispheres with pos-
itive membrane necks from negative multispheres with negative
membrane necks.

.

Mechanical membrane tension of multispheres. The con-
stant mean curvature Msp of a spherical membrane segment is ob-
tained by solving the local shape equation as given by Eq (S24)†.
This equation is quadratic in Msp and depends on ∆P and Σ. The
two solutions of this equation are equal to the mean curvatures
of the large and the small spheres, Ml and Ms, which build up the
multispheres as in Fig 10. It is possible to invert these solutions
to obtain ∆P and Σ, which leads to the mechanical tension43

Σ = 2κm(Ml +Ms −m) = 2κm
(

1
Rl

± 1
Rs

−m
)
. (25)

The ± sign applies to positive and negative multispheres, which
are characterized by small spheres with positive and negative
mean curvature, respectively. The relationship in Eq (25) re-
mains valid for the degenerate case of a single solution with
Ml = Ms = M∗ and Rl = Rs = R∗.

The mechanical tension as given by Eq (25) involves both the
curvature-elastic parameters κ and m as well as on mean curva-
tures Ml and Ms (or M∗) of the large and small spheres. Therefore,
Eq (25) directly demonstrates that the mechanical tension Σ de-
pends on the size and shape of the multispherical vesicle.

5.2 Two-sphere shapes of giant vesicles

The simplest multispheres are provided by two spheres connected
by a closed membane neck as shown in panels a and e of Fig 10.
The positive two-sphere shape in Fig 10a consists of one large
sphere and one smaller spherical out-bud, the negative two-
sphere shape in Fig 10e of one large sphere and one smaller
spherical in-bud. The stability regime of the positive two-spheres
is described in the next paragraph and displayed in Fig 11, the sta-
bility regime of the negative two-spheres in Sect S8† and Fig S13†.

Stability regime for positive two-sphere shapes. For positive
spontaneous curvature, the two-sphere shape in Fig 10a involves
a positive ls-neck between the large and the small sphere. The
condition for this ls-neck to be stably closed is given by the in-
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equality43

m ≥ Meff
ls = 1

2 (Ml +Ms) =
1
2

(
1
Rl
+ 1

Rs

)
> 0 . (26)

In the limiting case, in which this inequality becomes an equality,
we obtain the neck closure condition that determines the line of
limit shapes Lpos

1+1, see the upper boundary line of the stability
regime in Fig 11.

The lower boundary line of the stability regime in Fig 11 is
provided by another line of limit shapes, denoted by L2∗ and con-
sisting of two equally sized spheres with radius Rl = Rs = R∗ =

Rve/
√

2. In the morphology diagram, the L2∗-line is located at
v̄ = v̄2∗ = 1/

√
2 and m̄ ≥ m̄2∗ =

√
2.

The two lines of limit shapes, Lpos
1+1 and Lpos

2∗ , meet at the corner
point with v̄ = v̄2∗ = 1/

√
2 and m̄ = m̄2∗ =

√
2. At this corner point,

the limit shape consists of two equally sized spheres with mean
curvature M∗ = 1/R∗ = m2∗, which implies zero bending energy,
Ebe = 0, as follows from Eq (S3)†.

Mechanical membrane tension of positive two-spheres.
Along the line of limit shapes Lpos

1+1 in Fig 11, the neck closure
condition Ml +Ms = 2Meff

ls = 2m implies the mechanical tension

Σ = 2κm2 = 2κ

(
Meff

ls

)2
for all limit shapes Lpos

1+1 (27)

as follows from Eq (25). The geometry of the limit shape Lpos
1+1

changes with the spontaneous curvature m because the effective
mean curvature Meff

ls = m of the ls-neck increases with increasing
m. The relation in Eq (25) also implies that

Σ = 0 for m = Ml +Ms , (28)

which is valid for the persistent shapes along the red dashed line
in Fig 11.
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Fig. 11 Stability regime (light blue) for positive (1+1)-spheres with
positive spontaneous curvature m̄. The stability regime is bounded by
two lines (dark blue) of limit shapes, Lpos

1+1 and Lpos
2∗ , which meet at the

corner point (purple circle) with m̄ =
√

2 and v̄ = 1/
√

2. The persistent
(1+1)-spheres along the red dashed line are characterized by tensionless
membranes with mechanical tension Σ = 0; this tension is positive and
negative to the left and to the right of the red dashed line. The inset
displays a persistent (1+1)-shape that remains unchanged when we vary
the spontaneous curvature along the horizontal dashed line (orange).
This shape invariance is a direct consequence of the area and volume
relations in Eqs (S27)† and (S28)†.

