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We present an application of periodic coupled-cluster theory to the calculation of CO
adsorption energies on the Pt(111) surface for different adsorption sites. The calculations
employ a range of recently developed theoretical and computational methods. In
particular, we use a recently introduced coupled-cluster ansatz, denoted as CCSD(cT),
to compute correlation energies of the metallic Pt surface with and without adsorbed
CO molecules. The convergence of Hartree—Fock adsorption energy contributions with
respect to randomly shifted k-meshes is discussed. Recently introduced basis set
incompleteness error corrections make it possible to achieve well-converged
correlation energy contributions to the adsorption energies. We show that CCSD(cT)
theory predicts the correct order of adsorption energies for the considered adsorption
sites. Furthermore, we find that binding of the CO molecule to the top and fcc site is
dominated by Hartree—Fock and correlation energy contributions, respectively.

1. Introduction

The adsorption of a single CO molecule on the Pt(111) surface is a scientifically
and technologically relevant chemisorption process, representing a prototypical
reaction step in heterogeneous catalysis. Due to well-controlled low temperature
measurements, both the adsorption energy and atomic structure can be deter-
mined with high precision.' These and related experimental findings have been
used intensely to benchmark a wide range of modern ab initio methods including
approximate density functionals, many-electron perturbation theories and
quantum Monte Carlo methods.

The seminal work of Feibelman et al. shows that the most widely-used local
and semi-local density functionals predict the wrong adsorption site preference of
CO on the Pt(111) surface compared to experimental findings at low tempera-
tures.” This puzzle and its far reaching consequences spurred the development of
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many (semi-empirical) corrections to the employed exchange and correlation
density functionals. However, it was shown that achieving a simultaneous and
accurate description of surface energies as well as chemisorption energies is
impossible using state-of-the-art (semi-)local and hybrid density functionals.? In
contrast, a many-electron perturbation theory approach based on the random-
phase approximation (RPA) solves this puzzle in a satisfactory manner.’
However, despite the recent advances of RPA calculations, there still exists the
need for more accurate methods that go beyond the RPA. A well-established and
highly accurate electronic structure theory is diffusion Monte Carlo, which has
also been applied to the CO adsorption problem.** Although both DMC studies
predict the correct order of stability of CO adsorption sites, a relatively large
discrepancy in the adsorption energy differences is observed. Alternative accurate
ab initio methods would be helpful to resolve these and other relevant
discrepancies.

In the field of molecular quantum chemistry, Coupled Cluster (CC) theories
have established themselves as a class of highly accurate electronic structure
theories that can achieve systematically improvable results depending on the level
of truncation for the underlying particle-hole excitation operators. However, until
recently their application to metallic systems was quite limited and mostly
restricted to the level of Coupled Cluster Singles and Doubles (CCSD) particle-
hole excitation operators.*” As shown in molecular quantum chemistry, highly
accurate reaction energies require the inclusion of triple particle-hole excitation
operators.® The most popular triples approximation used in quantum chemistry
accounts for these effects in a perturbative manner and is referred to as CCSD(T)
theory.” However, CCSD(T) yields diverging correlation energies for metals.*
Recently, a modified approximation to the triples, denoted as CCSD(cT) was
presented.”™ This method yields convergent and highly accurate results for the
uniform electron gas.™

In this work we apply CCSD(cT) theory to the study of the CO adsorption on
Pt(111) and test its reliability using a 2 x 2 surface slab model with 2 layers, which
is sufficient to assess the qualitative level of accuracy for a range of electronic
structure theories.

2. Computational methods

We study a 2 layer surface slab with 8 Pt atoms in the unit cell and an adsorbed CO
molecule on the top and fcc hollow site depicted in Fig. 1. This corresponds to
a coverage of 1/4. The geometries have been relaxed at the level of DFT-PBE.
The periodic coupled-cluster calculations reported in this work are performed
using our high-performance open-source coupled cluster simulation code,
Coupled Cluster For Solids (cc4s).*” The required reference wavefunction and the
intermediates are obtained using the Vienna ab initio simulation package
(VASP)."*** For all calculations in VASP, a plane-wave kinetic energy cut off of
E.qe = 600 eV is used. The Pt GW, C_GW and O_GW POTCARS are employed. The
smearing parameter is set to ¢ = 10~ * eV and a convergence criterion of AE =
10 ° eV is set for the self-consistent field methods. All Hartree-Fock (HF) calcu-
lations employ only integer occupation numbers and are performed using VASP.
In this work all post-HF calculations sample the first Brillouin zone using
a single k-point only. Furthermore, the unoccupied HF orbitals for a given plane-
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Fig.1 Employed Pt(111) surface slab model with 2 layers and the adsorbed CO molecule
on the top (a) and fcc hollow site (b).

