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Quadrupolar NMR crystallography guided crystal structure prediction (QNMRX-CSP) is
a nascent protocol for predicting, solving, and refining crystal structures. QNMRX-CSP
employs a combination of solid-state NMR data from quadrupolar nuclides (ie.,
nuclear spin >1/2), static lattice energies and electric field gradient (EFG) tensors from
dispersion-corrected density functional theory (DFT-D2%*) calculations, and powder X-
ray diffraction (PXRD) data; however, it has so far been applied only to organic HCl
salts with small and rigid organic components, using >°Cl EFG tensor data for both
structural refinement and validation. Herein, QNMRX-CSP is extended to ephedrine
HCL (Eph) and pseudoephedrine HCl (Pse), which are diastereomeric compounds that
feature distinct space groups and organic components that are larger and more
flexible. A series of benchmarking calculations are used to generate structural models
that are validated against experimental data, and to explore the impacts of the: (i)
starting structural models (ie., geometry-optimized fragments based on either
a known crystal structure or an isolated gas-phase molecule) and (i) selection of unit
cell parameters and space groups. Finally, we use QNMRX-CSP to predict the
structure of Pse in the dosage form Sudafed® using only *°Cl SSNMR data as
experimental input. This proof-of-concept work suggests the possibility of employing
QNMRX-CSP to solve the structures of organic HCl salts in dosage forms — something
which is often beyond the capabilities of conventional, diffraction-based
characterization methods.
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1. Introduction

Advances in theory and computational power have enabled the rise of crystal
structure prediction (CSP) methods for the discovery of new materials and
refinement of their solid-state structures,'” including active pharmaceutical
ingredients (APIs),*'* metal-organic frameworks,"»** and organic semi-
conductors.**® There are numerous commercial and open-access CSP software
packages available,'”** many of which are used in combination with experimental
data and/or other computational methods. For the CSP of organic compounds,
the Cambridge Crystallographic Data Center* (CCDC) has run six CSP “blind
tests” (a seventh is currently underway), where participants are tasked with pre-
dicting the crystal structures of various organic molecules, ranging from those
with small organic components to intricate multicomponent cocrystals.”>"°
Limitations of CSP methods include, but are not limited to: (i) the need for
advanced algorithms for searching the complex structure spaces,**" especially for
systems that have high molecular weights, high flexibility,**** and/or multiple
independent molecules,* all of which increase the computational cost; and (ii)
the difficulties in the ranking the relative energies of candidate structures.*’

NMR crystallography (NMRX), which utilizes a combination of solid-state NMR
(SSNMR), quantum chemical computations, and in some cases, powder X-ray
diffraction (PXRD) data, is widely used for the prediction, refinement, and vali-
dation of structures,®®*> and has emerged as a means of improving CSP
methods."” Notably, NMRX-CSP can greatly decrease the computational costs
associated with CSP methods, while also providing metrics for validation of
structural models (i.e., via comparison of experimentally measured and compu-
tationally derived NMR parameters and crystallographic data).***** While PXRD
provides invaluable information on long-range order, the space group, and the
unit cell parameters,*** SSNMR adds information on local atomic environments
through chemical shifts,”>* interatomic proximities through dipolar
couplings,**® and confirmation of the number of asymmetric units.’” These data
reduce the search space of computational methods, which refine candidate
crystal structures, determine relative energy rankings, and calculate NMR inter-
actions for comparison with experiment.?>3¢>%

To date, the vast majority of NMRX-CSP studies on organic systems rely upon
the comparisons of experimental and calculated 'H and '*C chemical
shifts;**=**°1->* however, given the ubiquity of elements with quadrupolar nuclei in
organic solids (i.e., spin I > 1/2, including **N, 70, **Na, and *>Cl), it seems their
exploitation would be of great benefit. The quadrupolar interaction, which is the
interaction between the nuclear quadrupole moment and the electric field
gradients (EFGs) at the nuclear origin, can be directly measured from SSNMR
spectra of quadrupolar nuclides, in the form of the quadrupolar coupling
constant, Cq, and asymmetry parameter, 7q (see Table 1 for definitions). The
EFGs, which are described by symmetric, second-rank tensors, are exquisitely
sensitive to their local electronic environments, as well as longer-range electro-
static interactions that often do not have significant influences on chemical
shifts. The EFG tensor principal components and their orientations in the
molecular/crystal frame depend only upon the ground-state electron density; as
such, first principles calculations of EFG tensors are very efficient in comparison
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Table 1 Experimental and calculated **Cl EFG and chemical shift tensor parameters“'b'f
Cq (MHz)" nq°  diso (ppm)? @ (ppm)? «* al)f B v ()
Eph Exp. 1.23(2) 0.43(3) 43(1) 65(5) —0.7(1) 22(5) 50(5) 2(20)
Calc. 1.110 0.44 42 65 —-0.13 237 62 78
Pse Exp. 2.20(2) 0.85(3) 41(1) 70(10) 0.3(2)  30(30) 30(5) 150(30)
Cale. —2.774 0.45 36 74 0.89 128 83 237

“ Theoretical EFG tensor parameters were obtained from calculatlons on XRD-derived
structural models that were refined at the RPBE-D2* level. ”The experimental
uncertainties in the last digit for each value are indicated in parentheses. ¢ The principal
components of the EFG tensors are defined such that Vi3] = |[Vay| = |Vi4|. The
quadrupolar coupling constant and asymmetry parameter are given by Cq = eQV33/h, and
nq = Vi1 — Va2)/Vas, resgectively. The sign of Cq cannot be determined from the
experlmental 35Cl spectra. ¢ The principal components of the chemical shift tensors are
defined using the frequency-ordered convention, with 6,y = 6,, = d33. The isotropic
chemical shift, span, and skew are given by Oiso = (611 + 022 + 033)/3, Q = 613 — 033, and
k = 3(022 — 0is0)/R, respectively. ° The Euler angles «, B, and vy define the relative
orientation of the EFG and chemical shift tensors using the ZY'Z" convention for rotation.
f Calculated *°Cl magnetic shielding constants were converted to the chemical shift scale
through a separate calculation on a geometry optimized structural model of r-histidine
HCI-H,0 (based on a structure from the CSD, code HSTCMO01) for which the
experimental chemical shift is set to 34.5 ppm (see ref. 59).

to those of chemical shielding.®®®* Despite these advantages, the use of quad-
rupolar nuclei in NMRX-CSP studies is limited to date, with a few reports of
"N-'H correlation experiments and/or *C-"*N residual dipolar couplings to
determine the proximities of these atom pairs.®>** We suspect that the two main
reasons that quadrupolar guided NMRX-CSP has largely gone underutilized are:
(i) the acquisition of high quality SSNMR spectra of quadrupolar nuclides has
traditionally been regarded as challenging and outside of the interest of many
practitioners of advanced SSNMR methods; and (ii) there have been issues with
calculations of EFG tensors in organic solids that match well with experi-
ment.***+%>¢¢ Fortunately, the former issue has largely been resolved, with a wide
range of hardware and pulse sequences available to the end user for the inves-
tigation of quadrupoles; however, the latter issue has only recently been
addressed by including reparametrized semi-empirical dispersion corrections in
geometry optimizations.*”%®

Our group has recently developed a quadrupolar guided NMR crystallographic
crystal structure prediction (QNMRX-CSP) protocol for the prediction, validation,
and refinement of structures of organic HCI salts using the comparison of
experimental and calculated **Cl EFG tensors.* In this initial work, QNMRX-CSP
was benchmarked using five HCI salts and successfully used in two blind tests, all
of which have known crystal structures featuring small unit cells and simple, rigid
organic molecules. The ultimate objective of QNMRX-CSP is to predict and refine
high-quality crystal structures, starting only with a molecular formula and **CI
EFG tensor data (and in some cases, PXRD data).

In this work, we extend QNMRX-CSP benchmarking calculations to organic
HCI salts featuring larger unit cells and organic molecules of increased confor-
mational complexity. Specifically, we investigate solid forms of (1R,2S)-
(—)-ephedrine HCI (Eph) and (15,2S)-(+)-pseudoephedrine HCI (Pse), which have
different space groups and unit cell parameters (N. B.; it is emphasized that these
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are not enantiomorphs),”*”* as well as >*Cl SSNMR data that were acquired in our

laboratory. Four aspects of QNMRX-CSP benchmarking are considered, featuring
different starting points and conditions, with the objective of obtaining structural
candidates that agree well with the known crystal structures. The final aspect
involves applying QNMRX-CSP to predict the structure of Pse in the dosage form
Sudafed®, using only *>Cl SSNMR data of this solid form. Finally, we discuss the
expansion of QNMRX-CSP to incorporate other quadrupolar nuclides (e.g., "*N,
70), as well as tandem operation with conventional NMRX-CSP methods
featuring **C and >N chemical shifts; this may enable applications to molecules
of greater size and complexity, and possibly the characterization of microcrys-
talline forms of APIs in dosage forms that undergo structural changes, including
hydration, disproportionation, amorphization, and phase changes due to
tableting.

2. Methods
2.1 Chemicals

Ephedrine HCI, pseudoephedrine HCI (Scheme 1), and Sudafed® Sinus Conges-
tion 30 mg Nasal Decongestant (Sudafed®), which contains 19.5 wt% Pse, were
purchased and ground with a pestle to be used in all subsequent experiments.

2.2 Powder X-ray diffraction

PXRD patterns of Eph and Pse were acquired with a Proto AXRD benchtop X-ray
diffractometer operating with Bragg-Brentano geometry and featuring a Cu Ka
radiation source and a Proto DECTRIS hybrid pixel detector. The X-ray tube
voltage and amperage were 30 kV and 20 mA, respectively. Diffraction patterns
were acquired with a detector scanning 26 from 5° to 40° with a step size of 0.015°
and a dwell time of 4 s. The PXRD pattern of Sudafed® was acquired using
a Rigaku Miniflex X-ray diffractometer operating with Bragg-Brentano geometry
and featuring a Cu Ko radiation source and a D/tex Ultra 250 1D silicon strip
detector. The X-ray tube voltage and amperage were 40 kV and 15 mA, respectively.
Diffraction patterns were acquired with a detector scanning 26 from 2.5° to 50°
with a step size of 0.03° and at a rate of 0.5° min~".

) OH Ephednne HCI

H7, H8
H,® %

C4-H10 N

Cl

C10-H16

C9-H15
G-H9 3, Ha, H5, He
(B) Pseudoephedrine HCI
C8-H14 C6-H12 C1-H1, H2, H3 =
C7-H13 .
Scheme 1 Molecular diagrams and atomic numbering for (1R,2S)-(—)-ephedrine HCL (A)

and (1S,25)-(+)-pseudoephedrine HCL (B).
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2.3 Solid-state NMR spectroscopy

2.3.1 Overview. SSNMR spectra were acquired at 9.4 T using a Bruker Avance III
HD spectrometer and an Oxford wide bore magnet at the University of Windsor
(Windsor, ON), where the relevant Larmor frequencies are »o('"H) = 400.23 MHz,
vo("*C) = 100.65 MHz, vo(*>N) = 40.54 MHz, and v,(**Cl) = 39.21 MHz. Static spectra
were acquired with a Revolution 5.0 mm o.d. HX static probe with samples packed
into glass tubes sealed with Teflon tape, whereas MAS spectra were acquired with
a Varian/Chemagnetics 4.0 mm o.d. HX MAS probe with samples packed into
zirconia rotors. Additional SSNMR spectra were acquired at 14.1 T using a Bruker
Avance NEO spectrometer and an Oxford wide bore magnet at the National High
Magnetic Field Laboratory (Tallahassee, FL), where the relevant Larmor frequencies
are vo("H) = 600.07 MHz and vo("*C) = 150.89 MHz. MAS spectra were acquired with
a NHMFL-built 3.2 mm o.d. HXY probe with samples packed into 3.2 o.d. zirconia
rotors. High-field spectra were acquired at 21.1 T using a Bruker Avance II console
and an Oxford standard bore magnet at the National Ultrahigh-Field NMR Facility
for Solids (Ottawa, ON), where the relevant Larmor frequencies are vo('H) = 899.53
MHz and »,(**Cl) = 88.13 MHz. Static and MAS experiments used a Bruker 4.0 mm
HX MAS probe with samples packed into 4.0 mm o.d. zirconia rotors. Additional
high-field spectra were acquired at 18.8 T using a Bruker Avance NEO spectrometer
and an Oxford wide bore magnet at the National High Magnetic Field Laboratory
(Tallahassee, FL), where the relevant Larmor frequencies are vo("H) = 799.71 MHz
and »,(**Cl) = 78.35 MHz. Static and MAS experiments used a NHMFL-built 3.2 mm
HXY MAS probe with samples packed into 3.2 mm o.d. zirconia rotors. A list of all
acquisition parameters is provided in Tables S1 and S2.1 All pulse sequences and
recommended calibration parameters and standards are available from the authors
at https://github.com/rschurko.

2.3.2 'H — 'Cand 'H — N CP/MAS experiments. The 'H — **C and 'H
— "N ramped-amplitude CP/MAS pulse sequence was used to obtain the **C and
N SSNMR spectra.”>”® *C chemical shifts were referenced to TMS at d;s(*>C) =
0.0 ppm using the frequency peak of 'C labelled a-glycine at dio(*°C) =
176.5 ppm as a secondary reference,” whereas '°N chemical shifts were refer-
enced directly to nitromethane at d;s,(*°N) = 0.0 ppm.”

