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The task of computing wavefunctions that are accurate, yet simple enough mathematical

objects to use for reasoning, has long been a challenge in quantum chemistry. The

difficulty in drawing physical conclusions from a wavefunction is often related to the

generally large number of configurations with similar weights. In Tensor Product

Selected Configuration Interaction (TPSCI), we use a locally correlated tensor product

state basis, which has the effect of concentrating the weight of a state onto a smaller

number of physically interpretable degrees of freedom. In this paper, we apply TPSCI to

a series of three molecular systems ranging in separability, one of which is the first

application of TPSCI to an open-shell bimetallic system. For each of these systems, we

obtain accurate solutions to large active spaces, and analyze the resulting

wavefunctions through a series of different approaches including (i) direct inspection of

the TPS basis coefficients, (ii) construction of Bloch effective Hamiltonians, and (iii)

computation of cluster correlation functions.
1. Introduction

Computational electronic structure theory has developed into an indisputably
powerful tool for understanding the quantum mechanical origins of molecular
structure and chemical transformations. Progress over the past several decades
(in both hardware and algorithmic improvements) has advanced quantum
chemistry to the point where the accuracy can oen rival that of experiments,
particularly for low-energy molecules near equilibrium. However, as the accuracy
of a computation increases, so to does the numerical complexity of the solution,
making interpretation more challenging.

The need for achieving both quantitative accuracy and qualitative richness was
recognized early on, as computers were rst becoming increasingly powerful.1–3

Gaining access to the underlying driving forces of reactions or structure has
proven to be one of the most valuable aspects of quantum chemistry. As such, the
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ability to extract qualitative insight is perhaps more important than simply
arriving at a quantitatively accurate result.

Many approaches to extracting conceptual insight from ab initio calculations
involves some sort of “localization”. This is because much of our chemical
vocabulary is inherently local (oxidation states, bond order, partial charges,
hybridization, etc.). The abundance of local chemical constructs is not an acci-
dent; molecular structure is generally highly local. For example, the alcohol group
in 1-hexanol behaves very similarly to that in 1-heptanol. As such, understanding
the local structure of a functional group in one system extends signicant
reasoning power to other systems. Consequently, much of the effort spent toward
extracting qualitative insight involves the localization of orbitals, such as with
natural bond orbital methods (NBOs),4–7 atomic localized molecular orbital
methods (ALMOs),8–10 localization of the density as in atoms in molecules (AIM),11

or even many-electron states12–19 (though this list is necessarily far from
comprehensive). Localization has also been leveraged extensively for reducing
computational complexity. Underlying many of these developments is the fact
that the density matrix asymptotically approaches linearly scaling for gapped
systems in a localized basis.20

All (most) of the methods discussed above ultimately leverage the fact that
a Slater determinant wavefunction (or MP2 or CCSD) is invariant with respect to
orbital rotations within the occupied or virtual spaces. Orbitals can be mixed to
maximize some localizing objective function, and the resulting wavefunctions can
then be analyzed in terms of local or non-local contributions.

In contrast, a tensor product space permits a much more explicit notion of
locality, one that naturally exposes the ability to factorize into local quantities
(entanglement) and allows clear labeling of the entire Hilbert space in terms of
unambiguously local quantities. Recently, we have explored the ability to
leverage features of tensor product spaces to decrease the computational cost
of large active-space calculations.21–25 In ref. 23 and 24, we introduced
a method called Tensor Product Selected Conguration Interaction (TPSCI),
which uses a selected CI algorithm to assemble a basis of tensor products of
locally correlated wavefunctions, which can provide accurate approximations
to full conguration interaction (FCI). In this paper, we demonstrate the ability
of these (still expansive) TPSCI wavefunctions to be meaningfully analyzed and
interpreted across a rather wide range of physical systems, including non-
bonded chromophores, dichromium spin coupling, and the fully delocalized
p system of a graphene nano-ake.
2. Theory

We will start by expressing the electronic Hamiltonian in a basis of active orbitals
(p, q, r, s),

Ĥ ¼ hpqp̂
†q̂þ 1

2
hpqjrsip̂†q̂†ŝr̂; (1)

where hpq: one-electron integrals; assuming that the chosen active space is large
enough to capture the necessary physics. This is generally the most limiting
assumption in this paper, and work to include the dynamical correlation arising
from external orbitals is currently underway in our lab.26
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 130–156 | 131
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2.1 Orbital clustering

To make progress toward a compact and interpretable representation, we will
assume that the active orbitals can be partitioned into disjoint clusters, or groups
of orbitals. We will generally use capital letters, I, to index clusters. This orbital
partitioning (or “clustering”) is chosen to maximize the interactions within
a cluster while minimizing the interactions between clusters. For example, if one
had a bimetallic compound (as we consider later in the paper) then one might
dene each cluster to include all the orbitals centered on a given metal, such that
all local dynamical correlation is included as intra-cluster correlation, and weak
spin-coupling is considered as an inter-cluster correlation.

Physically, we will assume that the interactions within a cluster are stronger
than the interactions between clusters. This is not a formal requirement, but
rather one that affects the convergence of the calculations. Each cluster is effec-
tively a new smaller active space, and thus we can construct correlated many-body
wavefunctions, jaIi, that are completely localized to each local active space
(cluster), I. We will refer to these locally correlated states as cluster states, using
them to form an orthonormal basis for the full Fock space on each cluster.
Likewise, the list of all tensor products of cluster states forms an orthonormal
basis for the global Fock space on the full orbital active space. This allows us to
represent an arbitrary wavefunction with s states as a linear combination of
cluster-state tensor products:

jJsi ¼
X

a;b;.;g

ja1ijb2i/jgNicsa;b;.;g: (2)

In this representation, the basis vectors can potentially contain a signicant
amount of electron correlation folded into the local many-body cluster states.
This means that the coefficient tensor, csa,b,.,g, only needs to describe inter-
cluster correlation, with all the intra-cluster correlation being folded into the
basis vectors. This is essentially the same basis used in the Active-Space
Decomposition (ASD) approach of Shiozaki and coworkers.27–29

2.1.1 Cluster mean-eld (cMF) theory. In order to make the most use out of
the representation dened above, it is important that the cluster states are
dened carefully, so that they incorporate as much relevant electron correlation
as possible. Diagonalizing the Hamiltonian projected onto a single cluster (simply
keeping only the terms where all creation/annihilation operators act on orbitals
within the cluster), yields a set of correlated many-body cluster states that include
an exact description of the intra-cluster correlation. Taking a product of the local
FCI ground states provides a reasonable approximation for the global ground
state, one that becomes exact in the “clusterable” limit.