wave basis have been computed by setting the number of orbitals/bands to the
maximum number of plane-waves in the basis set. We note that the convergence
of the CCSD correlation energy is very slow when canonical HF orbitals are
employed. To accelerate the convergence to the complete basis set limit, we use
approximate natural orbitals that are calculated using eqn (2) of the procedure
outlined in ref. 16. After calculating all natural orbitals, a subset of them is chosen
and recanonicalized. For coupled-cluster theory calculations we choose the
number of unoccupied natural orbitals per occupied orbital to be in a range
between 5 and 20. Additionally, for the basis set correction algorithm described
below, the Moeller-Plesset Perturbation Theory (MP2) pair energies extrapolated
to the complete basis set limit are needed, which are computed using the MP2
algorithm described in ref. 17. With this, VASP can provide all necessary files
needed for the CCSD(cT) calculation, including the basis set error correction
computed by cc4s. All calculations have been performed using about 8 compute
nodes each equipped with 48 cores and 384 GB main memory.

All employed post-Hartree-Fock calculations use a finite number of particle
states also referred to as virtual orbitals N,. The truncation of the virtual orbital
basis set introduces a basis set incompleteness error (BSIE). The BSIE vanishes
very slowly in the limit of N, — o. In order to reduce the BSIE, we use a pair-
specific cusp correction for CC theory.*® This scheme is based on frozen natural
orbitals (FNOs) and diagrammatically decomposed contributions to the elec-
tronic correlation energy, which dominates the BSIE. To partly account for the
BSIE of the (cT) contribution to the CCSD(cT) correlation energy, we rescale the
(cT) contribution using the ratio of the MP2 correlation energy from the finite
basis and the extrapolated complete basis set limit estimate. This correction was
investigated on the level of (T) contributions and has been denoted (T*).*°
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Further, we simulate the Pt surface slab model using a periodic supercell
approach with a finite size, introducing a finite size error (FSE). The HF and CC
ground state energy converges slowly with respect to the system or k-mesh size.
This partly follows from the fact that correlated wavefunction based theories
capture longer ranged electronic correlation effects such as dispersion interaction
explicitly. To reduce these FSE one can employ a correction method that takes
advantage of the fact that the coupled cluster correlation energy can be expressed
as an integral over the electronic transition structure factor multiplied by the
Coulomb kernel in reciprocal space. Since finite size errors partly originate from
an incomplete sampling of this integral in reciprocal space, an interpolation
technique can be used to estimate and correct the FSE. The technical details are
described in ref. 20. We note that this technique is not fully justified for metallic
systems, which would require a linear interpolation of the transition structure
factor in the long-range limit (seen in ref. 21 and 22). Therefore we have only
applied this method for the calculated adsorption energies to investigate its order
of magnitude. Our computations gave finite size corrections to the adsorption
energies on the scale of 0.1 eV. Although this effect is small compared to the total
adsorption energies and is not expected to change the reported results of this
work in a significant manner, we note that future work will employ the RPA to
account for this missing contribution in a more reliable way.

Throughout this work we discuss interaction energies that are defined as

X _ X X X
—Ey = ECoay — Eco — Epi111) (1)

where E)éo@y, EXoand E%:uu) correspond to total energies of the surface slab with
the adsorbed CO molecule at site Y, the isolated CO molecule and the clean
Pt(111) surface slab, respectively. Positive interaction energies indicate binding
between surface and adsorbate. We restrict Y to the top and fcc hollow site
depicted in Fig. 1. X indicates the employed level of theory. On the mean field
level, we employ DFT-PBE (X = PBE) and HF (X = HF). All post-HF energies are
computed from the sum of the HF energy and a correlation energy contribution.
To facilitate a discussion of, for example, the convergence of correlation energy
contributions with respect to basis set size, we use X = CCSD-corr. and X = (cT)-
corr. when referring to the CCSD and (cT) correlation energy contribution,
respectively.

Moreover, we discuss the difference in adsorption energies between top and
fcc sites, which is defined as

X X X
_Etopffcc = ECO@top - ECO@fcc- (2)

Consequently, a positive value for Ey,, (.. indicates preference for the top
adsorption site, which is experimentally found to be more stable. We note that all
systems are computed using the same box size. Only for the CO molecule in the
gas phase we employ a larger box until convergence is reached.