2.3.3 *CI{'H} experiments. **Cl{'"H} spectra were acquired under static
conditions at 9.4 T, and under both static and MAS conditions at 21.1 T or 18.8 T.
Static spectra at 9.4 T and 18.8 T were acquired using the Hahn-echo sequence with
CT-selective 7/2 pulses and a decoupling field of »,(*H) = 30-50 kHz.>* Static
spectra at 21.1 T were acquired using the quadrupolar echo pulse sequence with CT-
selective 7t/2 pulses and a decoupling field of v,(*H) = 60 kHz. MAS spectra at 18.8 T
and 21.1 T were acquired using the Bloch decay experiment with CT-selective /2
pulses, a decoupling field of »,(*H) = 50-60 kHz, and MAS rates of v, = 5 kHz for
Eph and v, = 10 kHz for Pse and Sudafed®. **Cl chemical shifts were referenced to
0.1 M NaCl at 0i,(*>CI) = 0.0 ppm using NaCl (s) at diso(*°Cl) = —41.11 ppm as
a secondary ref. 81. Spectra were processed using the Bruker TopSpin 4.3 software
package and fit using the ssNake v1.4 package.®” To ensure proper expression of the
Euler angles in the ZY'Z" convention, the results of iterative simulations in
ssNnake, which uses the ZX'Z" convention and different definitions for anisotropic
chemical shift and quadrupolar parameters, were verified in WSolids1.**
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2.4 Computational details

2.4.1 Overview. QNMRX-CSP has been designed and benchmarked for the
crystal structure prediction of small organic HCI salts.®® The protocol (outlined in
Scheme S17 and detailed in Section 3.2) combines three complementary methods:
(i) PXRD (Section 2.2), (ii) **Cl SSNMR (Section 2.3), and (iii) calculations (vide
infra). For calculations, two graphical user interfaces are used: (i) BIOVIA Mate-
rials Studio 2020 R3 is used to interface with Polymorph * and CASTEP * and (ii)
CASTEP Data Manager (developed in our laboratory) is used to automate QNMRX-
CSP.®® CASTEP Data Manager takes advantage of a standalone academic version of
CASTEP 2020 and is available at https://github.com/rschurko.

2.4.2  Polymorph. Polymorph * is used to explore the conformational space of
Eph and Pse. Polymorph requires the specification of a space group, motion
groups, and atomic charges. In this context, motion groups are defined as
a geometry optimized organic cation and a Cl™ anion, with Hirshfeld charges
assigned to each atom. Subsequently, these inputs are used in the Polymorph
routine, which employs a four-step approach to generate a maximum of 10 000
candidate crystal structures per trial, where a trial is defined as one complete
iteration of the four-step Polymorph routine—this includes the following steps: (i)
packing, (ii) clustering, (iii) force-field geometry optimization, and (iv) clustering.
Packing uses a Monte Carlo simulated annealing algorithm to generate the
candidate crystal structures with a maximum and minimum temperature of 1.5 X
10° K and 300 K, heating and cooling factors of 0.025 and 0.0005, and a minimum
move factor of 1.0 x 10 '°. Clustering removes duplicate structures that are
generated during the packing step based on a radial distribution cutoff of 7.0 A,
a tolerance of 0.13, and 140 bins. Dreiding force-field®* geometry optimizations
are used to refine the candidate structure and calculate their static lattice ener-
gies. Convergence for the force-field geometry optimization is reached after
a maximum change in energy of 2 x 10> keal mol *, in force of 10> kcal mol "
A™', in stress of 107 GPa, and in atomic displacement of 10~ A. Candidate
structures are clustered again to remove any duplicate structures following force-
field geometry optimization. A final round of clustering is performed following all
trials of Polymorph.

2.4.3 CASTEP. CASTEP * is used to conduct plane-wave DFT-D2* *® geometry
optimizations and subsequent calculations of NMR interaction tensors. Three
types of geometry optimizations are used: (i) truncated, (ii) convergent, and (iii)
full volume convergent. All optimizations use the RPBE functional with a plane-
wave energy cutoff of 800 eV, ultrasoft pseudopotentials generated on-the-fly,*”
the zeroth-order regular approximation,® and a k-point spacing of 0.05 A™*. The
three approaches differ in the implementation of the low memory BFGS scheme,*
where for truncated geometry optimizations the maximum BFGS cycle is set to 5,
whereas the convergent and full volume convergent geometry optimizations are
refined until the convergence thresholds. The convergence thresholds are set to
be reached after a maximum change in energy of 5 x 107° eV per atom, in
displacement of 5 x 10™* A, and a maximum force of 107> eV A™*. Full volume
convergent calculations have the added convergence threshold of a maximum
stress tolerance of 0.02 GPa and use a fixed basis quality with soft compressibility.
A nuclear quadrupole moment of Q(**Cl) = —8.112 fm?® is used for the calculation
of the **Cl EFG tensors.*”
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2.5 Metrics for assessing candidate structures

2.5.1 Overview. QNMRX-CSP uses metrics that are designed to retain the best
candidate structures. Three metrics rely on the comparison of unit cell parame-
ters, static lattice energies, and **Cl EFG tensors.

2.5.2 Unit cell parameters. Candidate structures are compared to the indexed
unit cell parameters of the known crystal structures; structures are retained if they
fall within +20% of the known values.

2.5.3 Static lattice energies. Calculated static lattice energies of candidate
structural models (Ej,.) are compared to that with the lowest overall static lattice
energy (Ejow)- In M2, all structural models that are in the bottom 13.5% of the Ej
are retained, according to:

(1) Elow = Elat = 0.865 x Elow

In M3, candidate structural models are retained if they have an Ej, that is less
than or equal to a cutoff static lattice energy, Ecycwofr, Such that:

(ll) Elat - Elow = Ecutoff

Here, E.uoff iS a relative static lattice energy determined to be 135, 50, or
1 kJ mol ! greater than Ey,, which are applied in M3 after Steps 1, 2, and 3. The
choice of 13.5% in M2 and selections of E e in M3 have been determined by
extensive benchmarking calculations.®

2.5.4 *°Cl EFG Tensors. The similarity of calculated and experimental *>Cl
EFG tensors is assessed using the EFG distance:*®

| 12
Tgrc = (1—5 [3A117 4 380" + 3A33% + 2A11 A0 + 280 A5 + 2A33A33])

A = VS — VIR

where differences between the two sets of principal components of the EFG
tensors (Vi, k = 1, 2, 3) provide the degree of similarity between two tensors (i.e.,
a value of I'ypg = 0 MHz indicates that the two tensors are identical). This metric
is based on the chemical shift distance proposed by Alderman et al.**

2.6 Structural validation

2.6.1 Overview. QNMRX-CSP uses two structural validation terms, R-factor
and root mean square deviation (RMSD) of atomic positions, to compare candi-
date structures predicted by the protocol to the convergent geometry optimized
known crystal structures. Recent CCDC>* blind tests have set thresholds of
RMSDs = 0.80 A and R-factors < 10% as acceptable.”>

2.6.2 R-factor. PXRD patterns are simulated using the default settings in
the Powder Pattern tool in Mercury 2022.3.0.°° Agreement between the simu-
lated PXRD patterns of the convergent geometry optimized crystal structures
and candidate structures obtained from QNMRX-CSP is assessed by the
R-factor:
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R = 2 = Fl g0y,
2|
where F, is the calculated signal amplitude of the convergent geometry optimized
crystal structures and F,. is the calculated signal amplitude of the candidate
structure.

2.6.3 RMSD in atomic positions. Candidate structural models in the valida-
tion step of QNMRX-CSP are compared to their respective convergent geometry
optimized crystal structures via calculation of RMSDs from relative atomic posi-
tions using the CSD-Materials Crystal Packing Similarity tool in Mercury 2022.3.0
with a 15-molecule aggregate and a distance and angle tolerance of 20% and 20°,
respectively. Isolated organic fragments generated in QNMRX-CSP are compared
with a 1-molecule aggregate and a distance and angle tolerance of 20% and 20°,
respectively.

3. Research and discussion

3.1 Characterization with powder X-ray diffraction and solid-state NMR
spectroscopy

3.1.1 PXRD. The PXRD patterns of Eph and Pse match simulated patterns
based on previously reported SCXRD structures (EPHECL02 and PEPHCL,
respectively),”””* with no indications of impurity phases (Fig. S1A, B and Table
S3+t). The reported SCXRD structure for Pse was acquired at room temperature. No
room temperature SCXRD structures have been reported for Eph with either a low
R-factor (i.e., <5%) or all of the atom positions; instead, a simulated PXRD pattern
based on a SCXRD crystal structure of Eph determined at 150 K is used for
comparison,’ which accounts for the slight differences between the experimental
and simulated patterns. Since the R-factors of the EPHECHL02 and PEPHCL
structures are high (6.57% and 7.5%, respectively), these make interesting cases
for structural prediction and refinement using QNMRX-CSP.

3.1.2 'H — "Cand '"H — "N CP/MAS NMR spectra. The 'H — "*C{'H} CP/
MAS spectra of Eph and Pse (Fig. 1A and B) are consistent with those from
a previous report, in which all peaks were assigned to their respective atomic
sites,” with the exceptions of C7 and C8 (Scheme 1 and Table S4t). The 'H — '°N
CP/MAS spectra for Eph and Pse each feature a single peak corresponding to the
nitrogen atoms in the charged secondary amine groups (Fig. S2t); in this
instance, the small difference between the >N chemical shifts, along with high
uncertainties, limit their use for NMRX.

3.1.3 *°Cl{*"H} NMR spectra. The **CI{'"H} spectra of Eph and Pse (Fig. 2)
feature central transition (CT, +1/2 <> —1/2) powder patterns that are influenced
by second-order quadrupolar interactions and chemical shift anisotropy. These
data are used to extract values of the quadrupolar and anisotropic chemical shift
tensor parameters, as well as the relative orientations of the EFG and chemical
shift tensors (as described by Euler angles, see Table 1). At a base level, the unique
33Cl powder patterns of Eph and Pse, which arise from unique sets of NMR
interaction tensors, serve as spectral fingerprints for each solid form.

The Cl” ion environments of Eph and Pse each feature three H---Cl hydrogen
bonds (i.e., 7{(H:--Cl) < 2.6 A)*® involving one alcohol and two charged secondary
amine moieties (Fig. 3 and Table 2). In Eph, the three hydrogen bonds are
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Fig. 1 H — 3C CP/MAS NMR spectra of (A, red) Eph, (B, blue) Pse, and (C, green)
Sudafed®. Field strengths and MAS rates (v,o) are shown to the right of each spectrum.
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Fig. 2 3°CI{*H} NMR spectra of Eph (red) and Pse (blue) acquired at 21.1 T under MAS
(Bloch decay) and static conditions (quadrupolar echo), and at 9.4 T under static condi-
tions (Hahn echo). Spectral simulations are shown in black.

classified as short contacts (i.e., (H---Cl) < 2.2 A), which are those hydrogen
bonds having the highest impact on the **Cl EFG tensors.”®*> From the large
number of **Cl EFG tensors that have been measured and calculated for organic
HCl salts, it is well known that the presence of one or two short contacts typically
results in sizeable magnitudes of Cq (e.g., from 6.0 to 10.5 MHz);*%%10%103-118
however, in the case of Eph, the magnitude of Cq, is small (1.23 MHz).
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Fig. 3 Schematic of the H---Cl hydrogen bond network for the DFT-D2* refined crystal
structures of Eph and Pse. From shortest to longest, ry, rp, and rs correspond to the H---Cl
bond lengths with secondary amine, alcohol, and another secondary amine moiety,
respectively. Angles ¢; describe the interbond angles. Values are shown in Table 2.

Table2 H---Clhydrogen bond networks for the DFT-D2* refined crystal structures of Eph
and Pse, as shown in Fig. 3

ry (A ry (A r; (A)° @12 (°)° 013 (°)° @23 (°)° Avg. ¢

Eph 2.184 2.210 2.212 82.68 83.90 79.37 81.98
Pse 2.142 2.214 2.358 95.44 91.68 77.87 88.33
24-317” 2.159 2.198 2.263 90.06 88.66 84.21 87.64

“ For definitions of geometrical parameters, see Fig. 3. ? Structure 24-317 is one of the six
structures predicted by QNMRX-CSP; see Section 3.2.3 for relevant discussion.

In order to understand the origins of this small Cq value in Eph, the local
geometry of the Cl™ ion is considered. There are clear guidelines for predicting
arrangements of point charges that result in zero EFGs at any point in space;"*® for
instance, these have been applied by Bryce and co-workers in computational
models of a CIH,*>" ion, where the magnitudes of Cq and 7q are observed to
change as a function of distortion away from tetrahedral symmetry.** The most
well-known examples include the placement of N equal point charges at the N
vertices of polyhedra, like tetrahedra, cubes, and octahedra, which yields zero
EFGs at a point S, at their centers (i.e., the centroid). Interestingly, no EFGs occur
at S, if N/2 equal point charges are positioned at N/2 vertices such that none are
related by inversion through S,. The CIH;~ “fragment” in Eph has a trigonal
pyramidal arrangement, with all the H---Cl---H bond angles, /Z(HCIH), near 90°;
hence, its geometry resembles this latter configuration, with the hydrogen atoms
arranged approximately near the three orthogonal vertices of a fictitious cube.
However, since the symmetry is not perfectly cubic, there are non-zero EFGs,
accounting in part for the small magnitude of Cq,.