However, interesting molecular systems generally have non-trivial interactions
between clusters, and so this becomes a rather poor approximation in practice.
Fortunately, one can easily obtain a much-improved ground-state estimate by
including a mean-eld description of the inter-cluster interactions when dening
the local cluster Hamiltonian, instead of simply projecting out the inter-cluster
terms. An approach, called Cluster Mean-Field (cMF) theory, was introduced by
Scuseria and coworkers,30–33 and used by Gagliardi and coworkers under the name
variational localized active-space self-consistent eld (vLASSCF).34 In this work,
132 | Faraday Discuss., 2024, 254, 130–156 This journal is © The Royal Society of Chemistry 2024
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we construct correlated cluster states by diagonalizing the local cMF effective
Hamiltonian, ĤcMF

I , for each cluster:

Ĥ
cMF

I ¼ ĤI þ
X
JsI

X
pq˛I

X
rs˛J

p̂†q̂ðpqkrsÞgJ
rs; (3)

where gJ
rs = h0Jĵr†ŝj0Ji. The cMF Hamiltonian for cluster I depends on the one-

particle reduced density matrix (1RDM) of all the other clusters, requiring the
cMF solution to be obtained self-consistently.

Bearing a strong resemblance to traditional Hartree–Fock (HF) theory, the self-
consistent solution corresponds to the variational minimization of an unen-
tangled (product state) wavefunction ansatz,��JcMF

� ¼ j01i5j02i5.5j0Ni
¼ j0102.0Ni; (4)

the difference from HF being that in cMF the ansatz only enforces the absence of
entanglement between clusters. In further analogy to Hartree–Fock theory,
a “generalized Brillouin condition” holds, that rigorously uncouples the
(converged) cMF wavefunction (eqn (4)) from tensor product states (TPSs) with
a single cluster excited:

h0102.0I.0N jĤj0102.aI.0Ni
¼ h0I jĤcMF

I jaI i ¼ 0:
(5)

2.1.2 Orbital optimization. Once converged, the cMF energy is stationary
with respect to the local cluster state wavefunction coefficients (local FCI coef-
cients). This means that the cMF energy is invariant to intra-cluster orbital
rotations (assuming each cluster is solved exactly), but variant with respect to
inter-cluster orbital rotations. In order to obtain a further improved product
state wavefunction, we can make the cMF energy stationary with respect to all
orbital rotations. This is essentially a complete active space self-consistent eld
(CASSCF) calculation with multiple disjoint active spaces.30 While this clearly
has the benet of providing a lower-energy variational solution, perhaps more
importantly, it removes most of the arbitrariness of the orbital clustering.
Assuming each cluster has a Hilbert space dimension greater than one, orbital
optimization with a single tensor product state wavefunction will naturally tend
to localize the orbitals, so as to maximize electron correlation. Consequently,
methods that use the cMF wavefunction as a reference state will be well-dened,
not dependent on a particular heuristic for orbital localization.22,31
2.2 Tensor product selected CI (TPSCI)

While cMF provides a qualitatively attractive approximation for the ground state
of a clustered molecular system, quantitative accuracy is clearly missing due to
the neglect of all inter-cluster entanglement. Analogous to the common
approach of using substituted Slater determinants for a basis, we will use
substituted tensor product states as a basis for the full Hilbert space, where each
TPS is typically taken to be an eigenstate of a cluster's cMF Hamiltonian. This is
similar to a CI analogue of the Block-Correlated Coupled Cluster (BCCC)
approach of Li.35
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 130–156 | 133
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The Hartree–Fock-based Slater determinant basis and the TPS basis are
equivalent, in that both span the full space. However, as soon as truncations are
made, the two bases span different spaces. One benet of working in a TPS basis
where the local Hamiltonians are diagonal is that, due to the fact that local
correlation is folded into the basis states themselves, the low-energy solutions
become more heavily concentrated on a smaller number of basis states. Conse-
quently, computational methods that exploit sparsity (e.g., selected CI) might be
expected to be more performant in the correlated TPS basis than in a Slater
determinant basis. In ref. 23 and 24 we demonstrated that this is oen true, and
can sometimes be leveraged for computational benet.

In the Tensor Product Selected CI (TPSCI) method,23 we use the general CIPSI36

algorithm to discover and exploit, in a bottom-up fashion, the sparsity of the exact
wavefunction in a TPS basis. This uses perturbation theory to iteratively discover
the non-negligible TPSs that are needed to accurately approximate the exact
solution. This is done via the following steps:

(1) Diagonalize Ĥ in the current variational space (this being a list of TPS basis
states that are expected to have large amplitude in the exact solution).

(2) Apply the Ĥ to the current variational space eigenvector. This couples the
variational space to the external space.

(3) Compute the rst-order wavefunction in the external space.
(4) Move the external congurations with large rst-order coefficients from the

external space to the variational space.
(5) If the variational dimension increases, go back to step 1. If not, exit.
This overall iterative loop is shown in Fig. 1. In principle, all local FCI cluster

states would be computed and used to form the basis for state space. While this is
tractable for small clusters, for larger clusters, this becomes computationally
prohibitive, and high-energy states are generally discarded prior to running
TPSCI. We generally useM to refer to the maximum number of cluster states kept
in a particular Fock sector of a cluster. For each particle number subspace
included, the corresponding lowest M eigenstates are computed. Then the Ŝ+ and
Ŝ− operators are applied to those cluster states to generate the basis for the higher
Ms sectors. More details can be found in ref. 24.