Along the line of limit shapes Lpos
2∗ with v̄ = v̄2∗ = 1/

√
2 and

m̄≥ m̄2∗ =
√

2, the mean curvature M∗ of the equally sized spheres
is equal to M∗ = m2∗ =

√
2/Rve. It then follows from Eq (25) with

Ml = Ms = M∗ that the associated membrane mechanical tension
is given by

Σ = 2κm

(
2
√

2
Rve

−m

)
for the limit shapes Lpos

2∗ . (29)

This tension vanishes at m = 2m2∗ = 2
√

2/Rve, which represents
the lower end point of the dashed red line in Fig 11. Furthermore,
the mechanical tension Σ as given by Eq (29) behaves as Σ ≈
−2κm2 for large m, that is, the mechanical tension Σ becomes
large and negative for large and positive spontaneous curvature
m.

As shown in Fig 11, the L1+1-line meets the L2∗-line of two
equally sized spheres at the corner point with m̄ = m̄2∗ =

√
2 and

v̄ = v̄2∗ = 1/
√

2 where the mechanical tension Σ has the value

Σ = 2κm2
2∗ = 4κ/R2

ve (corner point). (30)

Division of positive two-sphere vesicles. Closed membrane
necks of multispherical vesicles also play a pivotal role for the
division of these vesicles. As an example, consider the positive
two-sphere vesicle in the inset of Fig 11. This shape remains un-
changed when we increase the spontaneous curvature m of the
vesicle membrane. However, as explained in Sect S7.2† such
an increase of m also increases the constriction force f pos act-
ing against the positive closed neck of the two-sphere vesicle, as
described by Eq (S30)†. A sufficiently large constriction force
leads to the cleavage of the closed neck and to the division of the
two-sphere vesicle into two daughter vesicles as observed exper-
imentally for GUVs40. Because the constriction force is a local
neck property, such a force is present at each closed neck of all
multispheres.

5.3 Different shapes of tubular membranes
Tubular membranes and vesicles can exhibit different shapes, cor-
responding to multispherical, unduloidal, and cylindrical shapes.

Multispherical shapes of membrane tubes. We first consider
multispherical shapes of membrane tubes as shown in Fig 12.
In Fig 12b, the tube is part of a (1+ 14)-sphere and consists of
14 small spheres emanating from a somewhat larger sphere. In
Fig 12c, the multispherical tube is built up from 15 equally sized
spheres, corresponding to a (15∗)-sphere. The stability regime
for the (1+ 14)-spheres is displayed in Fig 12a as the light blue
subregion of the morphology diagram. As for (1+1)-spheres, the
stability regime for the (1+ 14)-spheres is bounded by two lines
of limit shapes, denoted by Lpos

1+14 and Lpos
15∗.

The line of limit shapes Lpos
1+14 in Fig 12a is given by

v̄ = v̄1+14(m̄) =

(
1− 14

m̄2

)3/2
+

14
m̄3 , (31)

the line of limit shapes Lpos
15∗ by

m̄ ≥ m̄15∗ ≡
√

15 and v̄ = v̄15∗ ≡ 1/
√

15 (32)
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Fig. 12 (a) Stability regime (light blue) for positive (1+14)-spheres. The
stability regime is bounded by two lines of limit shapes (dark blue), Lpos

1+14
and Lpos

15∗. These two lines meet at the corner point with m̄ = m̄15∗ =√
15 = 3.87 and v̄ = v̄15∗ = 1/

