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The recent development of ultra-fast magic-angle spinning (MAS) (>100 kHz) provides new
opportunities for structural characterization in solids. Here, we use NMR crystallography to
validate the structure of verinurad, a microcrystalline active pharmaceutical ingredient. To
do this, we take advantage of *H resolution improvement at ultra-fast MAS and use solely
'H-detected experiments and machine learning methods to assign all the experimental
proton and carbon chemical shifts. This framework provides a new tool for elucidating
chemical information from crystalline samples with limited sample volume and yields
remarkably faster acquisition times compared to *C-detected experiments, without the
need to employ dynamic nuclear polarization.

Introduction

It is impossible to imagine any new drug development pipeline nowadays without
a rigorous structure characterization step. This is partly due to the need for
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structure-activity relationships, partly due to concerns around stability and/or
polymorphism, and partly due to regulatory pressure. Many active pharmaceu-
tical ingredients (APIs) and drug formulations are powdered solids in their final
form, so structural investigation in the native state requires well-established
solid-state techniques capable of providing atomic-level resolution.

To this end, single-crystal X-ray diffraction (SXRD) is the method of choice.*”
However, in the case of powders, SXRD is not appropriate, and powder X-ray
diffraction (PXRD),**® electron diffraction’™® and/or solid-state NMR
spectroscopy'’° are typically used instead. However, PXRD may suffer from peak
broadening and spectral overlap due to low crystallinity,** to the extent that the
structure cannot be determined. Consequently, NMR can be used either to
determine the crystal structure de novo,>**” or to refine**** or validate***
a structure determined by X-ray diffraction methods.

The applicability of NMR crystallography to solve structures at the atomic level
originates from the fact that the chemical shift is highly sensitive to the local
atomic environment and can therefore report on the neighboring atoms and their
spatial distribution.?®3%37:464%-35 Using NMR crystallography, it is possible to
investigate a broad range of solids extending from small organic molecules,****%”
to biomolecules,”™* inorganic materials®** and even amorphous drugs.*>*
Atomic-level structures have been determined de novo from NMR chemical shifts
in crystalline compounds for molecular solids,****" enzyme active sites,*"*"
photovoltaic materials,***®* and cementitious materials.®***® NMR crystallog-
raphy is extensively used not only to validate or determine the structure, but also
to distinguish between multiple polymorphs of the same molecule.®*”7”

In chemical-shift-based NMR crystallography, the experimentally determined
chemical shifts are compared to those calculated for (a set of) candidate crystal
structures, and the candidate structure(s) with the lowest root-mean-square
chemical-shift deviation (RMSD) is (are) then determined to be the true experi-
mental structure. Confidence in the structure and positional uncertainties can
then be determined using statistical methods.””® For validation, the candidate
structure would typically have been determined by SXRD. For de novo determi-
nation, candidate structures are typically generated using crystal structure
prediction (CSP)*** or molecular dynamics (MD)?*®¢ with a subsequent selection
step of candidates having the lowest predicted lattice energy. For each of the
candidates, chemical shifts are computed using density functional theory (DFT)
methods, such as plane-wave gauge-including projector augmented wave
(GIPAW) methods.*®°

Much progress has been made in solid-state NMR in the last 80 years that aims
not only at extending its applications, but also at speeding up the NMR crystal-
lography workflow. Tremendous advances have been achieved using machine-
learning approaches that provide rapid chemical-shift predictions for molecular
solids with DFT accuracy (dubbed ShiftML and ShiftML2).°*** By combining
ShiftML with the Cambridge Structural Database of three-dimensional structures,
Cordova et al. developed a method for automated probabilistic assignment of the
experimental chemical shifts for organic solids directly from their two-
dimensional molecular structures.”” Due to hardware advances, we are now
able to reach magic-angle spinning (MAS) rates of above 100 kHz. In combination
with 'H resolution improvement techniques,®** ultra-fast MAS results in suffi-
cient 'H line narrowing®**® for the acquisition of high-resolution 1D and 2D "H-
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detected spectra for typical molecular solids. For such materials, transitioning to
'H detection instead of *C detection translates to faster acquisition due to the
high sensitivity of protons, and no need for costly isotopic labelling or for
hyperpolarization by dynamic nuclear polarization (DNP), which remain inac-
cessible for many NMR platforms around the world.