The computational limitations of conventional (determinant basis) CIPSI are
generally determined by the size of the dimension of the variational space. Because
TPSCI uses correlated TPS basis vectors, more correlation energy is typically
Fig. 1 Schematic illustration of the selected CI algorithm used in TPSCI to build a basis of
tensor product states. This is iterated until the dimension of the variational space stops
growing.

134 | Faraday Discuss., 2024, 254, 130–156 This journal is © The Royal Society of Chemistry 2024
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recovered with smaller variational spaces, addressing the most signicant bottle-
neck. This comes at a cost, however, during the matrix-element evaluation. Whereas
evaluating matrix elements in the Slater determinant basis is extremely efficient,
matrix elements in the TPS basis are signicantly more expensive. For a 3-cluster
example, consider the following Hamiltonian contribution that contains three
operators (p̂†q̂†r) on cluster 1, and one operator (s) on cluster 2:

Ĥ)
X̨1

pqr

X̨2

s

hpqjrsip̂†q̂†ŝr̂: (6)

Computing the matrix element of this particular Hamiltonian contribution
between two arbitrary TPS basis vectors will require the contraction of an integral
sub-block with tensors of local quantities:

�
a
0
1b

0
2g3

��Ĥ1;2ja1b2g3i)c
X̨1

pqr

X̨2

s

hpqjrsi1Ga0a
pqr

2Gb0b
s (7)

where c is a sign determined by the number of electrons in state ja1i, and the G

tensors are the precomputed local operator matrices in the cluster basis, e.g.:

1Ga0a
pqr ¼

�
a
0
1

��p̂†q̂†r̂ja1i: (8)

Because the matrix elements require a series of tensor contractions, instead of
just a single access from an array, the construction of matrix elements
becomes the key bottleneck in TPSCI. However, in ref. 23, we compared TPSCI
to Heat Bath CI,37 and found that we were able to obtain signicantly lower
variational energies using TPSCI than with Heat Bath CI. Once the TPSCI
variational space has converged, we have also found that it is sometimes
benecial (especially for ground-state problems) to perform a higher-order
singular value decomposition (HOSVD) of the resulting wavefunction tensor,
to rotate the cluster states into a form that diagonalizes the local cluster
reduced density matrices (within subspaces that preserve local particle
number and Ŝz). More details about the implementation and matrix element
construction can be found in ref. 23 and 24.

2.2.1 Bloch effective Hamiltonian. Once an accurate TPSCI wavefunction is
obtained, one is oen interested in more than just the associated energy. Being
able to extract qualitative information to aid in communicating and reasoning
about the underlying electronic structure is extremely valuable, and TPS wave-
functions are uniquely interpretable. Since the basis states in TPSCI are essen-
tially diabatic states, it is a very natural extension to use the concept of Bloch
effective Hamiltonians to extract quantitative relationships between qualitatively
meaningful degrees of freedom38–47 for analysis.

We start by dening a “model space”, {jfii}, which is taken to be the set of
physically meaningful TPSs that qualitatively dene the structure or process. To
ensure that themodel space is actually relevant to the physics computed, the exact
low-energy states of the system, jJsi, should have relatively large projections onto
the model space, i.e.,

kP̂MjJsikz1; (9)

where, P̂M ¼ P
i
jfiihfij. Next, we seek a Hermitian effective Hamiltonian which

exists only in the model space, but that yields the exact energy spectrum. While
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 130–156 | 135
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this is oen done in a bottom-up fashion through approaches like quasi-
degenerate perturbation theories or Schrieffer–Wolff transformations, if one
already has access to the exact target eigenstates, an effective Hamiltonian
(specically, a Bloch effective Hamiltonian) can be obtained simply in a top-down
fashion by direct projection,

ĤBloch = j~jsiEsh~jsj (10)

Ĥ
Bloch ¼ ��P̂MJs

E
XstEtXtu

D
P̂MJu

��; (11)

where,

Xst ¼
�
hJsjP̂MjJti

��1=2
; (12)

will always exist when eqn (9) holds. The individual matrix elements of ĤBloch

then contain quantitative relationships between qualitatively meaningful states.
2.2.2 Cluster correlation functions. In addition to the Bloch effective

Hamiltonian, which gives us a state-universal description of the interactions
between physically intuitive degrees of freedom, we also oen want to charac-
terize specic states in terms of physically intuitive variables.

Following the recent work of Luzanov, Krylov, and Casanova,48,49 the local TPS
representation makes it simple to compute cluster correlation functions of
various local cluster operators to characterize states in terms of observables. A
two-cluster correlation function for operator Ô is given as the covariance between
the operator localized onto each individual cluster:

cov(ÔI,ÔJ) = hJsjÔIÔJjJsi − hJsjÔIjJsihJsjÔJjJsi (13)

where the covariance of an operator with itself is just the variance, which will be used
tomeasure the local uctuations in a given cluster. Depending on the system, we will
consider correlations between the following cluster operators: local charge (particle
number), N̂I, local spin projection, ŜzI, local spin Ŝ2I , and local excitation, Q̂I = 1̂ −
j0Iih0Ij, which indicates that cluster I is excited out of its cMF ground cluster state.

3. Results

In the following sections, we explore the ability to simultaneously obtain quantitative
yet interpretable approximations to large active spaces. Because our representation is
ideal for separable clusters, to obtain insight into the transferability of the formalism,
we explore systems that span a broad spectrum in terms of clusterability, going from
a non-bonded tetracene tetramer (Sec. 3 3.1), to an anti-ferromagnetically coupled
dichromium complex (Sec. 3 3.2), to a completely delocalized graphene-ake model,
hexabenzocoronene (Sec. 3 3.3).

