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Tracking Li atoms in real-time with ultra-fast NMR simulations

Angela F. Harper,1 Tabea Huss,1 Simone S. Köcher,2, 1 and Christoph Scheurer1
1Fritz-Haber Institute of the Max Planck Society, Berlin (DE)

2Institut für Energie und Klimaforschung (IEK-9), Forschungszentrum Jülich GmbH, Jülich, (DE)

We present for the first time a multiscale machine learning approach to jointly simulate atomic
structure and dynamics with the corresponding solid state Nuclear Magnetic Resonance (ssNMR)
observables. We study the use-case of spin-alignment echo (SAE) NMR for exploring Li-ion diffu-
sion within the solid state electrolyte material Li3PS4 (LPS) by calculating quadrupolar frequencies
of 7Li. SAE NMR probes long-range dynamics down to microsecond-timescale hopping processes.
Therefore only a few machine learning force field schemes are able to capture the time- and length
scales required for accurate comparison with experimental results. By using a new class of machine
learning interatomic potentials, known as ultra-fast potentials (UFPs), we are able to efficiently ac-
cess timescales beyond the microsecond regime. In tandem, we have developed a machine learning
model for predicting the full 7Li electric field gradient (EFG) tensors in LPS. By combining the long
timescale trajectories from the UFP with our model for 7Li EFG tensors, we are able to extract
the autocorrelation function (ACF) for 7Li quadrupolar frequencies during Li diffusion. We extract
the decay constants from the ACF for both crystalline β-LPS and amorphous LPS, and find that
the predicted Li hopping rates are on the same order of magnitude as those predicted from the
Li dynamics. This demonstrates the potential for machine learning to finally make predictions on
experimentally relevant timescales and temperatures, and opens a new avenue of NMR crystallog-
raphy: using machine learning dynamical NMR simulations for accessing polycrystalline and glass
ceramic materials.

I. INTRODUCTION

Probing dynamical effects is particularly important for
energy materials, in which mobile ions drive the device
functionality. The mobility of species and structural fea-
tures such as disorder and defects are closely interwoven,
and often are the critical factors for determining device
performance. In order to establish a correlation between
structure and dynamics, various experimental ssNMR
methods can be employed [1, 2]. One such method is SAE
NMR, which is commonly used to study Li dynamics in
operando within solid-state Li-ion battery materials [3–
6]. SAE probes the quadrupolar interaction of the EFG
tensor at the 7Li nucleus (spin I = 3/2) with its local
surrounding environment in order to observe the motion
of Li-ions hopping between various sites in a material.

Combining static experimental ssNMR spectra with
first principles density functional theory (DFT) is already
an established method for elucidating structure in crys-
talline and amorphous battery materials [7–11]. Within
the literature on NMR crystallography for battery ma-
terials, there is a primary focus on calculating chemical
shielding (CSA) tensors [8, 12–15], as quadrupolar in-
teractions are only a secondary effect, observed for nu-
clei with I > 1/2. However, there are also many ex-
amples of DFT calculated quadrupolar parameters from
EFG tensors, used in NMR crystallography for common
quadrupolar nuclei found in battery materials, such as
7Li, 17O, and 27Al [10, 16–21]. While the calculation of
static EFG tensors using DFT is a straightforward ap-
proach, a technique such as SAE requires computational
methods that are capable of following dynamic processes
over both long length and timescales. Studying these
dynamics is of course impossible with DFT calculated

ssNMR tensors (both CSA and EFG tensors), due to
the computational constraints associated with the fact
that DFT typically scales as O(N3). Even recent appli-
cations of machine learning to NMR have been limited
to static use-cases [22], incapable of capturing dynami-
cal or time-dependent effects. A classical approach using
the Sternheimer approximation has proven successful for
tracking ion motion in liquid electrolytes, where the fast
ion motion reduces the requirements for computing NMR
observables to picosecond timescales [23]. However, for
slower ion motion (relative to the liquid state), this ap-
proach is not feasible, and therefore cannot be applied
to study solid-state Li-ion motion, which requires simu-
lations on the order of microseconds.

Fortunately, the recent introduction of machine learn-
ing inter-atomic potentials (MLIPs) has enabled simula-
tions of such long-timescale processes within reasonable
computational time and at sufficient fidelity for complex
materials [24–26]. The first generation of MLIPs achieved
speedups of three orders of magnitude over DFT, making
nanosecond simulations possible in many cases [27–29].
Even more recently, a set of Ultra-Fast machine learning
Potentials (UFPs) was introduced [27] which provides a
speedup of nearly five orders of magnitude over DFT,
while maintaining the same accuracy as some of the most
accurate MLIPs such as the Gaussian Approximation Po-
tential (GAP) [28]. With the UFP, it is now possible to
routinely simulate up to the microsecond timescale al-
most at DFT accuracy [30–33].