3. Results

We first discuss the obtained DFT-PBE results for the top and fcc interaction
energies to assess the suitability of the employed surface model, consisting of
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Table 1 Interaction energies of CO on Pt(111) for top and fcc hollow adsorption sites at
the DFT-PBE level of theory usinga 6 x 6 x 1 k-mesh. All energies in eV

Layers Ef(ﬁ,E,fcc Ef(ﬁ,E E?C%E
2 —0.12 1.82 1.94
4 —0.12 1.61 1.73
4 1.68 (ref. 23)

a Pt(111) 2 x 2 surface slab with 2 layers only. Table 1 presents DFT-PBE inter-
action energies for 2 and 4 layers. We note that in both cases the fcc hollow site is
the preferred adsorption site for the CO molecule with interaction energies of
1.94 eV and 1.73 eV. The fcc interaction energy for the 2 layer system is about 200
meV larger than for the 4 layer system. The same applies to the interaction
energies for the top site with values of 1.82 eV and 1.61 eV. We emphasize that the
difference between top and fcc interaction energies is 0.12 eV for both numbers of
layers, indicating that this quantity converges fast with slab thickness. Although
the surface model with two layers is smaller than those employed in, for example,
ref. 3, our findings indicate that it already suffices to assess the ability of an
electronic structure theory to predict the correct adsorption site preference. A
comparison to PBE results from ref. 4 and 24 shows that our estimate of the DFT-
PBE interaction energy differences agrees to within 10 meV even for larger
coverages. For comparison we also show results from ref. 23 in Table 1, verifying
our DFT-PBE estimates. An experimental estimate of the CO interaction energy
with the surface at the top site with and without correction for vibrational zero-
point energy contributions is reported in ref. 25 and amounts to 1.29 eV and
1.24 eV, respectively. Note that our definition of the interaction energy corre-
sponds to the adsorption energy with an opposite sign. The range of experi-
mentally measured interaction energies is relatively large, for example, ref. 4
compares to experimental estimates of about 1.43-1.71 eV."*® Without exploring
the discrepancies in the reported experimental adsorption energies in greater
detail, we conclude, in agreement with previous findings reported in the litera-
ture, that DFT-PBE predicts the wrong adsorption site preference and tends to
overestimate interaction energies.

Having established that the two layer Pt(111) surface slab model is sufficient to
determine the order of stability of the considered CO adsorption sites, we now
turn to the discussion of results obtained at the level of quantum chemical many-
electron theories, starting with the HF approximation. It is important to note that
the reported HF and post-HF calculations employ a reciprocal representation of
the Coulomb kernel that was recently presented in ref. 27. This method samples
the reciprocal Coulomb kernel consistently for arbitrary shapes of reciprocal
volume elements, which is especially important for surface slabs. We stress that
its treatment of the Coulomb singularity in reciprocal space is needed to achieve
convergent adsorption energies in the present case. Moreover, we emphasize that
convergent HF energies for metallic Pt(111) surfaces with and without adsorbed
CO molecules can only be obtained when sampling the first Brillouin zone using
k-meshes that are randomly shifted from high-symmetry points, e.g., I'. This
behaviour is attributed to the presence of degenerate orbital energies at high-
symmetry points that can not be properly accounted for in HF calculations
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Table 2 Interaction energies of CO on Pt(111) for top and fcc adsorption sites at the HF
level of theory using three different k-meshes and twist averaging. The values in paren-
thesis give the standard error for the twist-averaging procedure. All energies in eV

k-mesh Eop—fec Eiop ERY

1x1x1 1.29 (0.14) 0.69 (0.27) —0.60 (0.28)
3x3x1 1.46 (0.11) 1.18 (0.08) —0.27 (0.08)
4x4x1 1.62 (0.12) 1.24 (0.07) ~0.36 (0.16)

using integer occupation numbers, leading to convergence problems of standard
iterative self-consistent field solvers as implemented in VASP. However, as shown
in ref. 6 and 11, we avoid these problems by averaging over HF energies computed
using randomly shifted k-meshes. The standard error of the mean is employed as
a measure of convergence for this Monte Carlo integration procedure over the first
Brillouin zone.

Table 2 summarizes the obtained interaction energies and their difference at
the level of HF theory for three different k-meshes. The first observation we report
is that E{g, .. converges faster than individual interaction energies with respect
to the employed k-mesh size. Increasing the k-mesh from 3 x 3 x 1to4 x 4 x 1
changes E{ff;,fcc by 0.16 eV, which is in a similar order of magnitude as the error
bars of the E{f,?,,fcc 4% 4 x 1 result that originates from using about 10 random
shifts in the calculations. It is noteworthy that HF theory predicts the experi-
mentally observed order of stability for the top and fcc adsorption sites, with
E{op—fec = 1.2> 0 in contrast to Eggp fec = —0.12 < 0. E{op, and Efee exhibit a slightly
slower convergence with k-mesh size in the beginning. However, the changes
from 3 x 3 x 1to4 x 4 x 1 are similar to ng,,fcc. We note that the CO molecule is
not binding to Pt(111) at the fcc site in HF theory.