A similar hydrogen bonding arrangement is observed for Pse; however, one of
the H---Cl™ hydrogen bonds in the CIH;~ fragment involving a secondary amine
group is significantly longer than the other two short contacts. This likely
accounts for the Cq = 2.20 MHz, which is larger than that of Eph.
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3.2 QNMRX-CSP

QNMRX-CSP was designed to predict the crystal structures of small organic HCI
salts.® This method is comprised of three modules, each of which features
distinct steps and metrics (a flowchart depicting this protocol is shown in Scheme
S1t). The functions of the three modules are as follows: Module 1 (M1) selects
molecular fragments that correspond to “chemically sensible” arrangements of
atoms defined in terms of their individual conformations, followed by the
assignment of motion groups and atomic Hirshfeld charges. Module 2 (M2)
generates thousands of unique candidate structures, which exhibit distinct unit
cells and packing arrangements (see Section 2.4). Finally, Module 3 (M3) refines
the structural models through plane-wave DFT-D2* geometry optimizations and
comparison of calculated and experimental **Cl EFG tensors. Steps are actions in
each module applied to candidate structures (vide infra). Metrics are parameters
used to retain the best candidate structures, which include unit cell parameters
(a, b, ¢, &, B, and ¥), static lattice energies (Eya, along with Ejyy, and Eeyos), and *>Cl
EFG distances (I'grg) (see Section 2.5 for definitions). Candidate structures are
validated via comparison to convergent geometry-optimized structural models
based on known crystal structures (Eph: OPT-EPHECLO02, and Pse: OPT-PEPHCL)
by calculating R-factors (of PXRD patterns) and atomic position RMSDs; those
with values falling below the thresholds described in Section 2.5 are considered
valid structural models.

In the ensuing sections, we describe the use of QNMRX-CSP for benchmarking
calculations on Eph and Pse (Table 3), including calculations using: (i) fragments
obtained from a geometry optimized structural model based on a known crystal
structure as a starting point (Section 3.2.1); (ii) geometry optimized fragments
based on isolated, gas-phase molecules as a starting point (Section 3.2.2); (iii)
fragments from (i) above for Pse, but with the space group, unit cell parameters,
and *°Cl quadrupolar parameters for Eph (and vice versa, Section 3.2.3); and (iv)
fragments from (ii), but only with **Cl quadrupolar parameters (XRD data is
absent, Section 3.2.4). The purposes of (iii) and (iv) are to explore the outcome of
QNMRX-CSP calculations when experimental data is limited or unavailable, with
the hope of developing general applications to de novo crystal structure
predictions.

3.2.1 Benchmarking starting from a refined crystal structure. In order to
benchmark the QNMRX-CSP protocol and its metrics, the first sets of calculations
use the known crystal structures as starting points. The application of the

Table 3 The benchmarking of QNMRX-CSP featuring different starting points and
conditions

Origin of motion group PXRD
SSNMR
Known crystal Isolated Unit cell Space
Section # structure molecule parameters group 35Cl EFGs
3.2.1 v — v v v
3.2.2 — v v v v
3.2.3 v — v v v
3.2.4 — v — — v
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Table4 A summary of the initial and final numbers of structural models in each step of the
QNMRX-CSP protocol, as applied to Eph and Pse

Known crystal Refined isolated
structures” molecule”
QNMRX-CSP protocol Initial Retained  Initial Retained
Eph
M2: + 20% UCPSs; Ejo = 13.5% 46889 — 702 56673 - 901
M3 Step 1: T'gpg = 0.70 MHz; 702 - 25 901 - 9
Eppe =< 135 kJ mol ™!
M3 Step 2: I'epg = 0.49 MHz; 25 - 19 9 - 9
Ejae = 50 k] mol™*
M3 Step 3: I'egpg = 0.49 MHz; 19 - 6 9 - 1
Ejpe = 1 kJ mol™
Pse
M2: £ 20% UCPs; Ejpw = 13.5% 38718 e 242 177 564 - 922
M3 Step 1: I'gpg = 0.70 MHz; 242 - 4 922 - 22
Ejae = 135 k] mol ™!
M3 Step 2: I'egpg < 0.49 MHz; 4 - 3 22 - 10
Eppe = 50 k] mol™*
M3 Step 3: I'gpg = 0.49 MHz; 3 - 2 10 - 1

Eppe = 1 k] mol™

“ The starting point for these calculations were geometry optimized structures based on
a known crystal structure. ” The starting point for these calculations were geometry
optimized structures based on isolated, gas-phase molecules.

protocol to Eph is considered first (see Table 4 for an overview of modules, steps,
metrics, and numbers of candidate structures).

The starting point is Module 1 (M1): (i) in M1 Step 1, the crystal structure of
Eph (EPHECLO2) is obtained from the CCDC; (ii) in M1 Step 2, a convergent
geometry optimization is conducted to refine the atomic coordinates; (iii) in M1
Step 3, Hirshfeld charges (Table S51), as determined from population analysis, are
assigned to the atoms; and (iv) in M1 Step 4, the organic cation and chloride anion
are assigned as motion groups (Fig. 4).

In Module 2 (M2), the motion groups from M1 are used in the four-step
Polymorph routine (see Section 2.4), which consists of packing, clustering,
force-field geometry optimization, and clustering, leading to thousands of
candidate structures. This routine is repeated 10 times (each iteration is defined
as a trial, meaning that there are 10 trials), after which a final clustering of
candidate structures is performed, leading to 46 889 candidates. The best
candidate structures are retained using the unit cell parameters and energy
metrics (unit cell parameters within £20% of the experimental values, and the
bottom 13.5% of the Ej,; see Section 2.5 for explanations), retaining 702
structures.

Module 3 (M3) consists of four steps: (i) in M3 Step 1, truncated geometry
optimizations (i.e., those that are halted after five BFGS iterations, see Section 2.5)
are conducted on the candidate structures followed by application of energy and
EFG distance metrics (Ecutorr = 135 k] mol ™" and I'gpg < 0.70 MHz), resulting in 25
candidate structures being retained; (ii) in M3 Step 2, convergent geometry
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Fig. 4 Motion groups assigned in Module 1 of the QNMRX-CSP protocol for bench-
marking calculations, with structural models for Eph (top) and Pse (bottom) based on the
known crystal structures (left) and structural models obtained from refining isolated
molecules (right).

optimizations are conducted on the candidate structures, leading to the retention
of 19 structures using energy and EFG distance metrics (Ecytor = 135 k] mol " and
TI'grg = 0.49 MHz); (iii) in M3 Step 3, the unit cell parameters of the candidate
structures are adjusted to match those of EPHECL02 and subsequent convergent
geometry optimizations are conducted, followed by the application of energy and
EFG distance metrics (Eeyore = 1 k] mol ™" and I'gpg = 0.49 MHz), which retains 6
candidate structures; and (iv) in M3 Step 4, the final 6 structures are assessed for
validation (Fig. 5A and Table 5). In this case, only 1 structure has RMSDs and R-
factors that are below the CCDC thresholds (see Section 2.6), though the other 5
candidate structures exhibit similar packing motifs (Fig. S31 and Table 5) but fail
structural validation.

QNMRX-CSP is similarly applied to predict the structure of Pse starting from
the PEPHCL structure, resulting in 2 candidate structures (Fig. 6A and Table 5).
Both candidate structures have RMSDs and R-factors well below the CCDC
thresholds.

3.2.2 Benchmarking starting from an isolated molecule. These calculations
are conducted as follows: (i) in M1 Step 1, a molecular structure of the Eph organic
cation is built in Materials Studio and centered in a 30 x 30 x 30 A® P1 unit cell;
(if) in M1 Step 2, the organic cation is subjected to a convergent geometry opti-
mization; (iii) in M1 Step 3, Hirshfeld charges, as determined from a charge
database (Table S57), are assigned to the organic cation and the Cl™ anion; (iv) in
M1 Step 4, the organic cation and Cl™ anion are assigned as motion groups
(Fig. 4). The remainder of the QNMRX-CSP protocol (M2 and M3) is applied as
described above. In this case, 10 trials of the Polymorph routine are necessary.
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Fig. 5 A comparison of the convergent geometry optimized crystal structure of Eph to
structures that were validated from benchmarking by (A) using known structures (5-98), or
(B) starting from structural models obtained from geometry optimizations of isolated
molecules (10-1).

Following M3, 1 candidate structure is passed to validation in M3 Step 4 (Fig. 5B
and Table 5) that has RMSDs and R-factors that are below the CCDC thresholds.

QNMRX-CSP is similarly applied to Pse; however, a total of 50 trials of the
Polymorph routine are necessary, resulting in 1 structure passing validation in M3
Step 4 (Fig. 6B and Table 5). Comparison of the isolated organic fragments from
each of the predicted candidate structures for Eph and Pse to their respective gas-
phase refined organic fragments is achieved with the RMSDs; here, the RMSDs of
the Eph organic fragments are higher than those of Pse (0.233 A and 0.073 A,
respectively).
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Table 5 Validation of the structural models of Eph and Pse obtained from QNMRX-CSP

Structural Tgpg Ejat
Motion group® model (MHz) (kJ mol™") R (%) RMSD (A)
Eph OPT-EPHECLO02 5-98 0.102 0.000 2.26 0.026
OPT-EPHECLO02 3-12° 0.086 0.008 17.75 0.169
OPT-EPHECLO02 3-20 0.092 0.019 18.03 0.174
OPT-EPHECLO02 6-11° 0.085 0.023 17.97 0.167
OPT-EPHECLO02 5-37 0.087 0.030 17.97 0.173
OPT-EPHECLO02 5-72 0.070 0.082 18.22 0.174
Isolated molecule 10-1 0.113 0.000 2.33 0.027
Pse OPT-PEPHCL 5-307 0.387 0.000 1.19 0.011
OPT-PEPHCL 8-117 0.393 0.029 1.94 0.014
Isolated molecule 44-278 0.408 0.000 1.56 0.013

“ The starting point for each motion group was either a known crystal structure (OPT-
EPHECLO02 or OPT-PEPHCL), or a refined isolated molecule. ” Structural models that
failed validation because of poor agreement with PXRD.

Pse

Fig. 6 A comparison of the convergent geometry optimized crystal structure of Pse to
structures that were validated from benchmarking by (A) using known structures (5-307),
or (B) starting from structural models obtained from isolated molecule geometry opti-
mizations (44-278).
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Table 6 A summary of the initial and final numbers of structural models in each step of the
QNMRX-CSP protocol, as applied in the benchmarking starting from molecular fragments
mismatched with experimental data

QNMRX-CSP protocol Initial Retained

Pse molecular fragments and Eph metrics

M2: =+ 20% UCPS; Ejon = 13.5% 505 475 - 2993
M3 Step 1: I'gpg = 0.70 MHz; Ej,e < 135 kJ mol * 2993 — 3
M3 Step 2: I'gpg = 0.49 MHz; Ejp = 50 k] mol ™ 3 - 0
M3 Step 3: I'gpg = 0.49 MHz; Ep, = 1 k] mol™* 0 - 0
Eph molecular fragments and Pse metrics

M2: £ 20% UCPS; Ejow = 13.5% 115734 e 795
M3 Step 1: T'gpg = 0.70 MHz; Ejp < 135 kJ mol ™! 795 - 74
M3 Step 2: I'gpg = 0.49 MHz; Ejp < 50 kJ mol ™ 74 - 57
M3 Step 3: I'gpg = 0.49 MHz; Eppe = 1 k] mol ™" 57 - 6

3.2.3 Benchmarking starting from a molecular fragment that is mismatched
with experimental data. It is of interest to see if the application of QNMRX-CSP to
one molecular fragment, but using the space group, unit cell parameters, and *>Cl
EFG tensors associated with the other, yields structural models that pass the
metrics and CCDC thresholds. In M2, the Polymorph routine was used to pack the
motion groups corresponding to the Pse cation (obtained from OPT-PEPHCL) and
Cl” ions into unit cells with the space group of Eph (i.e., P2,). Candidate struc-
tures are retained using the unit cell parameters and **Cl EFG tensors of Eph as
metrics (Table 6). After 100 trials of the Polymorph routine, and the generation of
over half a million candidate structures, 2993 were passed to M3, from which no
viable candidate structures were generated for validation. This result could be
interpreted as meaning that there is no form of Pse that crystallizes in the P2,
space group with *>Cl EFG tensor parameters matching those of Eph.

QNMRX-CSP was similarly applied to the Eph cation (OPT-EPHECL02) and Cl™
anion in the P2,2,2, space group of Pse. After only 30 trials in M2, 6 structures
were passed to M3 Step 4 for validation. In comparison to OPT-PEPHCL, all 6
structures have RMSDs and R-factors above the CCDC threshold (Fig. 7 and
Table 7). The 6 structures each feature three H---Cl hydrogen bonds (one alcohol
and two secondary amine moieties, Fig. 3 and Table 2), similar to the Cl™ envi-
ronment of Pse (vide supra). This might indicate that Eph has a theoretical
polymorph with a structure in the P2,2,2, space group with *>Cl EFG tensors
similar to those of Pse, though this is beyond the scope of the current study.