Here we demonstrate an NMR chemical-shift-led approach based on 'H
detection at fast-MAS, in combination with the probabilistic assignment method,
and machine-learned chemical shifts, to validate crystal structures. The method is
illustrated with the validation of the structure of verinurad (RDEA3170) shown in
Fig. 1A, a powerful inhibitor of the URAT1 uric acid transporter with potential
pharmaceutical applications against hyperuricemia and gout.'*"**>

Previously, 18 solvates were found by a polymorph screen, of which anhydrous
form A is the most stable.'® The latter exists as a racemic mixture of atropisomers
due to restricted rotation about the cyano-naphthalene and pyridine rings
(Fig. 1A). The crystal structure of form A was determined using SXRD, and it was
found that it belongs to the P2,/n centrosymmetric space group with one molecule
in the asymmetric unit.’*® Importantly, for the assignment of the experimental
chemical shifts, we rely solely on the "H-detected 1D spectrum, and "H-detected
2D hCH and 'H-'H DQ/SQ experiments at 160 kHz MAS, and on the
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Fig. 1 (A) Chemical structure of verinurad and labels corresponding to each atomic site.
(B) 1D *H spectrum at 160 kHz MAS. (C) *3C CP spectrum at 100 kHz MAS.
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probabilistic assignment of "H and ">C shifts. The acquisition time needed for
these experiments is roughly three times shorter than that needed to acquire a >C
DNP-refocused INADEQUATE. The information contained in the INADEQUATE
spectrum that we would otherwise need to guide the assignment is replaced by
the probabilistic assignment, which is sufficient to unambiguously assign 18 out
of 20 *C chemical shifts and 10 out of 12 'H chemical shifts. The remaining
carbons and protons corresponding to the two methyl groups have very similar
local bonding environments, which makes their corresponding statistical distri-
butions of chemical shifts very similar. Therefore, they are left ambiguously
assigned. The experimental shifts are then compared to those predicted for the
SXRD structure using ShiftML2 to validate the crystal structure. We find that the
measured chemical shifts are in good agreement with calculated shifts from the
SXRD structure.

Experimental section
Materials

Verinurad (2-[3-(4-cyanonaphthalen-1-yl)pyridin-4-yl]sulfanyl-2-methylpropanoic
acid) was purchased from Selleckchem and was used without further
recrystallization.

NMR experiments

'H 1D, long-range hCH and "H 2D DQ/SQ BABA spectra were acquired at 160 kHz
MAS on a 18.8 T Bruker Avance Neo spectrometer corresponding to a 'H frequency
of 800 MHz, using a Bruker 0.4 mm HCN CP-MAS probe. The sample temperature
was regulated to 295 K using VT flow at 280 K.

The "H-detected 2D long-range hCH and the **C cross polarization (CP)!*'% at
100 kHz MAS and the VMAS "H 1D dataset spectra for PIPNet at 40-100 kHz MAS
were acquired on a Bruker Avance Neo spectrometer operating at 21.14 T ("H and
3C frequency of 900 MHz and 225 MHz, respectively) equipped with a 0.7 mm
room temperature HCN CP-MAS probe. All the spectra at 100 kHz MAS were
acquired at a constant VT temperature of 280 K to compensate for the frictional
heating, resulting in a sample temperature of 295 K.

The one-dimensional 'H spectrum was recorded using a rotor-synchronized
spin echo for background suppression. The echo delay was equal to two rotor
periods. 2D short-range and long-range hCH'*®* NMR spectra were recorded with
250 us and 4 ms contact times, respectively, for the direct "H-"*C CP and 125 us
and 2 ms contact times, respectively, for the back CP. WALTZ-16 (ref. 107)
decoupling at a 'H and "*C nutation frequency of 10 kHz was applied during ¢
and t,, respectively. In the short-range hCH, 512 increments of 200 scans each
with a recycle delay of 1.5 s were acquired, resulting in 10.2 ms of evolution in the
direct dimension and 5.12 ms of evolution in the indirect dimension. In the long-
range hCH, 1024 increments of 144 scans each with a 1.5 s recycle delay were
acquired. In the 'H 2D DQ/SQ BABA'® spectrum, one DQ excitation and recon-
version period of one rotor period each was used. In total, 512 increments with 64
scans each were acquired with a repetition delay of 1.5 s. The acquisition times
were 22.5 ms and 6.4 ms in ¢, and ¢, respectively.
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States-TPPI is used for quadrature detection in the indirect dimension for all
2D experiments. In the 2D hCH spectra, 100 Hz exponential line broadening was
used in the direct dimension.