We now discuss the basis set convergence of the correlation energy contri-
butions to the fcc hollow and the difference between top and fcc hollow inter-
action energies. Although we employ recently introduced corrections to reduce
the BSIE of CCSD and (cT) correlation energy contributions, it is necessary to
confirm that we employ basis set sizes that allow for achieving sufficiently well
converged estimates. Tables 3 and 4 summarize CCSD and (cT) correlation energy
contributions for different ratios N,/N,, respectively. Here, N, represents the
number of natural orbitals, and N, denotes the number of occupied orbitals. It is
shown that a value of N,/N,, = 10 is converged to within a few ten meV compared
to slightly larger basis set sizes for Efe > ™ and ESTreor 11 the case of ECCSP

(cT)-corr.

top—fec aANd Eigp fec ', this is already achieved even when compared to N,/N, = 5,

corr.

Table 3 Correlation energy contribution to the interaction energies of CO on Pt(111) for
the fcc hollow adsorption site and the difference between top and fcc at the CCSD level of
theory using a1 x 1 x 1 k-mesh. All energies in eV

Nv/No to(f)ir%;%orr. EfCCSSchorr.
5 —0.74 1.62
10 —0.76 1.54
15 1.55
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Table 4 Correlation energy contribution to the interaction energies of CO on Pt(111) for
the fcc hollow adsorption site and the difference between top and fcc at the (cT) level of
theory usinga 1l x 1 x 1 k-mesh. All energies in eV

Ny/No B Efg o
5 —0.44 0.40
10 —0.43 0.49
15 0.52

Table 5 Correlation energy contribution to the interaction energies of CO on Pt(111) for
top and fcc adsorption sites at the CCSD, (cT) and CCSD(cT) level of theory usinga 1 x 1 x
1 k-mesh. Ten randomly chosen k-mesh shifts are used. All energies in eV

X Ezf)p—fcc Eﬁ)p E%i:c
CCSD-corr. —0.78 (0.07) 0.43 (0.25) 1.21 (0.18)
(cT)-corr. —0.44 (0.11) —0.02 (0.09) 0.42 (0.09)

CCSD(cT)-corr. —-1.21 (0.17) 0.41 (0.33) 1.62 (0.22)

illustrating that the difference in adsorption energies benefits significantly from
BSIE cancellation.

Having established that using N,/N, = 10 suffices to achieve CCSD(cT) corre-
lation energy estimates with BSIE smaller than a few ten meV, we choose to
employ N,/N, = 10 and seek to address the issue of convergence with respect to
the number of randomly shifted 1 x 1 x 1 k-meshes. Table 5 summarizes the
obtained CCSD and (cT) correlation energy contributions to the studied interac-
tion energies and their difference. We employ 11 random shifts for the studied
systems to obtain an average contribution. The values in the parenthesis corre-
spond to the error of the mean, illustrating that the computed interaction ener-
gies show a relatively large dependence on the chosen shift. However, using
a sufficiently large number of shifts allows us to achieve a statistically meaningful
estimate of Egop_fec, Erop and Ef. It is noteworthy that the error of Ef, e is
smaller than the sum of the errors of Eif)P and EX. because we use the same
random shift for different structures when computing differences. The larger
errors for Eﬁ)p and Ex. indicate that these estimates depend more on the chosen
random shift than Eif)p_fcc.

The correlation energy contributions on the level of CCSD(cT) summarized in
Table 5 are strongly negative for E¢,p_tcc, indicating that correlation effects favor
CO adsorption on the fcc site opposed to the HF theory preference for the top site.

Table 6 Final best estimates of contributions to the interaction energies of CO on Pt(111)
for top and fcc adsorption sites at the HF, CCSD and (cT) level of theory. The complete
CCSD(cT) estimate is also given. All energies in eV

X Eﬁ)p—fcc Ei(op E%(cc

HF (4 x 4 x 1) 1.62 (0.12) 1.24 (0.07) —0.36 (0.16)
CCSD-corr. —0.78 (0.07) 0.43 (0.25) 1.21 (0.18)
(cT)-corr. —0.44 (0.11) —0.02 (0.09) 0.42 (0.09)
CCSD(cT) 0.41 (0.29) 1.65 (0.40) 1.26 (0.38)
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Fig.2 Bar plot showing energy contributions to the CO interaction energy on the top and
fcc hollow site of Pt(111). HF disfavors and favors adsorption on the fcc and top site,
respectively. CCSD and (cT) correlation energy contributions are also illustrated. The final
estimates of the CO/Pt(111) interaction energies for the fcc and top site are given by the
bars labelled CCSD(cT).