3.2.4 Benchmarking starting from an isolated molecule but in the absence of
XRD data. The motivation for these calculations is to explore the possibility of CSP
in instances where *>Cl EFG tensors are available, but XRD is not. This would be of
great value for the CSP of micro- and nanocrystalline HCI APIs in dosage forms.
Eph, Pse, and the dosage form Sudafed®, which contains Pse, represent an ideal
set of samples for a proof-of-concept study.

Since Eph and Pse are readily differentiated by their distinct **Cl CT patterns,
it is possible to use **Cl SSNMR to determine which, if either, solid form is
present in Sudafed®. The **CI{"H} MAS and static NMR spectra of Sudafed® at
18.8 T (Fig. 8) have powder patterns matching that of bulk Pse, confirming its
presence. In addition, there is a small peak ca. —41.1 ppm that indicates the
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Fig. 7 A comparison of the convergent geometry optimized known structure of Pse and
the structural model with the lowest energy that reached validation using the Eph cation
and the Pse unit cell parameters and *>Cl EFG tensors (24-317).

Table 7 Validation of the structural models of Eph obtained from QNMRX-CSP when
using the Eph fragment as a structural unit, but the XRD and SSNMR data for Pse as metrics

Structural model I'gpg (MHzZ) Eiae (K] mol™) R (%) RMSD (A)
24-317 0.481 0.000 95.87 0.776
14-129 0.283 0.010 88.14 0.787
17-119 0.282 0.029 87.90 0.788
19-89 0.283 0.193 86.26 0.787
14-92 0.271 0.251 86.21 0.785
24-152 0.287 0.357 88.32 0.788

presence of NaCl, which is not detected in the PXRD pattern (Fig. S41). The "*C
spectrum of Sudafed® (Fig. 1C) features peaks corresponding to excipients in the
range of ca. 60-110 ppm; however, the outer peaks match well with those in the
spectrum of bulk Pse. The PXRD pattern of Sudafed® (Fig. S1Ct) also clearly
indicates the presence of Pse, based on comparison to its simulated PXRD
pattern. However, indexing the PXRD data to obtain information on the space
group and unit cell parameters is nontrivial due to the interfering signals from the
excipients.

There are several considerations for using QNMRX-CSP in the absence of XRD
data: (i) the choice of space group(s) that should be searched using the Polymorph
routine (M2); (ii) determination of valid unit cell parameters for selecting
candidate structures (M2); and (iii) the choice of unit cell parameters that should
be used in the last stages of structural refinement (M3). To address the first
consideration, the CCDC database was data mined to determine the number of

104 | Faraday Discuss., 2025, 255, 88-118 This journal is © The Royal Society of Chemistry 2025
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Fig. 8 3°CI{*H} SSNMR spectra of Sudafed® (green) acquired at 18.8 T under (A) MAS at
ot = 10 kHz using a Bloch decay experiment and (B) static conditions using a Hahn echo
experiment. Simulated spectra (black) of Pse are displayed above each spectrum. A peak
corresponding to NaCl(s) is indicated with an asterisk (*).

crystal structures with the following criteria: (i) C, H, O, N, and Cl atoms only; (ii)
the Cl atom is an anion; and (iii) Z’ = 1. We identified 4713 structures meeting
these criteria, whose space groups were ranked according to their frequency. Five
space groups (i.e., P24/c, P1, P2,2,24, P24, and Pna2,) with Z =< 4 account for 81.4%
of structures (Table S6}). Herein, the Polymorph routine is applied only to
structural models in these five space groups to limit the computational cost. To
address the second consideration, the 1000 candidate structures with the lowest
energies resulting from 10 trials of the Polymorph routine are retained, regardless
of the predicted unit cell parameters (i.e., structural models are retained based
only on relative energies). Finally, the third consideration is addressed by con-
ducting a full volume convergent geometry optimization (Section 2.4) to refine the
unit cell parameters and atomic coordinates of the candidate structures, as
opposed to adjusting the former to match those of the indexed PXRD pattern.
With these considerations in mind, QNMRX-CSP was performed to predict the
structure of Pse in Sudafed® (Table 8) using only **Cl quadrupolar parameters.

Table 8 The number of structures at each step and for each space group searched in the
QNMRX-CSP protocol as applied to Sudafed®

P2,/c P1 P2,2,2, P2, Pna2,
MC-SA? 1000 1000 1000 1000 1000
Cluster” 362 314 190 190 190
TGO® 1 0 6 0 0
CGE? 0 0 6 0 0
UCP CGE® 0 0 6 0 0
validation 0 0 6 0 0

“ Initial number of structures obtained from 10 trials of Monte Carlo simulated annealing.
b Number of structures following clustering. © Remaining structures following truncated
geomet%/ optimization and application of the **Cl EFG distance with a cut-off of 0.70
MHz. “ Remaining structures following convergent geometry optimization and
application of the *°Cl EFG distance with a cut-off of 0.49 MHz. ° Remaining structures
following full volume convergent geometry optimization and application of the **Cl EFG
distance with a cut-off of 0.49 MHz. / Number of candidate structures matching the
refined crystal structure of Pse (CSD code PEPHCL).
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Starting with the refined gas-phase motion group of Pse described in Section
3.2.2, 10 trials of the Polymorph routine were conducted for each of the five space
groups. The 1000 candidate structures with the lowest static lattice energies in
each space group were retained and clustered to remove duplicates. The
remaining candidate structures were subjected to truncated geometry optimiza-
tions, followed by retention of structures using only the EFG distance metric (i.e.,
I'erg = 0.70 MHz). This resulted in the elimination of all candidate structures
with the space groups P1, P2,, and Pna2,. Convergent geometry optimization and
application of the second EFG distance metric (i.e., I'gpg = 0.49 MHz) led to the
retention of 6 structural models, all in the P2,2,2, space group. Final volume
convergent geometry optimizations resulted in 6 candidate structures that were
retained for structural validation.

The final structural models have similar packing motifs and unit cell volumes
(Fig. 9) with RMSDs below the CCDC threshold (Table 9). However, they have unit
cell volumes that are overestimated relative to that of the known crystal structure
by ca. 1.2-1.5%, which leads to poor agreement between their simulated PXRD

\ TJ\ - [ Y‘L ® |
¢ [Tl [ T
T T

Fig. 9 A view along each crystallographic axis for a crystal structure of Pse obtained by
QNMRX-CSP, 8-85, and the convergent geometry optimized crystal structure of Pse.

Table 9 Validation of the structural models of Sudafed® obtained from QNMRX-CSP

*5Cl EFG Energy diff. Volume
dist. (MHz) (k] mol ™) Volume (A%  diff. (%) RMSD(A) R (%)

PEPHCL — — 1124.871 — — —

2-75 0.233 0 1138.202 1.19 0.073 89.61
7-62 0.204 0.029 1141.548 1.48 0.078 94.63
8-91 0.207 0.048 1139.949 1.34 0.076 94.54
8-71 0.191 0.067 1141.009 1.43 0.079 97.00
8-86 0.182 0.077 1140.464 1.39 0.080 91.70
8-85 0.202 0.096 1141.099 1.44 0.080 97.80
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patterns and that of the known crystal structure (Fig. S51). This is not unexpected,
as full volume convergent DFT-D2* geometry optimizations tend to overestimate
unit cell volumes.*®

4. Conclusions

Herein, QNMRX-CSP has been extended to systems featuring crystal structures of
greater complexity than those investigated to date (i.e., higher molecular weights,
greater conformational flexibility in the organic components, and larger unit
cells). First, it was demonstrated that **Cl SSNMR spectra of Eph and Pse provide
distinct spectral fingerprints for each crystalline phase, with the *>Cl EFG tensors
lending insight into the distinct hydrogen bonding arrangements of the Cl™ ions.
Second, QNMRX-CSP benchmarking calculations were conducted for structural
models of Eph and Pse. Two sets of calculations with different geometry-
optimized organic fragments as starting points (i.e., one from the known crystal
structure and the other from the gas phase) were carried out, yielding structural
models in good agreement with known structures, featuring RMSDs = 0.80 A and
R-factor = 10%, which are below recommended CCDC thresholds.”** Third,
QNMRX-CSP benchmarking calculations were conducted using a geometry-
optimized motion group of Pse packed into unit cells of the space group of
Eph, where the unit cell parameters and **Cl EFG tensors of Eph were used to
retain the best candidate structures (and vice versa). In both cases, it was found
that no viable candidate structures emerged. Finally, using only the **Cl EFG
tensors determined from the *>Cl SSNMR spectra of a sample of Sudafed®, we
confirmed that Pse is the solid form therein, and conducted QNMRX-CSP
benchmarking calculations that yield candidate structural models that passed
most metrics, with the exception of the R-factors - this is due to small over-
estimations of the unit cell volumes in the DFT-D2* calculations.

QNMRX-CSP, while still in the early stages of development, shows much
promise; however, it still faces challenges, many of which can lead to future
extensions of the protocol. As systems grow in complexity, the use of other
quadrupolar nuclides (i.e., "N and '”0) could prove useful for predicting the best
structural models - their involvement in both covalent and hydrogen bonds
would provide different perspectives on structure. The tandem use of QNMRX-
CSP with methods employing either first principles calculations of chemical
shielding or rapid prediction of chemical shifts could also be beneficial (i.e., 'H,
3¢, and '°N). For instance, determination of the best starting fragments with the
aid of DFT calculations of chemical shifts would be relatively inexpensive, since
these could serve to limit the number of possible molecular conforma-
tions.***2*12*  Conversely, the use of artificial intelligence methods (e.g.,
ShiftML '*>'2%) could be advantageous for filtering candidate structures. This
increased efficiency could lead in several directions. First, it may be possible to
predict previously unknown polymorphs, subject to modification of the metrics
for choosing candidate structures (e.g., multiple NMR interaction tensors with
benchmarked cutoff values). Second, this would permit an exploration of an
increased number of space groups (as opposed to the five discussed herein) and
a more extensive conformational space. Finally, difficulties related to geometry
optimizations remain. We currently use the DFT-D2* method, which is known to
slightly overestimate unit cell volumes. It is possible that higher-order dispersion
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corrections (e.g., DFT-D3 or DFT-D3/BJ)****** can be reparametrized for organic
solids in a similar manner to DFT-D2 - this would greatly benefit from the
increased efficiency in calculations described above. These considerations can
open doors for the discovery of new solid forms, including polymorphs, and
perhaps even solvates and hydrates - all of which are relevant for de novo CSP of
APIs in situ in complex dosage forms.

Data availability

The CASTEP data manager (CDM), an executable application developed in-house,
is available on the web from https://github.com/rschurko. Additional data are
available in the ESL{

Author contributions

C. H. Fleischer IIl and S. T. Veinberg acquired the PXRD data. C. H. Fleischer I1I, S.
T. Holmes, K. Levin, and S. L. Veinberg participated in the acquisition of the
SSNMR data. C. H. Fleischer Il conducted QNMRX-CSP. C. H. Fleischer III, S. L.
Holmes, and R. W. Schurko contributed to the writing and editing of the
manuscript.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We are grateful for research support from The Florida State University and the
National High Magnetic Field Laboratory (NHMFL), which is funded by the
National Science Foundation Cooperative Agreement (DMR-1644779, DMR-
2128556) and by the State of Florida. This work was supported in part by the
U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences,
under Award Number DE-SC0022310, covering expenses related to postdoctoral
wages. We also thank Genentech and the Natural Sciences and Engineering
Research Council of Canada (NSERC, RGPIN-2016_06642 Discovery Grant) for
funding the early stages of this research. We thank Dr Victor Terskikh for
acquiring *>Cl SSNMR spectra at 21.1 T at the National Ultrahigh-Field NMR
Facility for Solids (Ottawa, Canada), a National Research Facility funded by the
Canada Foundation for Innovation, the Ontario Innovation Trust, Recherche
Quebec, the National Research Council of Canada, and Bruker BioSpin (https://
www.nmr900.ca).

References

1S. M. Woodley and R. Catlow, Crystal Structure Prediction from First
Principles, Nat. Mater., 2008, 7, 937-946, DOI: 10.1038/nmat2321.

2 G. M. Day, Current Approaches to Predicting Molecular Organic Crystal
Structures,  Crystallogr.  Rev., 2011, 17, 3-52, DOIL:  10.1080/
0889311X.2010.517526.

108 | Faraday Discuss., 2025, 255, 88-118 This journal is © The Royal Society of Chemistry 2025


https://github.com/rschurko
https://www.nmr900.ca
https://www.nmr900.ca
https://doi.org/10.1038/nmat2321
https://doi.org/10.1080/0889311X.2010.517526
https://doi.org/10.1080/0889311X.2010.517526
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4fd00089g

Open Access Article. Published on 24 June 2024. Downloaded on 2/7/2026 9:28:13 AM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online
Paper Faraday Discussions

3 S. L. Price, Predicting Crystal Structures of Organic Compounds, Chem. Soc.
Rev., 2014, 43, 2098-2111, DOI: 10.1039/¢3¢s60279f.