By using the UFP combined with a machine learning
model for EFG tensors, we can now extend the capabil-
ities of NMR crystallography to make dynamical simu-
lations on microsecond timescales a reality. Using this
UFP+ML-EFG model, we will demonstrate how to cal-
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culate the relevant ACF of quadrupolar precession fre-
quencies for SAE experiments in the fast ion conductor
Li3PS4 (LPS). LPS is the ideal system to study dynamic
Li processes as it has both a crystalline (β-LPS) and
amorphous (am-LPS) phase which are Li-ion conduct-
ing with predicted Li hopping mechanisms in the 105 to
107 s−1 range [34, 35]. We finally propose to use this
method in combination with experimental SAE in order
to further study the intermediate glass-ceramic LPS ma-
terials, which are known to have large amounts of disor-
der [36], as we show that SAE would be highly sensitive
to understanding Li-ion motion in these materials on the
micro-structural level.

II. METHODS

A. SAE NMR and the EFG tensor

SAE NMR is a probe of the change in the quadrupolar
precession frequency (ωQ) over time for a specific nucleus
with a spin I > 1/2, such as 7Li, which has a nuclear spin
of I = 3/2. For the nucleus of a single Li atom, ωQ is
extracted from the EFG tensor V, which describes the
interaction between the quadrupole of the nucleus and its
surrounding electric field. The EFG tensor is the second
positional derivative of the electric field V around the
nucleus,

Vij =
∂2V

∂xi∂xj
. (1)

By diagonalizing the resulting tensor and finding the
eigenvalues and eigenvectors, ωQ for each 7Li atom can
be computed,

ωQ =
1

2
CQ(3 cos2(θ)− 1− η sin2(θ) cos(2φ)) . (2)

In Equation 2, CQ is the quadrupolar coupling constant
of a single atom of 7Li, which defines the magnitude of
the tensor V, η is the asymmetry parameter which de-
scribes the shape of the tensor V, and θ and φ describe
the orientation of the tensor V with respect to an ex-
ternal reference system [37]. Using DFT, it is possible
to calculate an individual CQ and ωQ for every single Li
atom in the simulation. An SAE NMR experiment mea-
sures an ensemble average of the single particle correla-
tion functions for each Li atom within different electronic
environments, which have distinct ωQ [3].

To generate an echo experimentally, which is propor-
tional to the ωQ(t), a Jeener Broekaert pulse-sequence is
used [38, 39], and the resulting 〈ACFωQ

〉, measures the
phase of ωQ(t = 0) with ωQ(t = tm) where tm is the
mixing time used in the pulse sequence. In the case of

I = 3/2 [3],

〈ACFωQ
〉 =

9

20
〈sin (ωQ (tm = 0) tp) · sin (ωQ (tm) td)〉 .

(3)
The total 〈ACFωQ

〉 is calculated as an ensemble average
over all the Li sites within the sample for a given pulse
time tp, decay time td, and mixing time tm. In the case
of a simulated 〈ACFωQ

〉, the pulse and decay time follow
{tp, td} → 0, allowing us to simplify Equation 3 to [40],

〈ACFωQ
〉 ∝ 〈ωQ (tm = 0) · ωQ (tm)〉. (4)

The 〈ACFωQ
〉 measures the probability of finding a Li-

ion at time t = tm in a position with an equivalent ωQ
as it had at time t = 0. Thus, in materials in which the
Li atoms visit sites with different ωQ, the 〈ACFωQ

〉 in
Equation 4 typically behaves as a decaying exponential
function and one can extract the decay time τSAE directly
using a stretched exponential form of the Lipari Szabo
relation [3, 41],

〈ACFωQ
〉 = b2 + (1− b2) · exp (−(tm/τSAE)γ). (5)

The exponential Lipari Szabo decay assumes normal
translational diffusion and a random orientation of the lo-
cal environment with respect to the magnetic field. This
assumption holds for glasses or polymer solutions which
have a random distribution of environments either due to
the amorphous nature of the material or due to the tum-
bling motion of the polymer in a liquid [23]. In an ideal
liquid with fast diffusion, the stretching factor γ is 1.0,
and the exponential decays to 0. However, in complex
solids, some memory of previous sites may be retained
during the decay and averaging might not be complete,
and therefore the exponential decays to a constant value
and γ < 1 occurs e.g. for cases of subdiffusion as in a
diffusion-trap model [42]. From the SAE decay time,
τSAE, the effective Li hopping rate is then given by τ−1