We use PySCF soware for performing any necessary geometry optimizations,
Hartree–Fock calculations, and integral generation.50 All TPSCI calculations are
performed using our open-source FermiCG soware.51

3.1 Singlet-ssion: tetracene tetramer

Singlet ssion is the photophysical process by which a bright singly excited state,
jS1i, is converted into two lower-energy triplet states, jT1i + jT1i, by way of
136 | Faraday Discuss., 2024, 254, 130–156 This journal is © The Royal Society of Chemistry 2024
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a multiexcitonic intermediate state, j1TTi.52 Because this process converts a single
photon into two excitons (each of which can split into charge carriers), materials
that exhibit singlet ssion have promising applications in solar cells due to the
possibility of overcoming the Shockley–Queisser limit for efficiency.53

A dimer model description of the singlet-ssion process requires a total of 8
states: the ground state, jS0S0i, two local bright states, jS1S0i and jS0S1i, two local
triplet states, jS0T1i and jT1S0i, and the three biexcitonic states arising from the
product of two triplet states, jT1T1i. The biexcitonic state is characterized as an
entangled pair of local triplets, which can be spin-coupled into either a singlet
j1TTi, triplet j3TTi, or quintet j5TTi, represented in the diabatic basis via their
Clebsch–Gordan coefficients,

��1TT� ¼ 1ffiffiffi
3

p �jTþT�i � ��T0T0
�þ jT�Tþi	 (14)

��3TT� ¼ 1ffiffiffi
2

p ðjTþT�i � jT�TþiÞ (15)

��5TT� ¼ 1ffiffiffi
6

p �jTþT�i � 2
��T0T0

�þ jT�Tþi	 (16)

where the rst triplet in each state refers to chromophore A and the second triplet
to chromophore B. Although j1TTi is the main intermediate, as it is spin-allowed,
it has been shown that the triplet and quintet states can play a role in the sepa-
ration process.54

While a dimer model captures the key intermediates, it is too small to describe
additional physical effects that occur in bulk systems. For example, the initial
bright state is generally understood to delocalize over several monomers,
increasing the number of localized biexcitons to which it can couple. Further, it
has been seen that singlet ssion rates are increased by the involvement of a non-
nearest-neighbor biexciton j1T/Ti, which is absent from the dimer model by
construction.55,56 Recent work has further demonstrated the importance of
beyond-dimer effects.57,58

Because methods that rely on single or even double excitations struggle to
accurately describe two-electron excitations, multireference methods, such as
CASPT2, are oen required to capture the wide range of electronic character.
While this is suitable for a couple chromophores, active-space methods typically
grow exponentially with the number of chromophores, making it difficult to
extend to larger systems.

TPSCI (similar to ASD, which preceded it27–29) is well-suited for treating
collections of chromophores because the physical system efficiently maps onto
the tensor product basis. In a recent paper,24 we demonstrated that TPSCI was
able to provide accurate approximations to complete active space conguration
interaction (CASCI) for a large (40e, 40o) active space, which incorporated 10
active orbitals for each of the four tetracene chromophores. In this paper, we
explore this further, using the TPS structure to facilitate further analysis and
characterization of the resulting wavefunctions.

In this subsection, we use TPSCI to go beyond the minimal dimer example for
singlet ssion and explore dressed Hamiltonains and local cluster operator
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 130–156 | 137
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Fig. 2 Bare and Bloch effective Hamiltonians for a tetracene tetramer with diagonal
entries subtracted to show off-diagonal couplings in meV. Active space of (40e, 40o) with
system and clusters labeled. (a) Tetracene tetramer with the associated clusters labeled; (b)
Hamiltonian matrix for the model space (diabatic basis); (c) Bloch effective Hamiltonian
obtained by projecting TPSCI wavefunctions onto themodel space. The non-singlet states
have been removed for clarity.
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correlations for a tetracene tetramer (shown in Fig. 2(a)) using a large (40e, 40o)
active space.

3.1.1 Active-space selection and clustering. In order to construct an active
space that contains the relevant orbitals for describing both the local S1 and T1

states, we used the conguration interaction singles-natural orbitals (CIS-NO)59

approach to select our active space in the 6-31G*60 basis. We rst performed
a conguration interaction singles (CIS) calculation for the rst singlet and triplet
on each chromophore and averaged these states into the one-particle reduced
density matrix (1RDM). By diagonalizing the 1RDM, we obtained a set of natural
orbitals from which we extracted the 40 most correlated orbitals (i.e., those that
have the most fractional occupancy) as our active space. We then localized these
40 orbitals using the Pipek–Mezey method61 and then grouped the orbitals into
four (10e, 10o) clusters on each chromophore for an overall active space of 40
orbitals and 40 electrons (40e, 40o). We are currently developing approximate
solvers (such as restricted active space conguration interaction (RAS-CI)) for
obtaining the local cluster states. This will allow us to consider clusters larger
than the relatively small ten-orbital clusters used here.

3.1.2 Bloch effective Hamiltonian. To analyze our TPSCI results, we start by
computing a Bloch effective Hamiltonian by projecting the TPSCI eigenvectors
onto our diabatic basis (i.e., model space). The diabatic basis for a tetracene
tetramer includes the biexciton diabatic states for each pair in addition to the
singly excited states on each chromophore. In the tetramer, there are six possible
dimer congurations and each generates three Ms = 0 spin components, jT+T−i,
jT0T0i, and jT−T+i, which leads to a total of 18 diabatic biexciton states. We also
observe in the tetracene monomer that both T1 and T2 are lower in energy than
the rst singlet excited state, S1; thus all three of these states must be represented
for each chromophore in our model space. In total, our model space includes 31
diabatic states. However, to simplify the picture, we focus on the singlet model
space, where the biexcitonic states have been mixed using their Clebsch–Gordon
coefficients to form proper j1TTi diabatic states. This reduces our model space
from 31 states to 11 states.
138 | Faraday Discuss., 2024, 254, 130–156 This journal is © The Royal Society of Chemistry 2024
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In Fig. 2(b) and (c), we plot the bare Hamiltonian and effective Hamiltonian in
the model space as described above, with the columns arranged to correspond
with the cluster labels in Fig. 2(a). The diagonal energies are subtracted to better
reveal the off-diagonal activity in meV. In both plots, the Hamiltonian is blocked
by state type: the ground state, four singlet excited states, and six singlet biexci-
tons, where the non-singlet states have been omitted for clarity. As expected, the
singlet excitons couple very strongly to each other, both in the bare and effective
Hamiltonians, which ultimately gives rise to bright-state delocalization. There is
only negligible coupling between the S1 and biexcitons in the bare plot, but aer
including external space correlations, we see a signicant growth in the strength
of the effective coupling. These are listed explicitly in Table 1. Whereas the j1TTi
states on the 3 herringbone dimers develop signicant S1 coupling aer the
inclusion of the external space, the planar dimers remain uncoupled from the
bright spectrum. In addition to strengthening the coupling between the bright
states and the biexcitonic states, the inclusion of higher-energy states also
induces couplings between the biexcitons themselves.