√
15 = 0.258. The persistent (1+14)-shapes

along the red dashed line are enclosed by membranes with vanishing
mechanical tension, Σ = 0; (b) Example for a GUV that forms a (1+14)-
sphere consisting of one somewhat larger sphere at the left end and a
multispherical tube of 14 small spheres; and (c) Example for a GUV
forming a (15∗)-sphere with 15 equally sized spheres. The images in (b)
and (c) are from Ref 41, both scale bars are 10 µm.

as follows from the area and volume relations in Eqs (S27) and
(S28) with small-sphere radius rs = 1/m̄. The red dashed line in
Fig 12a provides the location for vesicle membranes with van-
ishing mechanical tension, Σ = 0. Along this line, the sponta-
neous curvature m is equal to 2Meff

ls , which can be combined with
Eqs (S27) and (S28) to obtain a parametric plot42.

The small spheres of the (1+14)-spheres in Fig 12b transform
into small prolates along an instability line as given by the rela-
tionship

rs −
r2

s√
1−14r2

s
=

3
m̄

(33)

between the small-sphere radius rs and the spontaneous curva-
ture m̄. This equation has no solution for m̄ < m̄ss ≡ 21.47, one
solution for m̄ = m̄ss, and two solutions for m̄ > m̄ss. Therefore,
the small spheres of the persistent (1+14)-spheres are stable for
m̄ < m̄ss = 21.47 but transform into small prolates for m̄ > m̄ss and
a certain m̄-dependent range of v̄-values. At m̄ = m̄ss, the instabil-
ity line emerges from the single point (m̄ss, v̄ss) = (21.47,0.4035),
which opens up into a parabola-like line for m̄ > m̄ss. For large
m̄, the upper and the lower branch of this parabola-like line ap-
proach the two lines of limit shapes, Lpos

1+14 and Lpos
15 , respectively.

This bifurcation is located outside of the morphology diagram dis-
played in Fig 12a.

Multispherical tubes via fusion of proteoliposomes. Mem-
brane nanotubes have been prepared by the fusion of proteoli-
posomes that contain certain membrane proteins, which hydrol-
yse GTP.44,45 Some insight into this process of nanotube forma-
tion from proteoliposomes can be obtained from the following
thought experiment. Thus, let us consider N∗ proteoliposomes
that undergo fusion to form an (N∗)-multisphere. In the absence
of GTP, the individual proteoliposome are taken to be relaxed in
the sense that the mean curvature of the vesicle membranes are
close to the membrane’s spontaneous curvature m, which implies

that the radius R of the proteoliposomes is close to 1/m and that
their bending energy as given by Eq (S3)† is close to zero. The
dimensionless shape parameters v̄ and m̄ in Eqs. (S9)† and (S10)†

are then equal to v̄ = v̄1 = 1 and m̄ = m̄1 = 1 for each proteolipo-
some.

When we add GTP, the proteoliposomes start to fuse and to
form multispherical tubes. More precisely, the fusion of N∗ pro-
teoliposomes leads to an (N∗)-multisphere with the shape pa-
rameters v̄ = v̄N∗ ≡ 1/

√
N∗ and m̄ = m̄N∗ ≡

√
N∗, provided both

the total membrane area and the total vesicle volume are con-
served during the fusion process. For N∗ = 2, the shape parame-
ters v̄ = v̄2∗ = 1/

√
2 and m̄ = m̄2∗ =

√
2 represent the corner point

of the stability regime in Fig 11, at which the two lines of limit
shapes, Lpos

1+1 and Lpos
2∗ , meet. For N∗ = 15, the shape parameters

v̄ = v̄15∗ ≡ 1/
√

15 and m̄ = m̄15∗ ≡
√

15 define the location of the
corner point in Fig 12a.