SAE.
DFT simulations access the limit of {tp, td} → 0, as in

Equations 4 and 5, and neglect any experimental dead
time, hence allowing us to naturally simulate a non-
ensemble averaged ACFωQ

for site specific trajectories
within a molecular dynamics (MD) simulation. We can
therefore target processes which are faster than the lower
limit of what is possible in experimental SAE, as the ex-
periment is limited by the lower bound on the order of
10 µs, defined by td and tp as well as the inverse of the
quadrupolar interaction [40, 43]. It is therefore possible
to extract an atomistic ACFωQ

from an MD simulation
as long as one can calculate the EFG tensors for all Li
atoms across every snapshot of the simulation. A single
snapshot of the MD simulation with ωQ and CQ calcu-
lated for each individual atomic site from DFT is the
equivalent of the 0K temperature limit, in which all mo-
tion in the system is frozen and all ions remain in their
initial site. Under realistic room temperature experimen-
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tal conditions for SAE, the quadrupolar observables are
averaged (C̄Q and ω̄Q), not only over the fast timescale
hopping events which are masked in experiment but also
over thermal effects and different Li sites.

B. UltraFast Potentials

Studying timescales relevant for spin alignment mea-
surements necessitates an efficient methodology for the
evaluation of energies and forces to drive molecular dy-
namics over microsecond timescales. Xie et al. have re-
cently introduced a new interatomic potential, match-
ing the accuracy of established MLIPs but boosting the
speed by one or two orders of magnitude, such that it is
comparable with the computational efficiency of classical
force-fields [27]. The architecture uses a local represen-
tation of atomic environments as established by funda-
mental work using SOAP and Behler-Parinello symmetry
functions [44, 45].

The energy of the system is expanded as a sum of
2-body and 3-body contributions using cubic B-splines,
which combine the beneficial properties of smoothness
and differentiability with the advantage of a compact sup-
port. Hence, the number of basis functions that need to
be evaluated in every energy computation step is strongly
limited, as a maximum of four functions can be non-zero
in every segment. The low number of basis functions
directly relates to a high computational efficiency [27].

The UFP is trained using the active learning procedure
shown in the workflow in Figure 1A. The initial dataset is
an existing set of LPS structures which was used to train
a GAP [28] for LPS [31]. The UFP is trained and itera-
tively improved by adding structures of β- and am-LPS
to the training set. Structures are drawn from UFP-MD
simulations, where the UFP used for each iteration is
the most recent UFP obtained during the training work-
flow. This active learning cycle of training, UFP-MD
simulation, and model evaluation is repeated iteratively
until convergence of the UFP energy and force errors is
achieved. Finally, the converged energy and force errors
over a withheld test set are displayed in Figure 1B (3.1
meV/atom and 109.9 meV/Å, respectively). These are
comparable with the corresponding errors for the GAP
for LPS [31]. In addition to the iterative training proce-
dure used to create a robust dataset, the hyperparame-
ters specific to the UFP model were also optimized. De-
tails are given in the Supporting Information Table 1.

C. An ML-EFG model for EFG tensors

The Symmetry Adapted Gaussian Process Regression
(SA-GPR) machine learning framework, combines covari-
ant atomic descriptors with symmetry adapted kernels
in order to learn tensors of any dimension with Gaus-
sian process regression [46]. We have previously shown
that by using tensorial learning via the SA-GPR frame-

work, we are able to predict quadrupolar frequencies (ωQ)
for the 7Li nucleus within the experimental sensitivity of
SAE NMR [47]. We couple the workflow for tensorial
learning to the active learning procedure used for train-
ing the UFP, as shown in Figure 1A, in order to train a
model for predicting the 7Li EFG tensors of β- and am-
LPS. The final set of structures from the active learning
procedure for the UFP is used as the training set for
validating the ML-EFG model.

The final set of DFT computed 7Li EFG tensors over
structures of Li3PS4 contains 166 diverse structures from
the LPS UFP model, which have a total of 14,448 Li envi-
ronments. The EFG tensor for each atom is calculated for
all the structures using the plane-wave pseudopotential
DFT code CASTEP v22 [48, 49]. The hyperparameters
for the SA-GPR descriptor are optimized as described in
the Supporting Information, using a 5-fold cross valida-
tion procedure with a test set, which is withheld from
training. The resulting mean absolute error (MAE) for
the test set in ωQ is 7.4 kHz, and the correlation plot
is shown in Figure 1C. It is important to note that the
density of points of ωQ within the red bars is high, and
thus this representation highlights the outliers as they
are clearer to distinguish from the majority.