3.1.3 Correlation analysis. As mentioned in Section 2.2.2, correlation func-
tions of various local cluster operators can be used to characterize the adiabatic
TPSCI wavefunction in terms of physically meaningful relationships between
clusters. In Table 2, we list the expectation values of the cluster excitation oper-
ators, which measure the amount of excited-state character in each state, and by
summing over clusters, the total excitation rank of each excited state. This allows
us to unambiguously identify the biexcitons, which we use to label the states
accordingly in Fig. 3, where we compute the inter-cluster cumulants for cluster
particle numbers (N̂I), cluster spin projections (ŜzI), and cluster excitations (Q̂I) for
each of the six singlet biexcitons 1(TT) and four bright states.

Looking rst at the particle number correlations, N̂I, we see that overall, the
“dark” jTTi states are relatively quiet compared to the charge correlations present
in the bright states. This is entirely expected based on the physical characteristics
of the bright vs. dark states. Bright states have relatively large amounts of charge-
transfer character mixed in. The presence of charge transfer makes the local
particle number less well dened, which increases a cluster's charge variance, and
similarly increases the anti-correlation between two clusters' charge states (when
the donor is cationic, the acceptor has a high probability of being anionic).
Although weaker than the lowest S1 state, we see clear signatures of charge
correlation present in a couple of the biexcitons (state 6 and 10). This is consistent
with an analysis of the wavefunction itself. If we compute the amount of charge
Table 1 TPSCI Effective Hamiltonian to show coupling strengths between S1 and j1TTi in
meV

Ĥeff

j1TTi

1,2 1,4 2,3 1,3 2,4 3,4

hS1j 1 −6.43 19.46 0.33 0.80 1.31 0.01
2 3.66 2.47 10.16 1.04 0.50 0.00
3 0.37 −0.82 14.36 −0.64 −0.08 −0.07
4 −0.23 −6.62 0.42 0.10 0.37 0.08
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Table 2 Tetracene tetramer local excitation strengths. Columns correspond to the
expectation values of the local cluster excitation operator, Q̂I = 1̂ − j0Iih0Ij. A value of
0 indicates that the cluster is in its local ground state. A value of 1 indicates that the cluster
is always in a local excited state. All the local excitation ranks of the states are summed

State hQ̂1i hQ̂2i hQ̂3i hQ̂4i
Excitation
rank

6 0.90 0.89 0.20 0.04 2.01
7 0.63 0.54 0.81 0.03 2.02
10 0.95 0.10 0.01 0.95 2.01
12 0.45 0.54 1.00 0.02 2.01
19 0.05 0.11 0.91 0.95 2.02
21 0.05 0.86 0.11 0.99 2.01
24 0.63 0.27 0.13 0.11 1.14
25 0.24 0.57 0.08 0.16 1.05
28 0.18 0.08 0.81 0.02 1.09
31 0.06 0.20 0.01 0.80 1.07
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transfer present in each state, we nd that out of all of the biexcitons, states 6 and
10 have the highest percentage of CT character, 4.6% and 4.5%, respectively (see
the ESI† for all state CT compositions). Charge correlations between clusters
entangled into a biexciton also indicate signicant superexchange, which stabi-
lizes the low-spin biexciton.62,63

Considering next the ŜzI correlations, we see the opposite trend, where the
biexciton states have signicantly more pronounced correlations, and the bright
states are featureless (as would be expected from the lack of local triplet char-
acter). This is also consistent with the nature of the different sets of states. A j1TTi
biexciton is characterized as two entangled triplet states coupled into a singlet
state. Because the total Ms is zero, when the rst monomer is in the Ms = 1
microstate, the entangled partner is very likely to be found in the Ms = −1
microstate. This entanglement leads to a very strong ŜzI covariance.

Using the spin correlation as a way to label the biexcitons,48 we can identify
that state 6 is a (1,2) biexciton (meaning that it primarily exists on chromophores
1 and 2), states 7 and 12 are superpositions of (1,3) and (2,3) biexcitons, and state
Fig. 3 Tetracene tetramer correlation functions. (top row) Particle number, N̂I. (middle
row) Spin projection, ŜzI . (bottom row) Cluster excitation, Q̂I. The first 6 plots from the left
are for the j1TTi states. The last 4 plots from the left are for the jS1i states. Each matrix
column/row corresponds to cluster 1 to 4, as labeled in Fig. 2. The color scale for each
correlation function is shown on the far right.
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21 is a (2,4) biexciton. Looking at state 19, we see what resembles a (3,4) biexciton,
although the overall magnitude is much smaller. In order to understand this, we
can look at the Ŝ2 expectation value of the state (shown in the ESI†). We nd that
in this case, the (what we labeled to be) j1TTi state has signicant spin contam-
ination of about 1.1. This is a consequence of the fact that the j1TTi and j3TTi
states are approximately degenerate, meaning that any arbitrary mixing of the two
states is also an eigenstate. This mixing of the two spin states essentially creates
a “broken-symmetry” state, where one chromophore is Ms = 1 and the other is
Ms = −1. By locking the local spin vectors, the local ŜzI uctuations are dimin-
ished, and hence the ability to have signicant covariance with any other cluster.
This could be corrected by tightening our TPSCI convergence, or by rediagonal-
izing Ŝ2 in nearly-degenerate subspaces.