Unduloidal shapes of membrane tubes. So far, super-
resolution microscopy has not been used to resolve the shapes
of nanotubes reconstituted from proteoliposomes in vitro. How-
ever, structured illumination microscopy has been applied to the
nanotubular networks of the endoplasmic reticulum in vivo,46,47

which revealed that these shapes resemble unduloids48 as de-
picted in Fig 13. Within the morphology diagram in the (m̄, v̄)-
plane, long unduloids with mean curvature M = m and zero bend-
ing energy are located between two hyperbolae with v̄ = v̄1(m̄)≡
1/m̄ and v̄ = v̄2(m̄)≡ 3/(4m̄). Such unduloid shapes will form via
the fusion of proteoliposomes when some membrane proteins get
lost during the fusion process, thereby reducing the spontaneous
curvature m̄, or when the fusion process is leaky and the interior
volume of the proteoliposomes is reduced during the process.

If one of the membrane necks as indicated by the blue arrow
heads in Fig 13 became closed for an extended period of time,
the neck can undergo fission, thereby breaking the nanotubes up
into several fragments. For reticular networks, such a fragmen-
tation of the nanotubes has indeed been induced experimentally,
both in vivo and in vitro, by downregulating the biosynthesis of
GTP-hydrolyzing membrane proteins49 and by interrupting the
supply of GTP44 . As a consequence, any mechanism that keeps

(a)                               (b)                              (c)

Fig. 13 Time-lapse snapshots of an irregular pentagon formed by mem-
brane nanotubes and five three-way junctions as observed by structured
illumination microscopy. 46 Time points in seconds (upper left corners);
scale bar in (c) also applies to (a) and (b). The pentagon consists of
five three-way junctions connected by five tubular segments. One tube
segment is marked by the white dotted rectangle in (b). The four blue
arrow heads point to transient membrane necks (or constrictions) formed
along three tubular segments, which resemble peristaltic shape deforma-
tions of these tubules. 48
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the membrane necks open also prevents nanotube fragmentation.

Peristaltic modes of cylindrical nanotubes. The unduloidal
tubes displayed in Fig 13 can be viewed as peristaltic modes of
cylindrical nanotubes. Thus, consider a cylindrical tube of length
L and radius Rcy. The shape fluctuations of such a cylindrical
tube can be decomposed into Fourier modes. We will focus on
peristaltic modes which preserve the axisymmetry of the cylin-
der and include the most unstable mode. It is convenient to
introduce a fluctuation tension Σfl that governs the excess area
stored in these shape fluctuations. An analogous tension term
has been considered for planar membrane segments50 and for
quasi-spherical vesicles51,52.

For a cylindrical tube with radius Rcy and length L, the most
unstable mode, denoted by ln∗, is characterized by wavenumber
p = p∗ = 1/Rcy, period 2πRcy, and mean-squared amplitude48

⟨|ln∗|2⟩=
kBT

2πRcy LΣfl p2
∗
=

kBT
2π(L/Rcy)Σfl

, (34)

which grows as 1/Σfl for small Σfl. Thus, the tube should become
fragmented for sufficiently small tensions, for which the ampli-
tude of the most unstable mode exceeds the tube radius, that is,
for

⟨|ln∗|2⟩ ≥ R2
cy or Σfl ≤ Σth,1 ≡

kBT
2πRcyL

. (35)

The tension threshold Σth,1 is very low. As an example, consider
the tube segment within the dotted white rectangle in Fig 13b,
which has a length of L = 2.5 µm and a radius of Rcy = 100nm.
For this tube, the tension Σth,1 has the value 4× 10−6 mN/m at
room temperature.

In Fig 13, the peristaltic modes do not lead to tube fragmen-
tation. Inspection of this figure indicates that the most unstable
modes have amplitudes of about half the cylinder radius which
defines another tension threshold Σth,2 via

⟨|ln∗|2⟩= (Rcy/2)2 or Σth,2 ≡
4kBT

2πRcyL
= 4Σth,1 . (36)

Thus, the fragmentation of the membrane nanotubes can be
avoided by increasing the fluctuation tension Σfl from Σth,1 to
Σth,2 = 4Σth,1.