4 A.R. Oganov, C. J. Pickard, Q. Zhu and R. J. Needs, Structure Prediction Drives
Materials Discovery, Nat. Rev. Mater., 2019, 4, 331-348, DOIL: 10.1038/s41578-
019-0101-8.

5 D. H. Bowskill, I. J. Sugden, S. Konstantinopoulos, C. S. Adjiman and
C. C. Pantelides, Crystal Structure Prediction Methods for Organic
Molecules: State of the Art, Annu. Rev. Chem. Biomol. Eng., 2021, 12, 593—
623, DOI: 10.1146/annurev-chembioeng-060718-030256.

6 Y. Wang, ]J. Lv, P. Gao and Y. Ma, Crystal Structure Prediction via Efficient
Sampling of the Potential Energy Surface, Acc. Chem. Res., 2022, 55, 2068-
2076, DOI: 10.1021/acs.accounts.2c00243.

7 G. J. O. Beran, Frontiers of Molecular Crystal Structure Prediction for
Pharmaceuticals and Functional Organic Materials, Chem. Sci., 2023, 14,
13290-13312, DOI: 10.1039/d3sc03903j.

8 M. Baias, C. M. Widdifield, J. N. Dumez, H. P. G. Thompson, T. G. Cooper,
E. Salager, S. Bassil, R. S. Stein, A. Lesage, G. M. Day and L. Emsley, Powder
Crystallography of Pharmaceutical Materials by Combined Crystal Structure
Prediction and Solid-State 1H NMR Spectroscopy, Phys. Chem. Chem. Phys.,
2013, 15, 8069-8080, DOI: 10.1039/c3cp41095a.

9 M. A. Neumann, J. Van De Streek, F. P. A. Fabbiani, P. Hidber and
O. Grassmann, Combined Crystal Structure Prediction and High-Pressure
Crystallization in Rational Pharmaceutical Polymorph Screening, Nat.
Commun., 2015, 6, 7793, DOI: 10.1038/ncomms8793.

10 L. M. Leblanc and E. R. Johnson, Crystal-Energy Landscapes of Active
Pharmaceutical Ingredients Using Composite Approaches, CrystEngComm,
2019, 21, 5995-6009, DOI: 10.1039/c9ce00895k.

11 G. Sun, Y. Jin, S. Li, Z. Yang, B. Shi, C. Chang and Y. A. Abramov, Virtual
Coformer Screening by Crystal Structure Predictions: Crucial Role of
Crystallinity in Pharmaceutical Cocrystallization, J. Phys. Chem. Lett., 2020,
11, 8832-8838, DOI: 10.1021/acs.jpclett.0c02371.

A. J. Morris, Ab Initio Prediction of Metal-Organic Framework Structures,
Chem. Mater., 2020, 32, 5835-5844, DOI: 10.1021/acs.chemmater.0c01737.
M. Arhangelskis, Experimentally Validated Ab Initio Crystal Structure
Prediction of Novel Metal-Organic Framework Materials, J. Am. Chem. Soc.,
2023, 145, 3515-3525, DOIL: 10.1021/jacs.2¢12095.

14 A. N. Sokolov, S. Atahan-Evrenk, R. Mondal, H. B. Akkerman, R. S. Sanchez-
Carrera, S. Granados-Focil, J. Schrier, S. C. B. Mannsfeld, A. P. Zoombelt,
Z. Bao and A. Aspuru-Guzik, From Computational Discovery to
Experimental Characterization of a High Hole Mobility Organic Crystal,
Nat. Commun., 2011, 2, 437, DOI: 10.1038/ncomms1451.

15 C. Y. Cheng, J. E. Campbell and G. M. Day, Evolutionary Chemical Space
Exploration  for  Functional Materials: Computational  Organic
Semiconductor Discovery, Chem. Sci., 2020, 11, 4922-4933, DOI: 10.1039/
d0sc00554a.

16 J. A. Schmidt, J. A. Weatherby, I. J. Sugden, A. Santana-Bonilla, F. Salerno,
M. J. Fuchter, E. R. Johnson, J. Nelson and K. E. Jelfs, Computational

This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 255, 88-118 | 109


https://doi.org/10.1039/c3cs60279f
https://doi.org/10.1038/s41578-019-0101-8
https://doi.org/10.1038/s41578-019-0101-8
https://doi.org/10.1146/annurev-chembioeng-060718-030256
https://doi.org/10.1021/acs.accounts.2c00243
https://doi.org/10.1039/d3sc03903j
https://doi.org/10.1039/c3cp41095a
https://doi.org/10.1038/ncomms8793
https://doi.org/10.1039/c9ce00895k
https://doi.org/10.1021/acs.jpclett.0c02371
https://doi.org/10.1021/acs.chemmater.0c01737
https://doi.org/10.1021/jacs.2c12095
https://doi.org/10.1038/ncomms1451
https://doi.org/10.1039/d0sc00554a
https://doi.org/10.1039/d0sc00554a
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4fd00089g

Open Access Article. Published on 24 June 2024. Downloaded on 2/7/2026 9:28:13 AM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online
Faraday Discussions Paper

Screening of Chiral Organic Semiconductors: Exploring Side-Group
Functionalization and Assembly to Optimize Charge Transport, Cryst.
Growth Des., 2021, 21, 5036-5049, DOI: 10.1021/acs.cgd.1c00473.

17 J. D. Gale, GULP: A Computer Program for the Symmetry-Adapted Simulation
of Solids, J. Chem. Soc., Faraday Trans., 1997, 93, 629-637, DOIL: 10.1039/
a606455h.

18 C. W. Glass, A. R. Oganov and N. Hansen, USPEX—Evolutionary Crystal
Structure Prediction, Comput. Phys. Commun., 2006, 175, 713-720, DOI:
10.1016/j.cpc.2006.07.020.

19 D. C. Lonie and E. Zurek, XtalOpt: An Open-Source Evolutionary Algorithm
for Crystal Structure Prediction, Comput. Phys. Commun., 2011, 182, 372-
387, DOL: 10.1016/j.cpc.2010.07.048.

20 C.]J. Pickard and R. J. Needs, Ab Initio Random Structure Searching, J. Phys.:
Condens. Matter, 2011, 23, 053201, DOI: 10.1088/0953-8984/23/5/053201.

21 Y. Wang, J. Lv, L. Zhu and Y. Ma, CALYPSO: A Method for Crystal Structure
Prediction, Comput. Phys. Commun., 2012, 183, 2063-2070, DOI: 10.1016/
j-cpc.2012.05.008.

22 T. Yamashita, S. Kanehira, N. Sato, H. Kino, K. Terayama, H. Sawahata,
T. Sato, F. Utsuno, K. Tsuda, T. Miyake and T. Oguchi, CrySPY: A Crystal
Structure Prediction Tool Accelerated by Machine Learning, Sci. Technol.
Adv. Mater.: Methods, 2021, 1, 87-97, DOIL: 10.1080/27660400.2021.1943171.

23 J. Wang, H. Gao, Y. Han, C. Ding, S. Pan, Y. Wang, Q. Jia, H. T. Wang, D. Xing
and J. Sun, MAGUS: Machine Learning and Graph Theory Assisted Universal
Structure Searcher, Natl. Sci. Rev., 2023, 10, nwad128, DOI: 10.1093/nsr/
nwad128.

24 C. R. Groom, 1. J. Bruno, M. P. Lightfoot and S. C. Ward, The Cambridge
Structural Database, Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.,
2016, 72, 171-179, DOI: 10.1107/S2052520616003954.

25 J. P. M. Lommerse, W. D. S. Motherwell, H. L. Ammon, J. D. Dunitz,
A. Gavezzotti, D. W. M. Hofmann, F. J. J. Leusen, W. T. M. Mooij,
S. L. Price, B. Schweizer, M. U. Schmidt, B. P. van Eijck, P. Verwer and
D. E. Williams, A Test of Crystal Structure Prediction of Small Organic
Molecules, Acta Crystallogr., Sect. B: Struct. Sci., 2000, 56, 697-714, DOI:
10.1107/S0108768100004584.

26 W. D. S. Motherwell, H. L. Ammon, ]J. D. Dunitz, A. Dzyabchenko, P. Erk,
A. Gavezzotti, D. W. M. Hofmann, F. ]J. J. Leusen, ]J. P. M. Lommerse,
W. T. M. Mooij, S. L. Price, H. Scheraga, B. Schweizer, M. U. Schmidt,
B. P. van Eijck, P. Verwer and D. E. Williams, Crystal Structure Prediction
of Small Organic Molecules: A Second Blind Test, Acta Crystallogr., Sect. B:
Struct. Sci., 2002, 58, 647-661, DOI: 10.1107/S0108768102005669.

27 G. M. Day, W. D. S. Motherwell, H. L. Ammon, S. X. M. Boerrigter, R. G. Della
Valle, E. Venuti, A. Dzyabchenko, J. D. Dunitz, B. Schweizer, B. P. Van Eijck,
P. Erk, J. C. Facelli, V. E. Bazterra, M. B. Ferraro, D. W. M. Hofmann,
F. J. J. Leusen, C. Liang, C. C. Pantelides, P. G. Karamertzanis, S. L. Price,
T. C. Lewis, H. Nowell, A. Torrisi, H. A. Scheraga, Y. A. Arnautova,
M. U. Schmidt and P. Verwer, A Third Blind Test of Crystal Structure
Prediction, Acta Crystallogr., Sect. B: Struct. Sci., 2005, 61, 511-527, DOI:
10.1107/S0108768105016563.

MO | Faraday Discuss., 2025, 255, 838-118 This journal is © The Royal Society of Chemistry 2025


https://doi.org/10.1021/acs.cgd.1c00473
https://doi.org/10.1039/a606455h
https://doi.org/10.1039/a606455h
https://doi.org/10.1016/j.cpc.2006.07.020
https://doi.org/10.1016/j.cpc.2010.07.048
https://doi.org/10.1088/0953-8984/23/5/053201
https://doi.org/10.1016/j.cpc.2012.05.008
https://doi.org/10.1016/j.cpc.2012.05.008
https://doi.org/10.1080/27660400.2021.1943171
https://doi.org/10.1093/nsr/nwad128
https://doi.org/10.1093/nsr/nwad128
https://doi.org/10.1107/S2052520616003954
https://doi.org/10.1107/S0108768100004584
https://doi.org/10.1107/S0108768102005669
https://doi.org/10.1107/S0108768105016563
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4fd00089g

Open Access Article. Published on 24 June 2024. Downloaded on 2/7/2026 9:28:13 AM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

Paper Faraday Discussions

28

29

30

31

32

G. M. Day, T. G. Cooper, A. ]J. Cruz-Cabeza, K. E. Hejczyk, H. L. Ammon,
S. X. M. Boerrigter, J. S. Tan, R. G. Della Valle, E. Venuti, ]J. Jose,
S. R. Gadre, G. R. Desiraju, T. S. Thakur, B. P. van Eijck, J. C. Facelli,
V. E. Bazterra, M. B. Ferraro, D. W. M. Hofmann, M. A. Neumann,
F. J. J. Leusen, J. Kendrick, S. L. Price, A. J. Misquitta, P. G. Karamertzanis,
G. W. A. Welch, H. A. Scheraga, Y. A. Arnautova, M. U. Schmidt, J. van de
Streek, A. K. Wolf and B. Schweizer, Significant Progress in Predicting the
Crystal Structures of Small Organic Molecules - a Report on the Fourth
Blind Test, Acta Crystallogr., Sect. B: Struct. Sci., 2009, 65, 107-125, DOI:
10.1107/S0108768109004066.

D. A. Bardwell, C. S. Adjiman, Y. A. Arnautova, E. Bartashevich,
S. X. M. Boerrigter, D. E. Braun, A. J. Cruz-Cabeza, G. M. Day, R. G. Della
Valle, G. R. Desiraju, B. P. van Eijck, J. C. Facelli, M. B. Ferraro, D. Grillo,
M. Habgood, D. W. M. Hofmann, F. Hofmann, K. V. ]. Jose,
P. G. Karamertzanis, A. V. Kazantsev, J. Kendrick, L. N. Kuleshova,
F. J. J. Leusen, A. V. Maleev, A. J. Misquitta, S. Mohamed, R. ]J. Needs,
M. A. Neumann, D. Nikylov, A. M. Orendt, R. Pal, C. C. Pantelides,
C. J. Pickard, L. S. Price, S. L. Price, H. A. Scheraga, J. van de Streek,
T. S. Thakur, S. Tiwari, E. Venuti and I. K. Zhitkov, Towards Crystal
Structure Prediction of Complex Organic Compounds - a Report on the
Fifth Blind Test, Acta Crystallogr., Sect. B: Struct. Sci., 2011, 67, 535-551,
DOI: 10.1107/S0108768111042868.