Looking more closely at state 12, we see that clusters 1, 2, and 3 all have
signicant ŜzI uctuations, but only the 1,3 and 2,3 pairs are spin correlated.
Considering the cluster excitation Q̂I covariance plot, we see that while cluster
three has zero uctuations (it is consistently excited), clusters 1 and 2 are strongly
correlated. This means that cluster 3 is always excited, but when cluster 1 is
excited, cluster 2 is most likely in the ground state, and vice versa. This suggests
a situation where a triplet state on cluster 3 forms a biexciton with a triplet
delocalized between clusters 1 and 2. This is consistent with an analysis of the
individual TPS state coefficients, were we nd that 98% of the wavefunction is
characterized as a superposition of the 1,3 and 2,3 biexcitons, j12 z
0.671(T1S0T1S0) + 0.73t1(S0T1T1S0).
3.2 Cr2-complex effective Hamiltonian

Multi-center organometallic complexes oen exhibit interesting physics, such as
single-molecule magnetism,64,65 or valuable catalytic capabilities, such as water
oxidation,66 or nitrogen xation.67 While having a computational method that
could efficiently compute the low-energy structure of organometallic compounds
would be highly valuable, several physical features of these systems make this
challenging. When multiple weakly interacting metal centers possess unpaired
electrons, the resulting low-energy states are highly multicongurational, making
conventional approaches like perturbation theory or coupled cluster theory
inappropriate, as they require a qualitatively correct single determinant wave-
function as a reference.

Because the product of multiple high-spin centers leads to a large number of
spin states, it is not always possible to predict, a priori, the spin multiplicity of
a multi-center organometallic complex. Consider a simple biradical Hubbard
model, represented in a local minimal orbital basis, as shown in Fig. 4(a). Here,
the low-energy congurations are both open-shell broken-symmetry states, and
proper eigenstates must be superpositions of these two congurations, one being
a singlet, and the other theMs = 0 component of the triplet. Because the ionic (or
charge transfer) congurations are both singlets, they can only mix with the
singlet combination of neutral congurations, which is ultimately the origin of
the antiferromagnetic coupling in biradicals.

This picture can oen be simplied signicantly. For systems where the electron
repulsion is sufficiently large, such that hopping of an electron from one center to
another incurs a high energy barrier (i.e., U[ t), the inuence of charge uctuations
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 130–156 | 141
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Fig. 4 Cartoon illustration of the electronic structure of an S ¼ 1
2
biradical approximately

mapped onto an isotropic Heisenberg model at the large U limit, both restricted to the

relevant Ms = 0 subspace. (a) The 4 possible Slater determinants. Assuming a localized

orbital basis, the bottom two correspond to neutral excitations and the top two are ionic or

charge-transfer configurations. (b) The 2 possible spin configurations after being mapped

onto a Heisenberg model with quasi-degenerate perturbation theory (QDPT).
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can be approximately downfolded using quasi-degenerate perturbation theory into an
effective spin Hamiltonian, called the Heisenberg–Dirac–van Vleck Hamiltonian:68

ĤHDvV = −2JŜ1Ŝ2, (17)

where J ¼ �4t2

U
. For this model, the low-energy spectrum is completely deter-

mined by the value of J.
Starting from the ab initio Hamiltonian instead of the Hubbard model, one

nds that the zeroth-order term also contains the non-local direct exchange
integral. Since bare exchange stabilizes the high-spin states, and the second-order
super-exchange term stabilizes the low-spin states, even getting the sign correct
for the exchange coupling constant can be difficult, as the value of J is determined
by the subtle interactions coupling the metals with each other and with the
ligands. However, once known, the relative ordering of the spin states can be
directly written down in terms of J. While this is indeed an approximate
description of the low-energy electronic structure, it is profoundly useful, as the
prediction of J is also oen what connects experiment to theory, where J is
commonly tted to experimental magnetic susceptibility measurements.

The most common approach to computing J from ab initio quantum chemistry
is to use DFT, where one of the degenerate broken-symmetry congurations is
optimized, followed by a spin projection formula, originally proposed by Noo-
dleman,69 and then improved by Yamaguchi.70,71 While this approach has been
widely used due to its conceptual simplicity and computational efficiency, there
are downsides. First, the formalism doesn't actually ever compute the proper low-
spin wavefunction, and so only the energy is generally able to be extracted.
Second, the results become highly functional-dependent. While all systems
demonstrate some density-functional dependence, spin-coupled complexes are
intrinsically more sensitive because the percentage of exact exchange directly
affects the relative energies of the high-spin and broken-symmetry states.72,73

Finally, DFT doesn't offer a path toward systematic improvements, making it
difficult to compare results.
142 | Faraday Discuss., 2024, 254, 130–156 This journal is © The Royal Society of Chemistry 2024
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Because of these reasons, multireference methods like CASSCF and CASPT2
are oen used to model exchange-coupled systems. However, the associated
computational cost limits the active-space size, making it difficult to converge
results to the point where quantitative comparison to experiment is possible.
Oen one nds that dynamical correlation (involving interactions with non-
magnetic orbitals) has a signicant impact on the value of J, generally strength-
ening the antiferromagnetic interactions. As such, density matrix renormalization
group algorithm (DMRG) has emerged as the standard benchmark method for
computing exchange coupling constants in organometallic compounds,74–83

although if only the value of J is needed, efficient approaches that combine spin-
ip methods have also been useful.44,45,47,84

In this subsection, we present the rst application of TPSCI to a transition-
metal compound, a tris-hydroxy-bridged Cr(III) dimer, [L2Cr(III)2(m-OH)3]

+3 (L =

N,N0,N00-trimethyl-1,4,7-triazacyclononane (Fig. 5(c)), which has a J value that was
experimentally tted to a value of −66 cm−1.85 Recently, Pantazis studied this
system using DMRG to solve the low-energy states in a large orbital active space of
up to (30e, 22o),74 calculating an exchange coupling constant of −23.9 cm−1.