In addition to evaluating the MAE in ωQ, it is also
important to validate how well the ML-EFG model pre-
dicts the orientation of the 7Li EFG tensors. Besides
magnitude (CQ) and shape (η), the 〈ACFωQ

〉 is a sensi-
tive measure of the orientation of one tensor at a time tm
relative to another at t0. We use the unit quaternion q
to uniquely define the orientation of each tensor [47, 50].
The unit quaternion is a superior metric for determining
orientation over Euler angles, as it is independent of the
choice of reference system. Therefore, in Figure 1C, we
show the cumulative distribution function (CDF) of the
scalar product between the DFT calculated and ML-EFG
predicted quaternions, qDFT ·qML. A scalar product of 1
indicates perfect alignment, and from Figure 1C, we see
that around 75% of the predicted EFG tensors are well-
aligned with their DFT reference (qDFT · qML ≥ 0.9).
This is an important factor as it will reduce the noise in
the 〈ACFωQ

〉, Equation 4.
We finally test the ML-EFG model for size extensivity,

because the system sizes included in the training set are
between 200 and 256 atoms per unit cell, due to DFT
performance considerations, while our target structures
for β-LPS and am-LPS are 384 and 576 atoms, respec-
tively. Therefore, we calculated the EFG tensors using
DFT for two structures of β- and am-LPS each, extracted
from the final 1 µs UFP simulations, and predicted the
7Li EFG tensors for these four structures using the ML-
EFG model (see Supporting Information Figure S2). The
accuracy of the ωQ parameter for these four larger mod-
els is 9.2 kHz, which is below the experimentally known
sensitivity of 7Li SAE experiments, 10 kHz. Thus we can
say with confidence that our model will have reasonable
accuracy on the larger system sizes used in the final 1 µs
UFP simulations.
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FIG. 1. Workflow of the UFP+ML-EFG training. The left panel shows the active learning workflow (A) starting from
a set of structures used to train a GAP [28] for LPS [31] to the final training of the UFP (B) and ML-EFG model (C). The
UFP has an RMSE in the energies of 3.1 meV/atom and forces of 109.9 meV/Å . The ML-EFG model is assessed both by the
quality of the relative orientation of the tensors and the MAE in ωQ. C shows the combined distribution function (CDF) of
the quaternion scalar product between the DFT and ML quaternions, qDFT · qML. This indicates that the majority of tensors
are oriented in the same direction comparing DFT to ML. The ML-EFG model has an error of 7.4 kHz on ωQ, where the
experimental sensitivity of 7Li SAE is shown shaded in red, as 10 kHz for ωQ.

III. RESULTS

A. Microsecond simulations with UFPs

In addition to the low energy and force errors of the
UFP shown in Figure 1, it is also important to validate
the behavior of the UFP relative to high quality first prin-
ciples methods. Therefore, we compare the structural
models generated using the UFP with literature models
generated from ab-initio molecular dynamics (AIMD).
The radial distribution function (RDF) for β-LPS and
am-LPS in a 300K, 1 µs simulation with the UFP is
shown in the Supporting Information, Figure S5, in com-
parison with two literature references for the RDF of β-
and am-LPS from AIMD [51, 52]. The UFP simulated
RDFs for both β- and am-LPS show excellent agreement
with AIMD. We also compare the UFP with the estab-
lished method of Turbo-GAP [53] for β-LPS and am-LPS
using the mean square displacement (MSD) at 500K (see
Figure S6 in the Supporting Information). We reach a
perfect agreement for the am-LPS and a deviation of a
factor of five for the β-LPS. The deviation can be ex-
plained with a much higher sensitivity of the MSD on
the barrier height and density in the crystalline mate-
rial and could potentially be improved by extending the

dataset with additional nudged elastic band calculations
over Li hopping events.

Furthermore, we can extract the average hopping rate
of Li-ions by discretizing the MSD of all independent sin-
gle ion trajectories (details of the discretization proce-
dure are given in the Supporting Information). From the
discretized trajectories we calculate Li hopping rates of
2.57× 105 s−1 for β-LPS and 7.0× 107 s−1 for am-LPS.
Our results of significantly faster ion diffusion in am-LPS
than in the crystalline β-LPS phase are in line with our
previous findings and experimental reports [31, 54, 55].

Finally, as a result of using the UFP, we are able to
simulate dynamics at 300K for 1 µs. To the best of
our knowledge, simulations of this length have not yet
been executed using MLIPs. Typical simulation times
with MLIPs are on the order of nanoseconds, reaching
100 ns at most [56]. Additionally, most previous studies
use higher temperatures in their MD runs [31, 57, 58],
which induces an extrapolation error in their property
prediction at room temperature.
With an established methodology like the Turbo-GAP, a
1 µs MD simulation would require on the order of 1 mil-
lion CPUh. With an acceleration factor of 25 over Turbo-
GAP, the UFP-MD for LPS on the other hand was com-
putationally feasible in a couple of weeks (40,000 CPUh
on a single compute node).