Proton chemical shifts were referenced externally with respect to the ada-
mantane CH, group at 1.87 ppm. Carbon chemical shifts were referenced exter-
nally with respect to the adamantane CH group at 38.48 ppm."'*

All the acquisition parameters and raw NMR data are available as described in
the ESI (see Table S11).

SXRD structure relaxation

The SXRD structure was taken from ref. 103. The proton positions of the SXRD
structure were optimized using the plane-wave DFT software Quantum ESPRESSO
version 6.5 in order to correct any systematic error in the X-ray determinations of
proton positions. The constrained optimizations were performed at the PBE level
of theory using Grimme D3 dispersion correction and projector augmented wave
scalar relativistic pseudopotentials with GIPAW reconstruction, S.pbe-nl-
kjpaw_psl.1.0.0.UPF, H.pbe-kjpaw_psl.1.0.0.UPF, O.pbe-nl-kjpaw_psl.1.0.0.UPF,
C.pbe-n-kjpaw_psl.1.0.0.UPF, N.pbe-n-kjpaw_psl.1.0.0.UPF. The wavefunction
and charge density energy cutoffs were set to 120 and 960 Ry, respectively, and the
relaxations were carried out without k-points.

Chemical-shift predictions

Chemical shieldings were predicted for all 'H and '*C atomic sites using
ShiftML2.°*°* In the training set of ShiftML2, all the training structures were
relaxed using DFT-fixed cell geometry optimizations using the Quantum
ESPRESSO (QE) electronic structure package with the PBE density functional,
a Grimme D2 dispersion correction, wavefunction and charge density energy cut-
offs of 60 and 240 Ry, respectively, and ultrasoft pseudopotentials with GIPAW
reconstruction. The GIPAW NMR calculations were performed using the QE code
with the same DFT parameters as for the structure relaxation, but using refined
plane wave and charge density energy cut-offs of 100 and 400 Ry, respectively,
a Monkhorst-Pack k-point grid with a maximum spacing of 0.06 A™*, and the
ultrasoft pseudopotentials with GIPAW reconstruction from the USSP pseudo-
potential database v1.0.0. Further details are given in ref. 90. The shieldings were
converted to shifts using offsets of 30.78 and 170.04 ppm for 'H and “°C,
respectively. Chemical shifts were also calculated using DFT (Tables S3 and S4
and other details are given in the ESI}).

Results and discussion
Assignment of NMR spectra

The one-dimensional "H and ">C spectra are shown in Fig. 1B and C. The short-
and long-range "H-">C hCH correlation spectra are shown in Fig. 2. The methyl
groups C19 and C22 are immediately recognized due to their "H and "*C chemical
shifts, typical for methyl groups (1.01 and 1.12 ppm for "H, 27.0 and 25.1 ppm for
3C). The quaternary carbon C18 was assigned to 49.1 ppm due to its correlation
with methyl groups in the long-range hCH spectrum (Fig. 2).
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Fig. 2 Complete 2D hCH long-range spectrum in blue (4 ms direct CP contact time)
acquired at 160 kHz MAS overlaid with 2D hCH short-range spectrum in red (250 ps direct
CP contact time) acquired at 100 kHz MAS. In the red spectrum, the contour levels were
decreased by a factor 8 in the (13-3; 155-105) ppm region. This region is also given
separately in Fig. 5. The label(s) corresponding to each assigned cross-peak are indicated
on the spectrum. The solid lines are used for the protonated carbons and the dashed lines
for the quaternary ones.

Similarly, H24 was unambiguously assigned at 15.91 ppm due to its charac-
teristic chemical shift, and because it does not show any correlations in the short-
range hCH (Fig. 2) and shows only one correlation with a carbon at 175.9 ppm in
the long-range hCH (Fig. 2), which was then assigned to C23.

The assignment of the remaining seven quaternary carbons and nine CH
groups, all of which are aromatic and resonate in the range from 100 to 160 ppm
in the *C dimension and 6 to 9 ppm in the "H dimension, with linewidths of
roughly 1 ppm for *C and 0.5 ppm for 'H, requires more advanced methods.

First, to maximize 'H resolution, the 1D 'H spectrum of verinurad was
acquired at variable MAS rates between 40 and 100 kHz MAS and this dataset was
then used as input to predict the pure isotropic spectrum (free of any residual
dipolar coupling) using the PIPNet approach.®® The pure isotropic spectrum is
shown in Fig. 3, in comparison to the 100 kHz MAS spectrum, where we see a very
significant improvement in resolution. Interestingly, the PIPNet prediction for the
carboxylic proton showed significant line narrowing, proving that this 'H site is
subject to significant residual dipolar coupling even at 100 kHz MAS.