3.2.1 Active-space selection. For our calculations, we extend the size of the
active space by including the orbitals that overlap most strongly with the 3d and
4d orbitals on each Cr center, as well as the 2p and 3p oxygen orbitals on each
bridging OH−1 ligand, leading to an overall orbital active space of 38 orbitals. Our
active space was obtained by rst optimizing the restricted open-shell Hartree
Fock (ROHF) wavefunction for the high-spin heptet state. We then dene a set of
atomic orbitals for which we would like to span as closely as possible without
Fig. 5 Convergence and extrapolation of Cr2 low-energy spectra for the def2-SVP basis
and a (32e, 38o) active space. (a) Plot of the TPSCI variational energy as a function of the
computed PT2 correction. The solid line is the linear fit. Units in milliHartree. M = 100. (b)
Clustering of the 38-orbital active space. (c) Molecular structure.
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destroying the ROHF reference. For this system, we take as our projection space
(mA) the Cr 3d and 4d atomic orbitals, and the bridging O 2p and 3p orbitals,
leading to a total of 38 orbitals. We then separately project the doubly occupied (i),
singly occupied (s), and virtual (a) orbital spaces onto this atomic orbitals (AO)
subspace, providing matrices CmA,i,CmA,s,CmA,a. We then perform separate SVD's on
each projected subspace, and keep the largest singular vectors from each orbital
space. As such, we start with 38 atomic orbitals and end up with 38 molecular
orbitals. Following this automated procedure produced an active space consisting
of 13 doubly occupied, 6 singly occupied (the full ROHF open-shell space), and 19
virtual orbitals, leading to a (32e, 38o) active space. While this is not the only way
to yield an active space, it was convenient for our purposes, as the resulting orbital
active spaces are already localized to our target system. In the future, more
extensive tests will be performed for automating the construction of localized
active spaces. The active orbitals are shown in the ESI.†

3.2.2 Clustering. The 38 active orbitals described above were then organized
into 5 clusters, as depicted in Fig. 5(b). Here, each Cr atom cluster dened a local
(7e, 10o) active space, and each oxygen a (6e, 6o) local active space. For each
cluster, a local many-body basis was constructed from the M lowest-energy states
for each sector of Fock space, which contained up to NI ± delec number of elec-
trons, where we set delec = 3 for these calculations. For example, each Cr cluster
has a basis of up to M states obtained by diagonalizing the CMF Hamiltonian for
each of the following active spaces: (4e,10o), (5e,10o), (6e,10o), (7e,10o), (8e,10o),
(9e,10o), and (10e,10o). Similarly, each bridging OH−1 ligand had 7 different
active spaces centered at (6e, 6o).86

As is commonly done with selected CI approaches, signicantly improved
approximations to the energy can obtained by performing a series of selected CI
calculations with varying thresholds and extrapolating to the zero-error limit,
which is taken as an approximation to full CI. While more sophisticated extrap-
olation schemes have been proposed,87 we use the common approach of
assuming a linear relationship between the variational energies and the PT2
correction.88 In Fig. 5(a), we plot the variational TPSCI energy of the 4 lowest
eigenstates as a function of the PT2 correction to each state. By extrapolating this
linear relationship to zero PT2 correction, we can obtain an estimate of the exact
eigenvalues of the Hilbert space dened by M. In Fig. 5(a), we show the extrap-
olation for the M = 100 calculations.

In order to compute J, we can use the Landé interval rule derived from the
energy spectrum of a two-site Heisenberg model, J = (E(S − 1) − E(S))/2S. Aer
computing the lowest energy S= 0, 1, 2, and 3 spin states, we could use any of the
gaps to compute J. If the ab initio system was to be perfectly described by the
Heisenberg model, then the computed J value would be independent of the
particular energy gaps we were to choose. However, the Heisenberg model is
rarely exact, and so we can partially quantify how approximate the model is by
comparing J values computed with different energy gaps. We list the various J
values in Table 3, using either the best variational TPSCI energies, the TPSCI +
PT2 corrected energies, or the extrapolated energies. Results for bothM= 100 and
M = 200 are included.89

Inspecting rst the effect of energy extrapolation, we nd that the extrapolated
J values are larger than the TPSCI + PT2 values by only around 1 cm−1, and that
doubling the size of M from 100 to 200 only increases the J value by another
144 | Faraday Discuss., 2024, 254, 130–156 This journal is © The Royal Society of Chemistry 2024
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Table 3 Exchange coupling constants (cm−1) for the Cr2 compound with the def2-SVP
basis and (32e, 38o) active space. J refers to H = −2JŜ1$Ŝ2. J(S0,S1) denotes which spin
states are used to compute J via the Landé rule. “TPSCI” refers to the best variational
energy obtained, using 3CIPSI = 2e− 4. “TPSCI + PT2” is the best variational energy plus the
state-specific PT2 correction. “Extrapolated” uses differences between the extrapolated
energies. M is the maximum number of cluster states computed for each cluster Fock
sector. The dimension of the sparse variational TPSCI subspace is 97 357 for M = 100 and
127 493 for M = 200

J (S0,S1) J (S1,S2) J (S2,S3)

TPSCI
M = 100 −25.4 −25.7 −26.6
M = 200 −26.6 −27.0 −27.7

TPSCI + PT2
M = 100 −26.7 −27.3 −28.3
M = 200 −28.3 −28.9 −29.9

Extrapolated
M = 100 −28.0 −28.7 −30.0
M = 200 −29.3 −30.3 −31.3
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1 cm−1, despite the fact that this also increases the dimension of the total
accessible Hilbert space signicantly from 2.7 × 1014 to 6.1 × 1015. Compared to
the recent (30e, 22o) DMRG-SCF calculations, which yielded a J value of
−23.9 cm−1,74 our computed values are slightly larger, in good agreement with the
reported CASSCF(6e,10o)-NEVPT2 value of −31.8 cm−1.74

3.2.3 Bloch effective Hamiltonian. In order to further analyze the results
listed in Table 3, we compute a Bloch effective Hamiltonian, providing access to
the individual effective (dressed) interactions between the various spin micro-
states that lead to the low-energy spectrum. A qualitative description of this
complex assigns each Cr center a well-dened oxidation state (III) and spin state

S ¼ 3

2

�
. As such, the low-energy spectrum is expected to be dominated by the 16

spin congurations that form a basis for the S = 3, 2, 1, and 0 states, providing
a clear denition for our model space. However, because the Hamiltonian
preserves spin, we can restrict our focus to only the global Ms = 0 subspace, and
take our model space to be the corresponding 4-dimensional subspace. In Fig. 6,
we plot both the bare Hamiltonian (Fig. 6(a)) and the Bloch-effective Hamiltonian
(Fig. 6(d)) in the model space. The corresponding low-energy spectra are provided
in Fig. 6(b) and (c), respectively.