A. M. Reilly, R. I. Cooper, C. S. Adjiman, S. Bhattacharya, A. D. Boese,
J. G. Brandenburg, P. J. Bygrave, R. Bylsma, J. E. Campbell, R. Car,
D. H. Case, R. Chadha, ]J. C. Cole, K. Cosburn, H. M. Cuppen, F. Curtis,
G. M. Day, R. A. DiStasio Jr, A. Dzyabchenko, B. P. van Eijck, D. M. Elking,
J. A. van den Ende, ]J. C. Facelli M. B. Ferraro, L. Fusti-Molnar,
C.-A. Gatsiou, T. S. Gee, R. de Gelder, L. M. Ghiringhelli, H. Goto,
S. Grimme, R. Guo, D. W. M. Hofmann, ]J. Hoja, R. K. Hylton, L. Iuzzolino,
W. Jankiewicz, D. T. de Jong, J. Kendrick, N. J. J. de Klerk, H.-Y. Ko,
L. N. Kuleshova, X. Li, S. Lohani, F. J. J. Leusen, A. M. Lund, J. Lv, Y. Ma,
N. Marom, A. E. Masunov, P. McCabe, D. P. McMahon, H. Meekes,
M. P. Metz, A. ]J. Misquitta, S. Mohamed, B. Monserrat, R. J. Needs,
M. A. Neumann, J. Nyman, S. Obata, H. Oberhofer, A. R. Oganov,
A. M. Orendt, G. I. Pagola, C. C. Pantelides, C. J. Pickard, R. Podeszwa,
L. S. Price, S. L. Price, A. Pulido, M. G. Read, K. Reuter, E. Schneider,
C. Schober, G. P. Shields, P. Singh, I. J. Sugden, K. Szalewicz, C. R. Taylor,
A. Tkatchenko, M. E. Tuckerman, F. Vacarro, M. Vasileiadis, A. Vazquez-
Mayagoitia, L. Vogt, Y. Wang, R. E. Watson, G. A. de Wijs, J. Yang, Q. Zhu
and C. R. Groom, Report on the Sixth Blind Test of Organic Crystal
Structure Prediction Methods, Acta Crystallogr., Sect. B: Struct. Sci., Cryst.
Eng. Mater., 2016, 72, 439-459, DOI: 10.1107/S2052520616007447.

S. Atahan-Evrenk and A. Aspuru-Guzik, Prediction and Calculation of Crystal
Structures: Methods and Applications, Topics in Current Chemistry, ed.
Atahan-Evrenk, S. and Aspuru-Guzik, A., Springer International Publishing,
Cham, 2014, vol. 345, DOI: 10.1007/978-3-319-05774-3.

D. E. Braun, J. A. McMahon, R. M. Bhardwaj, J. Nyman, M. A. Neumann, J. Van
De Streek and S. M. Reutzel-Edens, Inconvenient Truths about Solid Form

This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 255, 88-118 | 1M1


https://doi.org/10.1107/S0108768109004066
https://doi.org/10.1107/S0108768111042868
https://doi.org/10.1107/S2052520616007447
https://doi.org/10.1007/978-3-319-05774-3
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4fd00089g

Open Access Article. Published on 24 June 2024. Downloaded on 2/7/2026 9:28:13 AM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online
Faraday Discussions Paper

Landscapes Revealed in the Polymorphs and Hydrates of Gandotinib, Cryst.
Growth Des., 2019, 19, 2947-2962, DOI: 10.1021/acs.cgd.9b00162.

33 M. K. Dudek and K. Druzbicki, Along the Road to Crystal Structure Prediction
(CSP) of Pharmaceutical-like Molecules, CrystEngComm, 2022, 24, 1665-1678,
DOI: 10.1039/d1ce01564h.

34 Y. A. Abramoyv, L. Iuzzolino, Y. Jin, G. York, C.-H. Chen, C. S. Shultz, Z. Yang,
C. Chang, B. Shi, T. Zhou, C. Greenwell, S. Sekharan and A. Y. Lee, Cocrystal
Synthesis through Crystal Structure Prediction, Mol. Pharmaceutics, 2023, 20,
3380-3392, DOI: 10.1021/acs.molpharmaceut.2c01098.

35 G. M. Day, J. Chisholm, N. Shan, W. D. S. Motherwell and W. Jones, An
Assessment of Lattice Energy Minimization for the Prediction of Molecular
Organic Crystal Structures, Cryst. Growth Des., 2004, 4, 1327-1340, DOI:
10.1021/cg0498148.

36 J. Nyman and G. M. Day, Static and Lattice Vibrational Energy Differences
between Polymorphs, CrystEngComm, 2015, 17, 5154-5165, DOI: 10.1039/
c5ce00045a.

37 C. R. Taylor and G. M. Day, Evaluating the Energetic Driving Force for
Cocrystal Formation, Cryst. Growth Des., 2018, 18, 892-904, DOI: 10.1021/
acs.cgd.7b01375.

38 C. Martineau, J. Senker and F. Taulelle, NMR Crystallography, in Annual
Reports on NMR Spectroscopy, ed. Harris, R. K., Wasylishen, R. E. and
Duer, M. ]., John Wiley & Sons Ltd, New York, NY, 2014, vol. 82, pp. 1-57,
DOI: 10.1016/B978-0-12-800184-4.00001-1.

39 S. E. Ashbrook and D. McKay, Combining Solid-State NMR Spectroscopy with
First-Principles Calculations - a Guide to NMR Crystallography, Chem.
Commun., 2016, 52, 7186-7204, DOI: 10.1039/C6CC02542K.

40 D. L. Bryce, NMR Crystallography: Structure and Properties of Materials from
Solid-State Nuclear Magnetic Resonance Observables, IUCrJ, 2017, 4, 350-
359, DOI: 10.1107/52052252517006042.

41 P. Hodgkinson, NMR Crystallography of Molecular Organics, Prog. Nucl.
Magn. Reson. Spectrosc., 2020, 118-119, 10-53, DOIL  10.1016/
j-pnmrs.2020.03.001.

42 K. D. M. Harris, NMR Crystallography as a Vital Tool in Assisting Crystal
Structure Determination from Powder XRD Data, Crystals, 2022, 12, 1277,
DOI: 10.3390/cryst12091277.

43 J. K. Harper and D. M. Grant, Enhancing Crystal-Structure Prediction with
NMR Tensor Data, Cryst. Growth Des., 2006, 6, 2315-2321, DOIL: 10.1021/
€g060244g.

44 E. Salager, G. M. Day, R. S. Stein, C. J. Pickard, B. Elena and L. Emsley, Powder
Crystallography by Combined Crystal Structure Prediction and High-
Resolution1H Solid-State NMR Spectroscopy, J. Am. Chem. Soc., 2010, 132,
2564-2566, DOI: 10.1021/ja909449k.

45 M. Baias, J. N. Dumez, P. H. Svensson, S. Schantz, G. M. Day and L. Emsley, De
Novo Determination of the Crystal Structure of a Large Drug Molecule by
Crystal Structure Prediction-Based Powder NMR Crystallography, J. Am.
Chem. Soc., 2013, 135, 17501-17507, DOI: 10.1021/ja4088874.

46 A. Hofstetter, M. Balodis, F. M. Paruzzo, C. M. Widdifield, G. Stevanato,
A. C. Pinon, P. J. Bygrave, G. M. Day and L. Emsley, Rapid Structure
Determination of Molecular Solids Using Chemical Shifts Directed by

M2 | Faraday Discuss., 2025, 255, 88-118 This journal is © The Royal Society of Chemistry 2025


https://doi.org/10.1021/acs.cgd.9b00162
https://doi.org/10.1039/d1ce01564h
https://doi.org/10.1021/acs.molpharmaceut.2c01098
https://doi.org/10.1021/cg0498148
https://doi.org/10.1039/c5ce00045a
https://doi.org/10.1039/c5ce00045a
https://doi.org/10.1021/acs.cgd.7b01375
https://doi.org/10.1021/acs.cgd.7b01375
https://doi.org/10.1016/B978-0-12-800184-4.00001-1
https://doi.org/10.1039/C6CC02542K
https://doi.org/10.1107/S2052252517006042
https://doi.org/10.1016/j.pnmrs.2020.03.001
https://doi.org/10.1016/j.pnmrs.2020.03.001
https://doi.org/10.3390/cryst12091277
https://doi.org/10.1021/cg060244g
https://doi.org/10.1021/cg060244g
https://doi.org/10.1021/ja909449k
https://doi.org/10.1021/ja4088874
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4fd00089g

Open Access Article. Published on 24 June 2024. Downloaded on 2/7/2026 9:28:13 AM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online
Paper Faraday Discussions

Unambiguous Prior Constraints, J. Am. Chem. Soc., 2019, 141, 16624-16634,
DOI: 10.1021/jacs.9b03908.

47 M. K. Dudek, P. Paluch, J. Sniechowska, K. P. Nartowski, G. M. Day and
M. ]. Potrzebowski, Crystal Structure Determination of an Elusive Methanol
Solvate-Hydrate of Catechin Using Crystal Structure Prediction and NMR
Crystallography, CrystEngComm, 2020, 22, 4969-4981, DOI: 10.1039/
doce00452a.

48 T. Pawlak, I. Sudgen, G. Bujacz, D. Iuga, S. P. Brown and M. J. Potrzebowski,
Synergy of Solid-State NMR, Single-Crystal X-Ray Diffraction, and Crystal
Structure Prediction Methods: A Case Study of Teriflunomide (TFM), Cryst.
Growth Des., 2021, 21, 3328-3343, DOI: 10.1021/acs.cgd.1c00123.

49 M. M. Woolfson, An Introduction to X-Ray Crystallography, Cambridge
University Press, 2nd edn, 1997.

50 K. Shankland, An Overview of Powder X-Ray Diffraction and its Relevance to
Pharmaceutical Crystal Structures, 2016, pp. 293-314, DOIL: 10.1007/978-1-
4939-4029-5_8.

51 R. K. Harris, S. Cadars, L. Emsley, J. R. Yates, C. J. Pickard, R. K. R. Jetti and
U. ]J. Griesser, NMR Crystallography of Oxybuprocaine Hydrochloride,
Modification II, Phys. Chem. Chem. Phys., 2007, 9, 360-368, DOI: 10.1039/
b614318k.

52 J. K. Harper, R. Iuliucci, M. Gruber and K. Kalakewich, Refining Crystal
Structures with Experimental 13C NMR Shift Tensors and Lattice-Including
Electronic Structure Methods, CrystEngComm, 2013, 15, 8693-8704, DOI:
10.1039/c3ce40108a.

53 C. M. Widdifield, J. D. Farrell, J. C. Cole, J. A. K. Howard and P. Hodgkinson,
Resolving Alternative Organic Crystal Structures Using Density Functional
Theory and NMR Chemical Shifts, Chem. Sci., 2020, 11, 2987-2992, DOI:
10.1039/c9sc04964a.

54 M. R. Chierotti and R. Gobetto, NMR Crystallography: The Use of Dipolar
Interactions in Polymorph and Co-Crystal Investigation, CrystEngComm,
2013, 15, 8599-8612, DOIL: 10.1039/c3ce41026a.

55 P. Thureau, S. Sturniolo, M. Zilka, F. Ziarelli, S. Viel, J. R. Yates and G. Mollica,
Reducing the Computational Cost of NMR Crystallography of Organic
Powders at Natural Isotopic Abundance with the Help of 13C-13C Dipolar
Couplings, Magn. Reson. Chem., 2019, 57, 256-264, DOI: 10.1002/mrc.4848.

56 J. Struppe, C. M. Quinn, S. Sarkar, A. M. Gronenborn and T. Polenova,
Ultrafast 1H MAS NMR Crystallography for Natural Abundance
Pharmaceutical Compounds, Mol. Pharmaceutics, 2020, 17, 674-682, DOI:
10.1021/acs.molpharmaceut.9b01157.

57 A. L. Webber, L. Emsley, R. M. Claramunt and S. P. Brown, NMR
Crystallography of Campho[2,3-c]Pyrazole (Z° = 6): Combining High-
Resolution 1H-13C Solid-State MAS NMR Spectroscopy and GIPAW
Chemical-Shift Calculations, J. Phys. Chem. A, 2010, 114, 10435-10442, DOI:
10.1021/jp104901;.

58 S. L. Price, Computed Crystal Energy Landscapes for Understanding and
Predicting Organic Crystal Structures and Polymorphism, Acc. Chem. Res.,
2009, 42, 117-126, DOIL: 10.1021/ar800147t.

59 O. Socha, P. Hodgkinson, C. M. Widdifield, J. R. Yates and M. Dracinsky,
Exploring Systematic Discrepancies in DFT Calculations of Chlorine

This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 255, 88-118 | 113


https://doi.org/10.1021/jacs.9b03908
https://doi.org/10.1039/d0ce00452a
https://doi.org/10.1039/d0ce00452a
https://doi.org/10.1021/acs.cgd.1c00123
https://doi.org/10.1007/978-1-4939-4029-5_8
https://doi.org/10.1007/978-1-4939-4029-5_8
https://doi.org/10.1039/b614318k
https://doi.org/10.1039/b614318k
https://doi.org/10.1039/c3ce40108a
https://doi.org/10.1039/c9sc04964a
https://doi.org/10.1039/c3ce41026a
https://doi.org/10.1002/mrc.4848
https://doi.org/10.1021/acs.molpharmaceut.9b01157
https://doi.org/10.1021/jp104901j
https://doi.org/10.1021/ar800147t
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4fd00089g

Open Access Article. Published on 24 June 2024. Downloaded on 2/7/2026 9:28:13 AM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online
Faraday Discussions Paper

Nuclear Quadrupole Couplings, J. Phys. Chem. A, 2017, 121, 4103-4113, DOI:
10.1021/acs.jpca.7b02810.