The next step in the process is to apply the Bayesian probabilistic assignment
method.”” This approach uses a database of chemical shifts predicted using the
ShiftML2 machine-learnt model for over 338 000 structures of molecular solids
contained in the Cambridge Structural Database. For each nucleus in the mole-
cule, a predicted distribution of chemical shifts is constructed from all the similar
local molecular fragments present in the database. The ensemble of individual
distributions for all the atoms in the molecule is then compared with the
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Fig. 3 1D H spectrum acquired at 100 kHz MAS in blue overlaid with the PIPNet-pre-
dicted isotropic 1D spectrum in orange, obtained from 40 to 100 kHz MAS 1D 'H spectra.

experimental peak lists to determine the most probable complete assignment.
Details are given in ref. 92. Using the publicly available scripts at https://
github.com/manucordova/ProbAsn, we obtained the results shown in Fig. 4.

Based on the probabilistic assighment of CH groups simultaneously using *C
and "H experimental shifts from short-range hCH, C9 and H9 are assigned at
132.8 ppm and 6.63 ppm, respectively. From the long-range hCH (Fig. 5), H9 has
a correlation with a quaternary carbon at 109.7 ppm, which is therefore assigned
to C10. C20 is then assigned at 118.1 ppm, based on the probabilistic assignment
of the quaternary carbons. Using the BABA spectrum (Fig. 7), it is found that C9
has a correlation with a proton at 8.07 ppm, which is therefore assigned to H8
attached to C8 at 129.2 ppm.

From the probabilistic assignment of CH groups, C14 and H14 are confidently
assigned at 127.4 and 6.10 ppm, respectively (43% from the probabilistic
assignment, compared to 17% for the next most probable assignment).

According to the probabilistic assignment, (H2; C2) and (H6; C6) are assigned
to (9.09; 148.5) ppm and (8.67; 145.9) ppm, though with some ambiguity between
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Fig. 4

(A) Chemical structure of verinurad and labels corresponding to each atomic site.

(B) and (C) Marginal individual assignment probabilities of the *3C (and *H) chemical shifts
after Bayesian inference of the global assignments of the (B) aromatic CH groups and (C)
quaternary carbons. The dots indicate the experimentally determined correct assignment.
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Fig. 5 The aromatic region of the 2D hCH long-range spectrum in blue (4 ms direct CP
contact time) at 160 kHz MAS overlaid with 2D hCH short-range spectrum in red (250 ps
direct CP contact time) at 100 kHz MAS. The label(s) corresponding to each assigned
cross-peak are indicated on the spectrum. The solid lines are used for the protonated
carbons and the dashed lines for the quaternary ones.

them. Then, in the long-range hCH, the proton at 9.09 ppm has a correlation with
a quaternary carbon at 134.2 ppm, whereas the proton at 8.67 ppm does not have
any correlations with quaternary carbons. H2 and C2 are therefore confidently
assigned at 9.09 ppm and 148.5 ppm, and H6 and C6 are assigned at 8.67 ppm
and 145.9 ppm, respectively, which is in agreement with the most probable
assignment. The quaternary carbon at 134.2 ppm is therefore assigned to C3.

From long-range hCH, H8 is correlated with three quaternary carbons at 140.8,
134.2, and 132.5 ppm. These three quaternary carbons most likely correspond to
C3, C7, and C16 because they are the closest to C8 in the molecular structure of
verinurad. The **C peak at 134.2 ppm was previously assigned to C3. The **C peak
at 140.8 ppm does not show any other long-range correlations in hCH, as opposed
to that at 132.5 ppm. As a result, C7 is assigned to 140.8 ppm because it is the only
quaternary carbon that is not connected directly to any CH groups except C8, and
therefore is the least expected to form long-range hCH correlations. C16 is
therefore assigned at 132.5 ppm, which is in agreement with the probabilistic
assignment of the quaternary carbons. Consequently, having a long-range hCH
correlation with C16, H15 is assigned at 7.25 ppm and C15 at 127.6 ppm.