Page 4 of 11Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
M

ay
 2

02
4.

 D
ow

nl
oa

de
d 

on
 7

/2
7/

20
24

 8
:2

3:
01

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

DOI: 10.1039/D4FD00074A

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00074a


5

FIG. 2. MSD for β-LPS and am-LPS using the UFP
MSD of am-LPS and β-LPS (left), showing that transport
is roughly two orders of magnitude faster in the amorphous
material. A showcase of hopping detection (right) from the
absolute displacement in the case of β-LPS (top) and am-LPS
(bottom), hops are marked with green lines.

B. ACF for quadrupolar frequencies

Using the UFP+ML-EFG model, we obtain the
〈ACFωQ

〉 over a 1 µs simulation at 300K run using the
UFP for both β- and am-LPS, as shown in Figure 3. The
〈ACFωQ

〉 is averaged over all Li atoms in each system,
and normalized to [0, 1].

FIG. 3. 〈ACFωQ〉 for β-LPS and am-LPS The 〈ACFωQ〉
given by Equation 4 calculated over a 1 µs UFP-MD simu-
lation at 300K for 144 Li atoms in single-crystalline β-LPS
(top, orange) and 216 Li atoms in am-LPS (bottom, purple).
A decay time, τSAE = 46ns can be extracted from the am-LPS
〈ACFωQ〉.

1. β-LPS

As shown in Figure 3, there is no visible decay
present in the 〈ACFωQ

〉 of β-LPS at 300K. Therefore
the 〈ACFωQ

〉 could not be fit using Equation 5. This
result is expected, and occurs for two reasons.

Firstly, and perhaps most importantly, we are simulat-
ing an infinite, pristine, single crystal, by imposing pe-
riodic boundary conditions over the unit cell of β-LPS.
Because SAE can only distinguish between sites with an
inequivalent average local EFG [3], if Li hopping events
only occur between sites with equivalent average EFGs
(ω̄Q(t1) = ω̄Q(t2)), the 〈ACFωQ

〉 will not exhibit the
characteristic exponential decay. While this would usu-
ally be associated with vanishing mobility (which is not
the case in β-LPS as shown in Figure 2), it can also be due
to insensitivity of SAE with respect to motion between
equivalent ω̄Q. Thus, if there are a few sets of mutually
inequivalent sites with similar ω̄Q one would obtain a
partially averaged ω̄Q [43], which is the weighted average
between the ω̄Q for each of these sites. A single crystal,
therefore, will always be such a case, because all of the
sites have the same predominant orientation throughout
the simulation. A slow decay, beyond the microsecond
timescale, would be dominated in a polycrystalline ma-
terial by Li motion across grain boundaries of differently
oriented crystalline grains. In this case, the τSAE decay
could be modeled as a function of the Li diffusion coeffi-
cient and grain size distribution.

Secondly, in this particular example of β-LPS, there
are only two crystallographically inequivalent Li sites, a
tetrahedral LiS4 site and an octahedral LiS6 site, which
posses almost identical local EFGs. We can show this
by looking at a distribution of the DFT calculated ωQ
values of all the crystalline β-LPS structures included in
the training set for our ML-EFG model, shown in the left
panel of Figure 4. The distributions are fairly narrow and
the average ω̄Q for LiS4 is 10.8 kHz, and for LiS6 ω̄Q is
13.8 kHz, a difference of less than 4 kHz. A close look
at the first 250 ns of the β-LPS 〈ACFωQ

〉 suggests that
there is a small initial decay due to the inverse jump
rate between LiS4 and LiS6 sites, which is undetectable
due to both the signal-to-noise ratio of the 〈ACFωQ

〉 as
a result of the overlap in ωQ between the sites, as well as
the low number of Li sites (144 total) in the β-LPS unit
cell. This could likely be resolved in the model with a
larger sampling of trajectories, but is not relevant for the
observable quantities in the SAE experiment, where one
would observe the residual, partially averaged coupling,
shown in green.

To highlight the intricate relationship between tensor
shape and orientation in β-LPS that leads to the very
similar and narrow ωQ distributions displayed in Fig-
ure 4 (left) we also compute a theoretical autocorrelation
function 〈ACFCQ

〉 of the orientation-independent cou-
pling constant, CQ, experienced by the Li ions during
their motion through the crystalline model in the MD
simulation. We note that this is not a directly accessi-
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ble quantity in the SAE experiment [59]. We compute
this 〈ACFCQ

〉 in a similar fashion to that for ωQ given in
Equation 4,

〈ACFCQ
〉 ∝ 〈CQ(tm = 0) · CQ(tm)〉 , (6)

and fit the resulting 〈ACFCQ
〉 over the stretched expo-

nential given by Equation 5 to extract a decay constant
τ and Li hopping rate τ−1.