6 Membranes in contact with condensate droplets
The term ‘condensate droplet’ implies that the droplet is enclosed
by a liquid–liquid rather than by a liquid–gas interface. Aque-
ous two-phase (or biphasic) systems based on biopolymers such
as PEG and dextran have been applied for several decades in bio-
chemical analysis and biotechnology53 and are intimately related
to water-in-water emulsions54. The aqueous phase separation
leads to the formation of two coexisting liquid phases, denoted
here by α and β as in Fig 14. The two liquid phases α and β

are separated by a liquid-liquid interface with interfacial tension
Σαβ , which represents a new tension scale for the vesicle-droplet
systems.

The aqueous phase separation of PEG-dextran solutions pro-
vides an example for segregative phase separation, in which one
phase is enriched in one macromolecular component such as PEG

α

β
γ

αγ segment

βγ segment

α β

γ

αγ segment

αβ interface

βγ segment αβ interface

(a)                                              (b)

Fig. 14 Partial wetting geometry of vesicle-droplet systems, which in-
volve three liquid phases α (white), β (green), and γ (light red). The
phases α and β represent two coexisting phases that arise via segregative
or associative liquid–liquid phase separation; the γ phase is an inert spec-
tator phase: (a) Phase separation of the exterior solution and adhesion
of an exterior β droplet to the outer leaflet of the vesicle membrane; and
(b) Phase separation of the interior solution creating one interior α and
one interior β droplet, both of which are in contact with the inner leaflet
of the membrane. 67

whereas the other phase is enriched in the other macromolec-
ular component such as dextran. The segregative behavior im-
plies that the different species of macromolecules effectively re-
pel each other. The phase diagram and the interfacial tension
of aqueous PEG-dextran solutions is described in Sect S9† and
Fig S14†. Another type of aqueous two-phase system is created
by associative phase separation, for which one phase is enriched
in the macromolecular components whereas the other phase rep-
resents a dilute solution of the macromolecules55–58. The asso-
ciative behavior implies that the different macromolecular species
effectively attract each other. Associative phase separation is ob-
served, for instance, in solutions of two, oppositely charged poly-
electrolytes57,58,

Condensate droplets have also been observed in living cells
where they provide separate liquid compartments or organelles
which are not enclosed by intracellular membranes. These
biomolecular condensates are believed to form via liquid–liquid
phase separation in the cytoplasm59,60 and can be reconstituted
in vitro61–64. They are enriched in certain types of proteins that
have intrinsically disordered domains and interact via multivalent
macromolecular interactions60,63–66.

6.1 Geometry of vesicle-droplet systems
When a condensate droplet comes into contact with a vesicle
membrane, attractive interactions between droplet and mem-
brane lead to the adhesion of the droplet to the membrane. The
geometry of these vesicle-droplet systems involves three liquid
phases α, β , and γ as shown in Fig 14. The two phases α and β

are formed by segregative or associative liquid–liquid phase sep-
aration and are separated by the αβ interface. When the droplet
partially wets the membrane, the αβ interface forms a contact
line with the membrane, which divides the membrane up into
two segments, the αγ segment exposed to the α and γ phases
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γ

β

αα

β

γ

(a)                      (b)                     (c)                     (d)

β

α

β
γ

β

α

β
γ

Fig. 15 Complete engulfment of condensate droplets by GUV membranes
(red): (a,b) Two-sphere shape of the membrane, which completely en-
gulfs the dextran-rich β droplet (green) via an in-bud; 70 (c,d) Two-sphere
shape of the membrane, which forms two spherical segments around both
the dextran-rich β (green) and the PEG-rich α (black) droplet, connected
by a closed contact line neck. 71 In both cases, the systems’s free energy
is strongly reduced by eliminating the αβ interface.

a                                                                                                    b

5 μm 5 μm

Fig. 16 Spontaneous tubulation of the αγ membrane segment in contact
with the PEG-rich phase α leads to different patterns of nanotubes: 72

(a) Disordered pattern corresponding to a vesicle membrane that is com-
pletely wetted by the PEG-rich phase; and (b) Layer of densely packed
tubes corresponding to a membrane that is partially (de)wetted by both
aqueous phases. All tubes are connected to the outer vesicle membranes
(big circles). In both images, the diameter of the fluorescently labeled
tubes is below the diffraction limit of the light microscope.

as well as the βγ segment in contact with the β and γ phases.
In Fig 14a and 14b, the coexisting phases α and β are located
outside and inside the vesicle, respectively. Therefore, Fig 14a
displays one exterior β droplet at the outer leaflet of the bilayer
membrane whereas Fig 14b shows one interior α and one interior
β droplet in contact with the inner leaflet of the membrane.