60 A. J. Vega, Quadrupolar Nuclei in Solids, in Encyclopedia of Magnetic
Resonance, ed. Grant, D. M. and Harris, R. K., John Wiley & Sons, Ltd,
Chichester, UK, 2007, PP 3869-3888, DOI: 10.1002/
9780470034590.emrstmo0431.

61 J. Autschbach, S. Zheng and R. W. Schurko, Analysis of Electric Field Gradient
Tensors at Quadrupolar Nuclei in Common Structural Motifs, Concepts Magn.
Reson., 2010, 36A, 84-126, DOIL: 10.1002/cmr.a.20155.

62 F. Bravetti, R. E. Russo, S. Bordignon, A. Gallo, F. Rossi, C. Nervi, R. Gobetto
and M. R. Chierotti, Zwitterionic or Not? Fast and Reliable Structure
Determination by Combining Crystal Structure Prediction and Solid-State
NMR, Molecules, 2023, 28, 1876, DOIL: 10.3390/molecules28041876.

63 C. M. Widdifield, S. O. Nilsson Lill, A. Broo, M. Lindkvist, A. Pettersen,
A. Svensk Ankarberg, P. Aldred, S. Schantz and L. Emsley, Does Z ' Equal 1
or 2? Enhanced Powder NMR Crystallography Verification of a Disordered
Room Temperature Crystal Structure of a P38 Inhibitor for Chronic
Obstructive Pulmonary Disease, Phys. Chem. Chem. Phys., 2017, 19, 16650—
16661, DOI: 10.1039/c7¢cp02349a.

64 M. Khalaji, P. Paluch, M. J. Potrzebowski and M. K. Dudek, Narrowing down
the Conformational Space with Solid-State NMR in Crystal Structure
Prediction of Linezolid Cocrystals, Solid State Nucl. Magn. Reson., 2022, 121,
101813, DOI: 10.1016/j.ssnmr.2022.101813.

65 R. P. Chapman and D. L. Bryce, Application of Multinuclear Magnetic
Resonance and Gauge-Including Projector-Augmented-Wave Calculations to
the Study of Solid Group 13 Chlorides, Phys. Chem. Chem. Phys., 2009, 11,
6987, DOI: 10.1039/b906627f.

66 T. Charpentier, The PAW/GIPAW Approach for Computing NMR Parameters:
A New Dimension Added to NMR Study of Solids, Solid State Nucl. Magn.
Reson., 2011, 40, 1-20, DOI: 10.1016/j.ssnmr.2011.04.006.

67 S. T. Holmes and R. W. Schurko, Refining Crystal Structures with
Quadrupolar NMR and Dispersion-Corrected Density Functional Theory, J.
Phys. Chem. C, 2018, 122, 1809-1820, DOI: 10.1021/acs.jpcc.7b12314.

68 S. T. Holmes, C. S. Vojvodin and R. W. Schurko, Dispersion-Corrected DFT
Methods for Applications in Nuclear Magnetic Resonance Crystallography,
J. Phys. Chem. A, 2020, 124, 10312-10323, DOI: 10.1021/acs.jpca.0c06372.

69 A. A. Peach, C. H. I. Fleischer, K. Levin, S. T. Holmes, J. E. Sanchez and
R. W. Schurko, Quadrupolar NMR Crystallography Guided Crystal Structure
Prediction (QNMRX-CSP), CrystEngComm, 2024, 26, 4782.

70 E. A. Collier, R. J. Davey, S. N. Black and R. J. Roberts, 17 Salts of Ephedrine:
Crystal Structures and Packing Analysis, Acta Crystallogr., Sect. B: Struct. Sci.,
2006, 62, 498-505, DOI: 10.1107/S0108768106012018.

71 M. Mathew and G. J. Palenik, The Crystal and Molecular Structures of
(+)-Pseudoephedrine and (+)-Pseudoephedrine Hydrochloride, Acta
Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1977, 33, 1016-1022,
DOLI: 10.1107/S0567740877005287.

72 A. Pines, M. G. Gibby and J. S. Waugh, Proton-Enhanced NMR of Dilute Spins
in Solids, J. Chem. Phys., 1973, 59, 569-590, DOI: 10.1063/1.1680061.

M4 | Faraday Discuss., 2025, 255, 88-118 This journal is © The Royal Society of Chemistry 2025


https://doi.org/10.1021/acs.jpca.7b02810
https://doi.org/10.1002/9780470034590.emrstm0431
https://doi.org/10.1002/9780470034590.emrstm0431
https://doi.org/10.1002/cmr.a.20155
https://doi.org/10.3390/molecules28041876
https://doi.org/10.1039/c7cp02349a
https://doi.org/10.1016/j.ssnmr.2022.101813
https://doi.org/10.1039/b906627f
https://doi.org/10.1016/j.ssnmr.2011.04.006
https://doi.org/10.1021/acs.jpcc.7b12314
https://doi.org/10.1021/acs.jpca.0c06372
https://doi.org/10.1107/S0108768106012018
https://doi.org/10.1107/S0567740877005287
https://doi.org/10.1063/1.1680061
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4fd00089g

Open Access Article. Published on 24 June 2024. Downloaded on 2/7/2026 9:28:13 AM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online
Paper Faraday Discussions

73 O. Peersen, X. L. Wu, L. Kustanovich and S. O. Smith, Variable-Amplitude
Cross-Polarization MAS NMR, J. Magn. Reson., Ser. A, 1993, 104, 334-339,
DOI: 10.1006/jmra.1993.1231.

74 G. Metz, X. L. Wu and S. O. Smith, Ramped-Amplitude Cross Polarization in
Magic Angle Spinning NMR, J. Magn. Reson., Ser. A, 1994, 110, 219-227, DOI:
10.1006/jmra.1994.1208.

75 J. Schaefer and E. O. Stejskal, Carbon-13 Nuclear Magnetic Resonance of
Polymers Spinning at the Magic Angle, J. Am. Chem. Soc., 1976, 98, 1031-
1032, DOI: 10.1021/ja00420a036.

76 A. Pines, M. G. Gibby and J. S. Waugh, Proton-Enhanced Nuclear Induction
Spectroscopy 13C Chemical Shielding Anisotropy in Some Organic Solids,
Chem. Phys. Lett., 1972, 15, 373-376, DOI: 10.1016/0009-2614(72)80191-X.

77 R. E. Taylor, 13C CP/MAS: Application to Glycine, Concepts Magn. Reson.,
2004, 22A, 79-89, DOIL: 10.1002/cmr.a.20015.

78 P. Bertani, J. Raya and B. Bechinger, 15N Chemical Shift Referencing in Solid
State NMR, Solid State Nucl. Magn. Reson., 2014, 61-62, 15-18, DOI: 10.1016/
j-ssnmr.2014.03.003.

79 E. L. Hahn, Spin Echoes, Phys. Rev., 1950, 80, 580-594, DOIL: 10.1103/
PhysRev.80.580.

80 J. C. C. Chan, Spin Echoes in Half-Integer Quadrupole Systems, Concepts
Magn. Reson., 1999, 11, 363-377, DOI: 10.1002/(SICI)1099-0534(1999)
11:6<363::AID-CMR2>3.0.CO;2-A.

81 D. L. Bryce and G. D. Sward, Chlorine-35/37 NMR Spectroscopy of Solid
Amino Acid Hydrochlorides: Refinement of Hydrogen-Bonded Proton
Positions Using Experiment and Theory, J. Phys. Chem. B, 2006, 110, 26461—
26470, DOI: 10.1021/jp065878c.

82 S. G. ]J. van Meerten, W. M. J. Franssen and A. P. M. Kentgens, SsNake: A
Cross-Platform Open-Source NMR Data Processing and Fitting Application,
J. Magn. Reson., 2019, 301, 56-66, DOI: 10.1016/j.jmr.2019.02.006.

83 K. Eichele, WSOLIDS1: Solid-State NMR Simulated (Version 1.21.7), Universitit
Tubingen, 2021.

84 R. L. C. Akkermans, N. A. Spenley and S. H. Robertson, Monte Carlo Methods
in Materials Studio, Mol Simul, 2013, 39, 1153-1164, DOI: 10.1080/
08927022.2013.843775.

85 S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. 1. J. Probert, K. Refson
and M. C. Payne, First Principles Methods Using CASTEP, Z. Kristallogr.—
Cryst. Mater., 2005, 220, 567-570, DOI: 10.1524/zkri.220.5.567.65075.

86 S. L. Mayo, B. D. Olafson and W. A. Goddard, DREIDING: A Generic Force
Field for Molecular Simulations, J. Phys. Chem., 1990, 94, 8897-8909, DOI:
10.1021/j1003892a010.

87 J. R. Yates, C.]J. Pickard and F. Mauri, Calculation of NMR Chemical Shifts for
Extended Systems Using Ultrasoft Pseudopotentials, Phys. Rev. B: Condens.
Matter Mater. Phys., 2007, 76, 024401, DOI: 10.1103/PhysRevB.76.024401.

88 E. van Lenthe, J. G. Snijders and E. J. Baerends, The Zero-Order Regular
Approximation for Relativistic Effects: The Effect of Spin-Orbit Coupling in
Closed Shell Molecules, J. Chem. Phys., 1996, 105, 6505-6516, DOI: 10.1063/
1.472460.

This journal is © The Royal Society of Chemistry 2025 Faradiay Discuss., 2025, 255, 88-118 | 115


https://doi.org/10.1006/jmra.1993.1231
https://doi.org/10.1006/jmra.1994.1208
https://doi.org/10.1021/ja00420a036
https://doi.org/10.1016/0009-2614(72)80191-X
https://doi.org/10.1002/cmr.a.20015
https://doi.org/10.1016/j.ssnmr.2014.03.003
https://doi.org/10.1016/j.ssnmr.2014.03.003
https://doi.org/10.1103/PhysRev.80.580
https://doi.org/10.1103/PhysRev.80.580
https://doi.org/10.1002/(SICI)1099-0534(1999)11:6&lt;363::AID-CMR2&gt;3.0.CO;2-A
https://doi.org/10.1002/(SICI)1099-0534(1999)11:6&lt;363::AID-CMR2&gt;3.0.CO;2-A
https://doi.org/10.1021/jp065878c
https://doi.org/10.1016/j.jmr.2019.02.006
https://doi.org/10.1080/08927022.2013.843775
https://doi.org/10.1080/08927022.2013.843775
https://doi.org/10.1524/zkri.220.5.567.65075
https://doi.org/10.1021/j100389a010
https://doi.org/10.1103/PhysRevB.76.024401
https://doi.org/10.1063/1.472460
https://doi.org/10.1063/1.472460
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4fd00089g

Open Access Article. Published on 24 June 2024. Downloaded on 2/7/2026 9:28:13 AM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online
Faraday Discussions Paper

89 B. G. Pfrommer, M. Coté, S. G. Louie and M. L. Cohen, Relaxation of Crystals
with the Quasi-Newton Method, J. Comput. Phys., 1997, 131, 233-240, DOIL:
10.1006/jcph.1996.5612.

90 P. Pyykko, Year-2017 Nuclear Quadrupole Moments, Mol. Phys., 2018, 116,
1328-1338, DOI: 10.1080/00268976.2018.1426131.

91 D. W. Alderman, M. H. Sherwood and D. M. Grant, Comparing, Modeling,
and Assigning Chemical-Shift Tensors in the Cartesian, Irreducible
Spherical, and Icosahedral Representations, J. Magn. Reson., Ser. A, 1993,
101, 188-197, DOL: 10.1006/jmra.1993.1029.

92 D. E. McREE, Computational Techniques, in Practical Protein Crystallography,
Elsevier, 1999, p. 91, DOI: 10.1016/B978-012486052-0/50005-1.

93 J.-M. Rondeau and H. Schreuder, Protein Crystallography and Drug
Discovery, in The Practice of Medicinal Chemistry, Elsevier, 2015, pp. 511-
537, DOI: 10.1016/B978-0-12-417205-0.00022-5.

94 F. H. Allen, The Cambridge Structural Database: A Quarter of a Million Crystal
Structures and Rising, Acta Crystallogr., Sect. B: Struct. Sci., 2002, 58, 380-388,
DOI: 10.1107/S0108768102003890.

95 G. Barr, W. Dong, C. J. Gilmore, A. Kern, A. Parkin and C. C. Wilson, Using the
Cambridge Structural Database to Validate Powder Structures, Z. Kristallogr.,
Suppl., 2007, 2007, 209-214, DOIL: 10.1524/zkri.2007.2007.suppl_26.209.

96 C. F. Macrae, L. Sovago, S. ]J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock,
M. Platings, G. P. Shields, J. S. Stevens, M. Towler and P. A. Wood, Mercury
4.0 : From Visualization to Analysis, Design and Prediction, J. Appl
Crystallogr., 2020, 53, 226-235, DOI: 10.1107/S1600576719014092.

97 G. S. H. Lee, R. C. Taylor, M. Dawson, G. S. K. Kannangara and M. A. Wilson,
High-Resolution Solid State 13C Nuclear Magnetic Resonance Spectra of 3,4-
Methylenedioxyamphetamine Hydrochloride and Related Compounds and
Their Mixtures with Lactose, Solid State Nucl. Magn. Reson., 2000, 16, 225-
237, DOIL: 10.1016/S0926-2040(00)00071-0.