A histogram of all of the individual atomistic CQ val-
ues calculated using DFT on the β-LPS training set is
shown in Figure 4, right panel. The spread of CQ val-
ues for the LiS6 sites is much wider than that for LiS4,
and their averages are able to be discriminated (a 30 kHz
difference). LiS6 sites have an average C̄Q of 124.1 kHz,
whereas LiS4 sites have an C̄Q of 90.9 kHz . Thus while
ω̄Q cannot be used to distinguish these two sites, their
C̄Q values could be a good target to understand the local
structure in ideal single crystal β-LPS.

FIG. 4. Distributions of ωQ and CQ in β-LPS. The left
panel shows the distribution of tetrahedral LiS4 sites (blue) to
octahedral LiS6 sites (green), calculated using DFT, for the
crystalline β-LPS structure. The right panel uses the same
color scheme to show the distributions of CQ sites for β-LPS.
CQ and ωQ are calculated for all 33 β-LPS structures in the
ML-EFG model.

Using the UFP-MD, we are able to track single-atom
trajectories across the simulation, and therefore can cal-
culate a single-atom ACFCQ

, for each site in the β-LPS
crystalline structure. In order to understand how the
〈ACFCQ

〉 behaves, we separate the individual single atom
ACFCQ

, by the Li sites at time t = 0. In Figure 5, we
plot both the individual ACFCQ

and 〈ACFCQ
〉, where

the individual ACFCQ
are colored by the site in which

the Li atom started at time t = 0. The 〈ACFCQ
〉 average

is calculated over the 13 Li ions that experience a hop to
a different site (either LiS4 → LiS6 or vice versa) during
the 1 µs simulation, to reduce the noise in the 〈ACFCQ

〉.
We show that averaging over only the sites which hop
is a reasonable assumption to make by comparing these
results to a 1 µs simulation at 350K, shown in the Sup-
porting Information Figure S3, in which 102 Li atoms
hop during the simulation, and there is better averaging

over more sites.
From the top panel in Figure 5, we can clearly distin-

guish the individual ACFCQ
for LiS6 sites (green), LiS4

sites (blue), and hopping events between the sites, as
there is a steep rise (or drop) in the ACFCQ

at each hop-
ping event. Taking the average over all 13 Li sites, the
〈ACFCQ

〉 does exhibit an exponential decay. Fitting the
〈ACFCQ

〉 in Figure 5 to Equation 5, we find a decay time
of τ = 1.19 µs, or a Li hopping rate of 8.41×105 s−1. This
is on the same order of magnitude as the Li hopping rate
extracted from the MSD, 2.57×105 s−1. Additionally, by
removing the orientation dependence, and averaging over
only the hopping sites, we achieve better signal to noise
ratio, and can more clearly distinguish the small initial
decay at (tm < 50 ns).

FIG. 5. 〈ACFCQ〉 for β-LPS By considering only the Li
atoms in the 300K simulation which perform a hop to another
site during the 1 µs simulation (either LiS4 → LiS6 or LiS6

→ LiS4), and calculating the 〈ACFCQ〉 over these sites which
hop during the simulation time we extract τ of 1.19 µs. The
colors of the individual atom ACFCQ shown in the top left
panel correspond the starting site of the Li atom at time t = 0.
Thus LiS6 sites at t = 0 which hop to LiS4 sites have an
ACFCQ in green, and LiS4 sites at t = 0 which hop to LiS6

sites are shown in blue. The trajectories of all Li atoms are
colored in the same fashion in the right panel of the Li atoms
trajectory.

2. am-LPS

In contrast to the β-LPS 〈ACFωQ
〉, which exhibits no

exponential decay, as shown in Figure 3, the 〈ACFωQ
〉 for

am-LPS shows a clear, fast exponential decay which can
be fit to the Lipari-Szabo relation [41] given in Equation
5 (γ = 1.0). The decay time extracted from 〈ACFωQ

for
am-LPS is τSAE = 46 ns, which corresponds to a Li hop-
ping rate of τ−1

SAE = 2.17× 107 s−1. Comparing this with
the hopping rate extracted from the MSD (7.0×107 s−1),
we see that both methods predict the same order of mag-
nitude hopping rates for Li at 300K. The hopping rate
extracted from τ−1

SAE is a slight underestimation to the
rate extracted from the MSD, however this is consistent
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with the fact that the 〈ACFωQ
〉 is not sensitive to all ion

hops that occur within the material, only those for which
ωtm 6= ωt0 , as discussed above.