6.2 Remodeling of GUV membranes by condensate droplets
The adhesion of condensate droplets to vesicles generates strong
morphological responses of the vesicle membranes. One exam-
ple for this response is provided by the apparent kinks, which
are observed in the optical microscope along the contact line be-
tween the adhering droplet and the vesicle membrane, see Fig 14.
On nanoscopic scales, these kinks represent membrane segments
with a very high curvature, caused by the capillary forces that the
αβ interface exerts onto the membrane at the contact line.68,69

For PEG-dextran systems, particularly interesting processes are
the complete engulfment of the droplets by the membranes70,71

and the formation of membrane nanotubes72 as shown in Figs 15
and 16, respectively. The different patterns of nanotubes dis-
played in Fig 16a,b reveal complete and partial wetting of the
GUV membrane by the aqueous two-phase system. More details
on this wetting behavior are provided in Sect S9† and Fig S15†.

6.3 Interfacial tension versus curvature-elastic tensions
The two morphological pathways displayed in Figs 15 and 16
arise from the competition between the interfacial tension of the
liquid-liquid interface with the curvature-elastic membrane ten-
sions of the two membrane segments αγ and βγ.

When the area Aαβ of the αβ interface is reduced by ∆Aαβ , the
interfacial free energy of the vesicle-droplet system decreases by

∆Eint =−Σαβ ∆Aαβ (37)

which is proportional to the interfacial tension Σαβ . The lat-
ter tension is a material parameter, which is determined by the
molecular composition of the α and β phases but is independent
of the size and shape of the interface. When the β droplet is com-
pletely engulfed by the membrane as in Figs 15, the αβ interface
is completely eliminated from the vesicle-dropet system, thereby
reducing its free energy by Σαβ Aαβ with the total interfacial area
Aαβ . To better visualize the shape of the vesicle-droplet systems
for completely engulfed droplets, the optical images in panels a
and c of Fig 15 are compared to schematic drawings in panels b
and d of the same figure.

For GUVs filled with PEG-dextran solutions, inward-pointing
nanotubes are formed by the membrane segment αγ exposed to
the PEG-rich phase α, as displayed in Fig 16. The associated
spontaneous curvature mαγ is generated by the adsorption of PEG
molecules onto the membranes.72 The free energy reduction by
the nanotube formation competes with the free energy reduction
by the complete engulfment of the droplets. Which process is
energetically more favorable depends on three parameters, the
interfacial tension Σαβ and the curvature-elastic tensions

σαγ ≡ 2καγ m2
αγ and σβγ ≡ 2κβγ m2

βγ
(38)

of the two membrane segments.69

When the αγ membrane segment has a large spontaneous cur-
vature mαγ ≫ 1/Rve but a small mean curvature, this segment has
a large bending energy of the order of σαγ Aαγ which is propor-
tional to the curvature-elastic tension σαγ of the αγ segment and
to the surface area Aαγ of this segment. Now, when the membrane
area ∆Ame of the weakly curved mother vesicle is transferred to
form a nanotube of mean curvature M ≃ mαγ , we gain the bend-
ing energy

∆Ebe =−σαγ ∆Ame =−2καγ m2
αγ ∆Ame . (39)

We now repeat this argument for the membrane segment βγ in
contact with the dextran-rich phase β , which generates the spon-
taneous curvature mβγ of the βγ segment. When the membrane
area ∆Ame of this segment forms a nanotube with mean curvature
M ≃ mβγ , we gain the bending energy