98 G. Desiraju and T. Steiner, The Weak Hydrogen Bond, Oxford University Press,
Oxford, England, 2001, vol. 9, DOI: 10.1093/acprof:oso/
9780198509707.001.0001.

99 M. Hildebrand, H. Hamaed, A. M. Namespetra, J. M. Donohue, R. Fu, I. Hung,
Z. Gan and R. W. Schurko, 35Cl Solid-State NMR of HCIl Salts of Active
Pharmaceutical Ingredients: Structural Prediction, Spectral Fingerprinting
and Polymorph Recognition, CrystEngComm, 2014, 16, 7334-7356, DOI:
10.1039/c4ce00544a.

100 H. Hamaed, J. M. Pawlowski, B. F. T. Cooper, R. Fu, S. H. Eichhorn and
R. W. Schurko, Application of Solid-State 35ClI NMR to the Structural
Characterization of Hydrochloride Pharmaceuticals and Their Polymorphs,
J. Am. Chem. Soc., 2008, 130, 11056-11065, DOI: 10.1021/ja802486(.

101 S. T. Holmes, C. S. Vojvodin, N. Veinberg, E. M. Iacobelli, D. A. Hirsh and
R. W. Schurko, Hydrates of Active Pharmaceutical Ingredients: A 35Cl and
2H Solid-State NMR and DFT Study, Solid State Nucl. Magn. Reson., 2022,
122, 101837, DOI: 10.1016/j.ssnmr.2022.101837.

102 C. S. Vojvodin, S. T. Holmes, L. K. Watanabe, J. M. Rawson and
R. W. Schurko, Multi-Component Crystals Containing Urea:
Mechanochemical Synthesis and Characterization by 35 Cl Solid-State NMR

M6 | Faraday Discuss., 2025, 255, 88-118 This journal is © The Royal Society of Chemistry 2025


https://doi.org/10.1006/jcph.1996.5612
https://doi.org/10.1080/00268976.2018.1426131
https://doi.org/10.1006/jmra.1993.1029
https://doi.org/10.1016/B978-012486052-0/50005-1
https://doi.org/10.1016/B978-0-12-417205-0.00022-5
https://doi.org/10.1107/S0108768102003890
https://doi.org/10.1524/zkri.2007.2007.suppl_26.209
https://doi.org/10.1107/S1600576719014092
https://doi.org/10.1016/S0926-2040(00)00071-0
https://doi.org/10.1093/acprof:oso/9780198509707.001.0001
https://doi.org/10.1093/acprof:oso/9780198509707.001.0001
https://doi.org/10.1039/c4ce00544a
https://doi.org/10.1021/ja802486q
https://doi.org/10.1016/j.ssnmr.2022.101837
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4fd00089g

Open Access Article. Published on 24 June 2024. Downloaded on 2/7/2026 9:28:13 AM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online
Paper Faraday Discussions

Spectroscopy and DFT Calculations, CrystEngComm, 2022, 24, 2626-2641,
DOI: 10.1039/D1CE01610E.

103 A. M. Namespetra, D. A. Hirsh, M. P. Hildebrand, A. R. Sandre, H. Hamaed,
J. M. Rawson and R. W. Schurko, 35Cl Solid-State NMR Spectroscopy of HCI
Pharmaceuticals and Their Polymorphs in Bulk and Dosage Forms,
CrystEngComm, 2016, 18, 6213-6232, DOI: 10.1039/C6CE01069E.

104 M. K. Pandey, H. Kato, Y. Ishii and Y. Nishiyama, Two-Dimensional Proton-
Detected 35Cl/1H Correlation Solid-State NMR Experiment under Fast Magic
Angle Sample Spinning: Application to Pharmaceutical Compounds, Phys.
Chem. Chem. Phys., 2016, 18, 6209-6216, DOIL: 10.1039/c5cp06042g.

105 A. A. Peach, D. A. Hirsh, S. T. Holmes and R. W. Schurko, Mechanochemical
Syntheses and 35Cl Solid-State NMR Characterization of Fluoxetine HCI
Cocrystals, CrystEngComm, 2018, 20, 2780-2792, DOI: 10.1039/c8ce00378e.

106 D. A. Hirsh, S. T. Holmes, P. Chakravarty, A. A. Peach, A. G. Dipasquale,
K. Nagapudi and R. W. Schurko, In Situ Characterization of Waters of
Hydration in a Variable-Hydrate Active Pharmaceutical Ingredient Using
35ClI Solid-State NMR and X-Ray Diffraction, Cryst. Growth Des., 2019, 19,
7349-7362, DOL: 10.1021/acs.cgd.9b01218.

107 A. V. Wijesekara, A. Venkatesh, B. J. Lampkin, B. VanVeller, J. W. Lubach,
K. Nagapudi, I. Hung, P. L. Gor’kov, Z. Gan and A. J. Rossini, Fast
Acquisition of Proton-Detected HETCOR Solid-State NMR Spectra of
Quadrupolar Nuclei and Rapid Measurement of NH Bond Lengths by
Frequency Selective HMQC and RESPDOR Pulse Sequences, Chem.-Eur. J.,
2020, 26, 7881-7888, DOI: 10.1002/chem.202000390.

108 D. Iuga, E. K. Corlett and S. P. Brown, 35Cl-1H Heteronuclear Correlation
Magic-Angle Spinning Nuclear Magnetic Resonance Experiments for
Probing Pharmaceutical Salts, Magn. Reson. Chem., 2021, 59, 1089-1100,
DOI: 10.1002/mrc.5188.

109 S. T. Holmes, J. M. Hook and R. W. Schurko, Nutraceuticals in Bulk and
Dosage Forms: Analysis by 35Cl and 14N Solid-State NMR and DFT
Calculations, Mol. Pharmaceutics, 2022, 19, 440-455, DOI: 10.1021/
acs.molpharmaceut.1c00708.

110 L. M. Abdulla, A. A. Peach, S. T. Holmes, Z. T. Dowdell, L. K. Watanabe,
E. M. Iacobelli, D. A. Hirsh, J. M. Rawson and R. W. Schurko, Synthesis
and Characterization of Xylazine Hydrochloride Polymorphs, Hydrates, and
Cocrystals: A 35Cl Solid-State NMR and DFT Study, Cryst. Growth Des.,
2023, 23, 3412-3426, DOI: 10.1021/acs.cgd.2¢c01539.

111 P. M. J. Szell, Z. Rehman, B. P. Tatman, L. P. Hughes, H. Blade and
S. P. Brown, Exploring the Potential of Multinuclear Solid-State 1H, 13C,
and 35Cl Magnetic Resonance To Characterize Static and Dynamic
Disorder in Pharmaceutical Hydrochlorides, ChemPhysChem, 2023, 24,
€202200558, DOI: 10.1002/cphc.202200558.

112 D. L. Bryce, M. Gee and R. E. Wasylishen, High-Field Chlorine NMR
Spectroscopy of Solid Organic Hydrochloride Salts: A Sensitive Probe of
Hydrogen Bonding Environment, J. Phys. Chem. A, 2001, 105, 10413-10421,
DOI: 10.1021/jp011962a.

113 T. Azds, C. Bonhomme and M. E. Smith, 35Cl Quadrupolar Constants
Obtained by Solid-State NMR: Study of Chlorinated Al-O-P Clusters,

This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 255, 83-118 | 117


https://doi.org/10.1039/D1CE01610E
https://doi.org/10.1039/C6CE01069E
https://doi.org/10.1039/c5cp06042g
https://doi.org/10.1039/c8ce00378e
https://doi.org/10.1021/acs.cgd.9b01218
https://doi.org/10.1002/chem.202000390
https://doi.org/10.1002/mrc.5188
https://doi.org/10.1021/acs.molpharmaceut.1c00708
https://doi.org/10.1021/acs.molpharmaceut.1c00708
https://doi.org/10.1021/acs.cgd.2c01539
https://doi.org/10.1002/cphc.202200558
https://doi.org/10.1021/jp011962a
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4fd00089g

Open Access Article. Published on 24 June 2024. Downloaded on 2/7/2026 9:28:13 AM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online
Faraday Discussions Paper

Involving OH --- Cl Hydrogen Bonds, Solid State Nucl. Magn. Reson., 2003, 23,
14-27, DOI: 10.1016/S0926-2040(02)00012-7.

114 C. Gervais, R. Dupree, K. J. Pike, C. Bonhomme, M. Profeta, C. J. Pickard and
F. Mauri, Combined First-Principles Computational and Experimental
Multinuclear Solid-State NMR Investigation of Amino Acids, J. Phys. Chem.
A, 2005, 109, 6960-6969, DOI: 10.1021/jp0513925.

115 R. P. Chapman and D. L. Bryce, A High-Field Solid-State 35/37Cl1 NMR and
Quantum Chemical Investigation of the Chlorine Quadrupolar and
Chemical Shift Tensors in Amino Acid Hydrochlorides, Phys. Chem. Chem.
Phys., 2007, 9, 6219-6230, DOI: 10.1039/b712688c.

116 G. H. Penner, R. Webber and L. A. O'Dell, A Multinuclear NMR and Quantum
Chemical Study of Solid Trimethylammonium Chloride, Can. J. Chem., 2011,
89, 1036-1046, DOI: 10.1139/v11-034.

117 F. G. Vogt, G. R. Williams and R. C. B. Copley, Solid-State NMR Analysis of
a Boron-Containing Pharmaceutical Hydrochloride Salt, J. Pharm. Sci.,
2013, 102, 3705-3716, DOI: 10.1002/jps.23679.

118 F. G. Vogt, G. R. Williams, M. Strohmeier, M. N. Johnson and R. C. B. Copley,
Solid-State NMR Analysis of a Complex Crystalline Phase of Ronacaleret
Hydrochloride, J. Phys. Chem. B, 2014, 118, 10266-10284, DOI: 10.1021/
jp505061j.

119 J. W. Akitt and W. S. McDonald, Arrangements of Ligands Giving Low Electric
Field Gradients, J. Magn. Reson., 1984, 58, 401-412, DOI: 10.1016/0022-
2364(84)90144-6.

120 J. K. Harper, A. E. Mulgrew, J. Y. Li, D. H. Barich, G. A. Strobel and
D. M. Grant, Characterization of Stereochemistry and Molecular
Conformation Using Solid-State NMR Tensors, J. Am. Chem. Soc., 2001, 123,
9837-9842, DOI: 10.1021/ja0109971.

121 J. K. Harper, D. H. Barich, J. Z. Hu, G. A. Strobel and D. M. Grant,
Stereochemical Analysis by Solid-State NMR: Structural Predictions in
Ambuic Acid, J. Org. Chem., 2003, 68, 4609-4614, DOI: 10.1021/j0020377i.

122 F. M. Paruzzo, A. Hofstetter, F. Musil, S. De, M. Ceriotti and L. Emsley,
Chemical Shifts in Molecular Solids by Machine Learning, Nat. Commun.,
2018, 9, 4501, DOI: 10.1038/s41467-018-06972-X.

123 M. Cordova, E. A. Engel, A. Stefaniuk, F. Paruzzo, A. Hofstetter, M. Ceriotti
and L. Emsley, A Machine Learning Model of Chemical Shifts for
Chemically and Structurally Diverse Molecular Solids, J. Phys. Chem. C,
2022, 126, 16710-16720, DOI: 10.1021/acs.jpcc.2c03854.

124 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, A Consistent and Accurate Ab
Initio Parametrization of Density Functional Dispersion Correction (DFT-D)
for the 94 Elements H-Pu, J. Chem. Phys., 2010, 132, 154104, DOI: 10.1063/
1.3382344.

125 S. Grimme, S. Ehrlich and L. Goerigk, Effect of the Damping Function in
Dispersion Corrected Density Functional Theory, J. Comput. Chem., 2011,
32, 1456-1465, DOI: 10.1002/jcc.21759.

126 E. Caldeweyher, C. Bannwarth and S. Grimme, Extension of the D3
Dispersion Coefficient Model, . Chem. Phys., 2017, 147, 7, DOI: 10.1063/
1.4993215.

M8 | Faraday Discuss., 2025, 255, 88-118 This journal is © The Royal Society of Chemistry 2025


https://doi.org/10.1016/S0926-2040(02)00012-7
https://doi.org/10.1021/jp0513925
https://doi.org/10.1039/b712688c
https://doi.org/10.1139/v11-034
https://doi.org/10.1002/jps.23679
https://doi.org/10.1021/jp505061j
https://doi.org/10.1021/jp505061j
https://doi.org/10.1016/0022-2364(84)90144-6
https://doi.org/10.1016/0022-2364(84)90144-6
https://doi.org/10.1021/ja010997l
https://doi.org/10.1021/jo020377i
https://doi.org/10.1038/s41467-018-06972-x
https://doi.org/10.1021/acs.jpcc.2c03854
https://doi.org/10.1063/1.3382344
https://doi.org/10.1063/1.3382344
https://doi.org/10.1002/jcc.21759
https://doi.org/10.1063/1.4993215
https://doi.org/10.1063/1.4993215
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4fd00089g

	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g

	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g

	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g
	Characterization of ephedrine HCl and pseudoephedrine HCl using quadrupolar NMR crystallography guided crystal structure predictionElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4fd00089g