Previous work on Li hopping in LPS using a 100 ps
AIMD simulation of am-LPS with 48 Li atoms at 600K,
predicts Li hopping rates in the range of 1011 Hz [60].
Their method for determining a Li hopping event in-
volved tracking the escape time for Li atoms to leave a 3
Å radius surrounding the nearest polyanion and fitting
this escape mechanism to an exponential decay function.
Given the short timescale of the simulation, they were
only able to access hopping events with residence times
shorter than 100 ps (1010 Hz). As the shortest τSAE = 46
ns, for real ion hops in am-LPS, this requires a simula-
tion of at least several nanoseconds at 300K considering
the signal-to-noise ratio in the simulation to accurately
estimate the hopping rate. This highlights the impor-
tance of simulating both at room temperature and for
a sufficiently long simulation time, in order to achieve
convergence of the Li dynamics and observe the correct
motion of Li atoms within LPS. Similar inaccuracies from
simple extrapolation to ambient conditions are expected
for any material with broad and complex distributions of
migration barriers that become progressively accessible
upon temperature increase.

IV. DISCUSSION

This study pioneers the application of the latest gener-
ation of machine learning techniques to directly predict
dynamical ssNMR observables at microsecond timescales
from atomistic simulations. It is important to stress
that an ssNMR calculation with DFT accuracy on the
µs timescale would not be possible without leveraging
machine learning to predict the EFG tensors. Calculat-
ing EFG tensors for the 576 atom am-LPS unit cell over
a 1 µs simulation would cost roughly 22.5 million CPUh,
with snapshots taken every 100 ps. The same prediction
made using the ML-EFG model uses 500 CPUh. This
is a factor of 45,000 speedup over DFT-calculated EFG
tensors. Therefore, this is, to the best of our knowl-
edge, the first dynamical ssNMR calculation performed
at DFT level accuracy, and on an experimentally relevant
timescale.

By integrating first-principles methodologies, it en-
sures consistent multi-scaling between NMR calculations
derived from DFT and predictions applied to large-scale
structures. Unlike AIMD studies on Li-ion conduction
and diffusivity, where high temperatures are necessary in
order to promote ion motion and gather enough statis-
tics, we are able to simulate LPS at 300K, which is the
relevant temperature for comparison with realistic exper-
imental solid state electrolyte systems.

By calculating 〈ACFωQ
〉 in both β- and am-LPS, we

find that the decay time for Li in am-LPS at 300K is on
the order of 46 ns, while the 〈ACFωQ

〉 of single-crystalline
β-LPS exhibits no characteristic exponential decay, and

FIG. 6. Heatmap θ and φ distributions in β- and am-
LPS. The heatmaps show the concentration of the angles θ
and φ across the full 1 µs UFP-MD trajectory. The distri-
butions are colored by the total number of sites with that
combination of angles (θ, φ), and in β-LPS the angle pairs
which arise from LiS4 and LiS6 sites are indicated.

instead oscillates about an average value of 〈ACFωQ
〉.

By considering the orientations of the EFG tensors dur-
ing the simulations in both β-LPS and am-LPS we can
see more clearly the differences in behavior of the EFG
tensor in these two materials. Figure 6 shows a 2D his-
togram of all of the accessed angles during the full 1 µs
simulation at 300K for β- and am-LPS. In the β-LPS his-
togram (Figure 6 left), the majority of the angles (θ, φ)
are clustered around either (π/2, 0) for LiS4 tetrahedra
or (π/2±π/6, ±π/4) for LiS6. On the other hand, there
are no clear preferred values of (θ, φ) for am-LPS, indi-
cating that the Li atoms experience a wide array of en-
vironments during the 1 µs simulation. The large spread
in angular distribution in the am-LPS case is what leads
to the characteristic rapid decay shown in Figure 3, as
the Li ions visit sites with all possible orientations during
the full simulation, leading to loss of correlation, which
is normally characteristic of SAE in glasses or polymers
[23, 61]. Once Li atoms are in a single crystalline grain,
this orientational memory loss is no longer possible, and
we see slow, or non existent decay as in β-LPS.