Finally, we discuss the obtained CCSD(cT) estimates for the CO interaction
energies on Pt(111). Table 6 and Fig. 2 summarize all individual contributions
already discussed above. We briefly reiterate that binding of CO to the top site is
strongly favored on the level of HF theory. The additional CCSD(cT) correlation
energy contribution to the interaction energy is about 0.5 eV. In contrast to the top
site, HF theory predicts that CO is not bound at the fcc hollow site. Only when
adding CCSD(cT) correlation energy contributions, the corresponding interaction
energy becomes attractive with a significant contribution from the (cT) approxi-
mation. We note that the (cT) contribution for the CO adsorption to the fcc hollow
site is relatively large indicating that intermediate to strong correlation effects
could be involved.

Adding all contributions together gives Egpie”) = 0.4 eV, in qualitative
agreement with recent DMC calculations yielding =0.25 eV (ref. 5) and =0.76 eV.*
RPA calculations yield a significantly smaller difference between adsorption
energies of 0.08 eV.> We note that the main uncertainty in our CCSD(cT) estimate
originates from the random k-mesh shift averaging procedure. Future work will
focus on reducing this error and will hopefully help to further resolve this
discrepancy.

4. Conclusions

In conclusion we have computed interaction energies of CO with Pt(111) at the
level of periodic coupled-cluster using a recently introduced set of methods,
including: (i) corrections to the basis set incompleteness error,"® (ii) improved
Brillouin zone sampling techniques ** and (iii) the CCSD(cT) method, which
accounts for triple particle-hole excitation operator correlation energy contribu-
tions using an approximation that averts the infrared divergence for metallic
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systems as observed for CCSD(T)."* This allows us to successfully converge the
computed interaction energies with respect to the employed computational
parameters, such as basis set size and k-mesh. The accuracy of CCSD(T) compared
to experiment and high-level methods such as DMC has already been shown
several times for CO adsorption energies on insulators such as MgO employing
different approaches.”®?* The present work demonstrates an application of the
related CCSD(cT) approach to the CO adsorption on a metallic surface.

The employed surface slab models using 2 layers are not large enough to allow
for a direct comparison of all computed adsorption energies to experiment. Still
using the 2 layer model, our CCSD(cT) interaction energy estimates for the top
and fcc hollow site are 1.65 eV and 1.26 eV, respectively. Considering that, on the
level of DFT-PBE we have estimated that the difference between 2 and 4 layers for
the absolute adsorption energies are on the scale of about 200 meV, this would
bring our estimates closer to experimental findings of about 1.29 eV that include
zero-point vibrational effects.”® We also note that our findings for adsorption
energy differences are already converged with respect to the number of layers and
show a qualitative agreement with experiment and other high level theories.*” In
particular, CCSD(cT) theory predicts the top adsorption site to be energetically
more stable than the fcc hollow site by about 0.4 meV. This finding is larger than
for the RPA results® and lies between previously reported DMC findings.*® We
emphasize that this brings periodic CC theories one step closer to play an
important role in producing accurate benchmark results for technologically
relevant surface chemistry problems studied in, e.g. heterogeneous catalysis.

An important observation of the present work is that the adsorption energy for
the top site is dominated by electrostatic energy contributions, while the fec site is
dominated by correlation energy contributions. This in part might explain why
most approximate exchange and correlation density functionals exhibit difficul-
ties to predict the correct order of adsorption energies for different sites.?

Although the computational cost of the employed CC theories is significantly
larger than that of standard DFT-PBE calculations, all required computations can
be performed on a few modern multi-core compute nodes equipped with a few TB
of main memory. Still, a remaining technical challenge that was identified in the
present study is that standard iterative self-consistent field HF solvers converge
frustratingly slow for metal surfaces, requiring up to several hundreds of steps
until convergence is reached. In combination with the fact that we need to
perform many HF calculations for different random k-mesh shifts, this creates
a computational bottle neck that needs to be addressed in future work.
Furthermore, the previously developed finite size correction method described in
ref. 20, which highlighted the role of anisotropy, needs to be adapted to address
the correct interpolation limit in a similar way to ref. 21 and 22 in order to account
for the slower convergence of finite size error in metallic systems."" However, we
expect that the problems mentioned above can soon be resolved, paving the way
for highly accurate CC theory calculations especially when combined with
reduced scaling approaches such as suitable embedding techniques and local

approximations.*~*
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