∆Ebe =−σβγ ∆Ame =−2κβγ m2
βγ

∆Ame . (40)

Because the membrane segment βγ in contact with the dextran-
rich phase is not observed to form nanotubes, we can directly
conclude from Eqs (39) and (40) that the curvature-elastic ten-
sion σβγ of the βγ segment is smaller than the curvature-elastic
tension σαγ of the αγ segment.
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The reduction of the membrane’s bending energy by nanotube
formation as given by Eq (39) remains to be compared with the
reduction of the interfacial free energy by the engulfment of the
droplet as described by Eq (37). We then conclude that complete
droplet engulfment should be observed for69

Σαβ ≫ σαγ = 2καγ m2
αγ (complete engulfment). (41)

that is, when the interfacial tension Σαβ is large compared to the
curvature-elastic tension σαγ of the membrane segment αγ ex-
posed to the PEG-rich α phase. On the other hand, the αγ mem-
brane segment will form nanotubes if

σαγ ≫ Σαβ (nanotube formation). (42)

that is, if the curvature-elastic tension σαγ of the αγ segment
is large compared to the interfacial tension Σαβ . For the PEG-
dextran two-phase system, the interfacial tension Σαβ varies by
several orders of magnitude (Fig S14b†). As a consequence, this
two-phase system can lead to both Σαβ ≫ σαγ and σαγ ≫ Σαβ ,
that is, to complete engulfment of the condensate droplet and to
the formation of membrane nanotubes as in Figs 15 and 16.

7 Conclusions
In this paper, we elucidate the notion of membrane tension for
three biomimetic membrane systems as provided by planar lipid
bilayers, unilamellar nanovesicles, and GUVs. For planar bilayers
and nanovesicles, we distinguish the bilayer tension Σ from the
two leaflet tensions, Σ1 and Σ2, with Σ = Σ1 +Σ2. A global view of
the leaflet tensions is provided by the two-dimensional parameter
spaces in Figs 3 and 5 for planar and vesicle bilayers, respectively.
Particularly interesting bilayer states are tensionless but have op-
posite leaflet tensions (OLTs) as in Fig 4 for planar bilayers and
in Fig 6 for nanovesicles. Outside their stability regimes, planar
and vesicle bilayers exhibit lipid flip-flops (Figs S5† and S6†) and
structural instabilities (Figs S9† and S10†).

For GUV membranes, the total membrane tension Σtot is equal
to the mechanical membrane tension Σ plus the curvature-elastic
tension 2κm2. The mechanical membrane tension depends on
the size and shape of the membrane as demonstrated for multi-
spheres (Fig 10) in Sect 5.1 and for positive two-sphere shapes
(Fig 11) in Sect 5.2. We then addressed the different shapes of
tubular membranes, which can be multispherical (Fig 12), undu-
loidal (Fig 13), or cylindrical. Unduloidal shapes represent peri-
staltic deformations of cylindrical shapes. The fluctuation tension
Σfl for the excess membrane stored in the peristaltic modes ex-
hibits two tension thresholds as given by Eqs (35) and (36).

The adhesion of condensate droplets to GUVs is considered in
Sect 6. The geometry of the vesicle-droplet systems (Fig 14) in-
volves three surfaces, the liquid-liquid interface with interfacial
tension Σαβ as well as two membrane segments αγ and βγ with
curvature-elastic tensions σαγ and σβγ as defined in Eq (38). The
relative magnitude of these tensions determines the remodeling
of the GUV membranes: For large interfacial tension, the conden-
sate droplets are completely engulfed by the vesicle membranes
as in Fig 15 whereas one of the membrane segments forms mem-
brane nanotubes as in Fig 16 for small interfacial tension.

Finally, it follows from the finite persistence length of tension-
less fluid membranes as given by Eq (6) and from the poration of
sufficiently large membranes in Sect 3.3 that the thermodynamic
route to membrane tension is ill-defined, in contrast to the ther-
modynamic definition of interfacial tension by J. Willard Gibbs.
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