We assessed the two limits of overall microstructure
in the LPS fast ion conductors. The β-LPS crystal rep-
resents an infinitely large fully uniform single crystal of
LPS, as depicted in orange in Figure 7. As such, all the
ωQ values in both LiS4 and LiS6 sites have the same
predominant value (c.f Figure 4 left), which does not
vary throughout the simulation, even during Li hopping
events. In addition, the mean ω̄Q for LiS4 and LiS6 are
only 4 kHz apart, and the spread of the individual atomic
ωQ for LiS6 is entirely contained within the distribution
for LiS4, as presented in Figure 4. Therefore, we would
expect a vanishingly small decay of 〈ACFωQ

〉 for single
crystal β-LPS, in which only those two sites are accessi-
ble, and then observe a residual, partially averaged cou-
pling throughout. However in a polycrystalline material,
shown in green in Figure 7, where LiS4 and LiS6 sites
are oriented along different crystal axes in neighboring
grain boundaries, we are no longer limited by the pre-
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dominant orientation of the ideal single crystal. In this
case, we would expect lower τSAE, and a better sensitivity
to inter-grain Li-ion motion for SAE.

At the other extreme, we consider the bulk am-LPS,
represented by the unstructured purple square in Figure
7, and find that 〈ACFωQ

〉 decays rapidly over a period
of 46 ns. In the homogeneous amorphous regime, we
can see that as the amorphous PS4 backbone changes
across the simulation, Li atoms experience continually
changing electronic environments, and thus we can think
of the Li atoms moving in a “glass-like” ensemble of sites
embedded in PS4 environments. At a 46 ns decay rate,
τSAE is outside of the range detectable by a real SAE
experiment which would, at best, yield a small residual
coupling b > 0 (see Equation 5). In a fast ion conductor,
we expect this rapid decay of the 〈ACFωQ

〉, however this
is the first time we are able to accurately quantify the
rate of this decay in an amorphous material, highlighting
the importance of this UFP+ML-EFG approach.

These two regimes (single crystal and fully amor-
phous), which are straightforward to simulate, are not
representative of the realistic microstructure in glass-
ceramic LPS electrolytes [36]. All of the glass ceramic
materials that are critical for building the next genera-
tion of all solid state batteries such as LISCION, LIPON,
LGPS, and LPS [62] lie within this range between fully
amorphous to fully crystalline Li-ion conductors with hy-
pothetical τSAE decay constants schematically depicted
in Figure 7. That is, they are a mixture of glassy regions
and crystalline regions (depicted as the Glass Ceramic
and Polycrystalline in Figure 7), in which the Li-ion con-
ductivity across grain boundaries is often the determining
factor for the quality of these super-ionic conductors. In
these cases, we propose that SAE will provide a unique
grain-boundary sensitive technique for understanding Li-
ion diffusion, as the intra-grain diffusion will be at either
the amorphous or crystalline limit, and therefore unde-
tectable with SAE.

Experimentally, the Grahnwehr group has observed
τSAE ≈ 30 − 50 ms [63] in a polycrystalline sample of
beta-LPS, which is well above the intra-grain decay rates
we have predicted here . This can likely be rationalized
by sufficiently fast (τ ≤ 1 µs) intra-grain diffusion lead-
ing to partially averaged coupling tensors, combined with
long timescale inter-grain diffusion processes between the
polycrystalline grains (τSAE ≈ ms). However, determin-
ing the rates and mechanisms of these processes which
combine to give an experimental decay rate in the ms
time scale, requires dynamical NMR crystallography and
analysis techniques that allow one to unfold the vari-
ous timescales and effective partially averaged interaction
tensors contained in the measured data [59]. From this
point onward, we now have the capability to make such
an approach, by combining dynamical ssNMR with data
analysis and simulations to interpret the unfolded data
in terms of atomistic processes.

Beyond suggesting further work on grain-boundary
simulations, we demonstrate the potential to access mo-

FIG. 7. Schematic of range of crystalline to amorphous
τSAE The left shows a range of decay functions, Equation 5,
with τSAE from 50 ns to 5 million ns. The inset figures show
schematics of the expected microscale structure at each of
these varying decay rates, with black lines in the glass ceramic
and polycrystalline denoting different grains.

tion even in single pristine crystalline Li-ions, by deriv-
ing 〈ACFCQ

〉 and calculating a corresponding τ , which
does exhibit a decay at 300K for β-LPS. Furthermore,
we show that the Li hopping rate predicted by τ−1 from
〈ACFCQ

〉 is comparable with that calculated from the
β-LPS MSD.

We are just at the beginning of this new era of
NMR crystallography in which we are able to accurately
model dynamical processes at the same temperatures
and timescales as experiment. This workflow combin-
ing UFPs and experimental observables is a baseline on
which the next generation of machine learning for mate-
rials methods can be based. We are now one step closer
to bridging the gap between theory and experiment, and
can tackle more dynamic in operando calculations, which
were previously computationally infeasible.
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