Three CH groups remain unassigned at this point, C5, C12, and C13. Their *C
and 'H experimental shifts in the short-range hCH spectrum are (122.2; 7.84),
(124.0; 7.86), and (129.1; 7.19) ppm. C13 is assigned at 129.1 ppm because it has
very low probability to be at either 122.2 or 124.0 ppm according to the proba-
bilistic assignment of the CH groups, whereas C5 and C12 have extremely low
probability to be at 129.1 ppm.

C4 and C11 are assigned at 152.1 ppm and 131.4 ppm, respectively. The only
hCH correlations for quaternary carbons left unassigned are 152.1 and
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131.4 ppm, but based on the probabilistic assignment, C4 has extremely low
probability to be at 131.4 ppm and vice versa.

C11 has a long-range hCH correlation with a proton at 7.86 ppm that is
therefore assigned to H12, with C12 being assigned at 124.0 ppm. The last CH
group left unassigned is C5-H5 which is therefore attributed the 13C and 1H
chemical shifts of 122.2 and 7.84 ppm, respectively. Such an assignment of C5
and C12 protonated aromatic groups is in agreement with the ShiftML2 predicted
shifts of 122.0 and 123.5 ppm for C5 and C12, respectively, which are very close to
the experimental values.

Validation of the SXRD structure

With the assigned chemical shifts in hand, we can now compare the measured
chemical shifts with those predicted by ShiftML2 for the crystal structure ob-
tained via SXRD with DFT-relaxed proton positions. Fig. 6 shows the comparison
between the measured and predicted shifts. The RMSD between experiment and
calculation is 3.1 ppm for *C and 0.46 ppm for 'H. These deviations are within
the expected errors for the ShiftML2 method used here, which have been esti-
mated at 4.53 ppm for **C and 0.47 ppm for "H.*® When looking in detail at the
correlation between experiment and calculation, there are no significant outliers.
We conclude that the NMR results validate the single-crystal X-ray structure.

Intermolecular correlations observed in the BABA spectrum

In the 2D DQ/SQ BABA experiment, the correlations originate from dipolar
coupling between nearby protons instead of scalar couplings. As a result,
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Fig. 6 (A) Difference between the experimental and predicted **C chemical shifts Aé per
atomic site as a function of experimental *C chemical shift. (B) Difference between the
experimental and predicted *H chemical shifts Aé per atomic site as a function of
experimental *H chemical shift. The horizontal gray dashed lines in (A) and (B) represent
A6 =0 ppm.
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Fig. 7 2D 'H-'H BABA spectrum of verinurad obtained at 160 kHz MAS. The contour
levels were increased by a factor 4 in the (18-8; 27.5-16) ppm region. The dotted grey line
indicates the spectral 2:1 “diagonal”. The solid grey lines indicate the connectivities
between cross peaks. The asterisk indicates the intermolecular correlation between
equivalent H9 atomic sites separated by 2.55 A.

intermolecular correlations can be observed in BABA spectra if the distance
between the coupled spins is small enough.

In the BABA spectrum of verinurad (Fig. 7), H2 has a correlation with H24,
pointing towards an intermolecular H-bond of which H24 is the donor and N1 is
the acceptor. H9 presents an autocorrelation peak that originates from the
intermolecular contact between equivalent H9 atomic sites separated by 2.55 A in
the SXRD structure where the proton positions were relaxed via DFT. H6 shows
a BABA correlation with either H13 or H15, but given the small chemical-shift
difference between H13 and H15 of only 0.06 ppm, this correlation cannot be
assigned further. However, from the SXRD structure, this correlation is confi-
dently assigned to H13 where the intermolecular distance from H6 is 2.4 A and
the smallest distance between H6 and H15 is 5.1 A. For chemical-shift-driven
structure prediction, such intermolecular BABA correlations can serve as
constraints when no XRD structure is available.

As for the chemical shifts, we conclude that all the observed inter-molecular
correlations are in line with expectations from the SXRD structure.

Conclusions

We have demonstrated an NMR chemical-shift-led approach based on 'H detec-
tion at fast-MAS, in combination with the probabilistic assighment method, and
machine-learned chemical shifts, to validate the crystal structure of verinurad.
The assignment of the experimental chemical shifts relied solely on the 'H-
detected experiments at 160 kHz MAS, together with the probabilistic
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assignment of 'H and '*C shifts. The chemical shifts predicted for the SXRD
structure using ShiftML2 are found to be the same, to within error, as those
measured experimentally, thereby validating the SXRD structure.

The "H-based assignment approach outlined here should be applicable to
crystal structure validation or refinement for other small organic molecule APIs
and is faster than the current standard NMR crystallography methodology.
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