There are two main features of the effective Hamiltonian that emerge from the
implicit inclusion of the external space correlation: the spin-coupling interactions
have their signs ipped, and their magnitudes are increased. The result of this is
that the system changes from ferromagnetic to antiferromagnetic coupling and
the gaps between the spin states are approximately doubled.

This qualitative result is consistent with a recent study (ref. 90) where J values
for a similar dichromium(III) complex were computed using the vLASSCF-SI
method. Because the vLASSCF method works in a similar TPS basis, they were
able to evaluate the impact of explicitly including some charge-transfer
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 130–156 | 145
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Fig. 6 Bare and Bloch effective Hamiltonians for the Cr2(III) complex. (32e, 38o) active
space. Units of J in cm−1. (a) Hamiltonian matrix in the basis of Ms = 0 tensor products of
local spin states, where all the bridging ligands are in singlet states, and the Cr centers are

in

����S ¼ 3
2
;Ms ¼ � 3

2

�
(b) Energy spectrum of bare Hamiltonian in a local S ¼ 3

2
basis. (c)

Energy spectrum of extrapolated TPSCI results. (e) Bloch effective Hamiltonian obtained

by projecting TPSCI wavefunctions onto a local S ¼ 3
2
basis.
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congurations. They, too, found that this effected a qualitative change in the sign
of J, switching from ferromagnetic to anti-ferromagnetic.

In order to further analyze this Cr2(III) system, we can compute cumulants of
local observables, as mentioned above.48,49 In Table 4, we list the expectation
values, the variances, and the covariances of a few operators local to the Cr2(III)
centers, including the local particle number, ŜzCr, and Ŝ2Cr. We also include the
global Ŝ2 because our basis is not spin-adapted, so there is potential for spin-
contamination, although our calculations are converged tightly enough to
reduce spin-contamination to the 4th decimal place.

Considering rst the local particle number values, we nd that the average
number of electrons is quite consistent across the different spin states, staying
just barely above 7 electrons (which corresponds to a Cr(III) oxidation state, with 2
doubly occupied ligand orbitals). However, the uctuations in the oxidation state
noticeably depend on the spin state, increasing as the global spin is decreased.
This is easily understood as a consequence of the super-exchange mechanism,
Table 4 Local expectation values for the Cr2(III) complex. Variance is computed as:
var(ÔCr) = hÔ2

Cri − hÔCri2. Covariance is computed as: cov(ÔCr) = hÔCrAÔCrBi −
hÔCrAihÔCrBi

Root 1 2 3 4

hŜ2i 0.000 2.000 6.000 12.000
hN̂Cri 7.010 7.010 7.010 7.010
var(N̂Cr) 0.019 0.018 0.016 0.014
cov(N̂Cr,N̂Cr) −0.004 −0.004 −0.002 0.000
hŜzCri 0.019 0.013 0.003 0.003
var(ŜzCr) 1.248 2.042 1.246 0.453
cov(ŜzCr,Ŝ

z
Cr) −1.245 −2.039 −1.242 −0.449

hŜ2Cri 3.741 3.742 3.745 3.750
var(Ŝ2Cr) 0.064 0.061 0.056 0.047
cov(Ŝ2Cr,Ŝ

2
Cr) 0.017 0.014 0.008 −0.001
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whereby coupling to electron-transfer states stabilizes the low-spin states relative
to the high-spin states. Again, this is consistent with what is seen in ref. 90, and
the more general treatment of formal magnetic interactions from Malrieu and
coworkers.43 For the global singlet state, the statistical correlation between the
oxidation-state uctuations on the two Cr centers is only 21.1%, indicating that
the majority of the oxidation-state uctuations are due to electron exchanges with
the bridging ligands.

Because both Cr centers are re-coupled into global eigenvectors of Ŝ2, the local
ŜzCr is no longer a good quantum number, and becomes maximally uncertain. In
fact, we can further test how closely the system follows Heisenberg–Dirac–von
Vleck physics by comparing the analytic values of the local SzCr variance using the

Clebsch–Gordon coefficients for a product of two S ¼ 3
2
spins. For the singlet,

triplet, quintet, and heptet states, the analytic var(ŜzCr) values are −1.25, −2.05,
−1.25, and −0.45, respectively. Our computed correlations are only slightly
different from these analytical values: −1.245, − 2.039, − 1.242, and − 0.449,
further indicating good consistency with the Heisenberg model.

Inspecting the local Ŝ2Cr values, we see a complementary picture to that
provided by the particle-number uctuations. As the global spin is decreased, the
local S2 values also tend to decrease, while the variance increases. This is
consistent with the superexchange mechanism stabilizing global low-spin states
by coupling to charge-transfer states. When an electron transfers from one Cr to
the another, the number of unpaired electrons decreases. As a result, the local
S2Cr values decrease, and develop a positive covariance between the centers.
3.3 Conjugation in 2D

In the earlier sections, the tetracene tetramer (Sec. 3 3.1) served as an example of
a completely non-bonded system, which is clearly quite easily clusterable. In Sec.
3 3.2, we demonstrated that the concepts of oxidation state and local spin allowed
us to treat the Cr2(III) complex in a clustered representation. In contrast, conju-
gated p-systems are characterized primarily by the highly delocalized nature of
their electronic structure. In this section, we investigate the ability to compute
and analyze the full p active space for a large delocalized p system.
Fig. 7 Hexabenzocoronene. (a) Molecular structure and cluster indices. Active space (42e,
42o) includes all p orbitals. (b) Extrapolation of the energy of the singlet ground state. Units
of milli-Hartree. (c) Charge covariance matrix, cov(N̂I,N̂J).
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Hexabenzocoronene (C42H18) is a polycyclic aromatic hydrocarbon (shown in
Fig. 7(a)) where an additional benzene ring is fused to the outside of a central
coronene ring. The p electrons are delocalized across the entire molecule, which
contributes to its unique electronic properties. As we have seen previously,23 the
delocalized hexabenzocoronene system serves as a nice edge case for evaluating
the ability of TPSCI to provide both accurate and insightful results for systems
that are not obviously clusterable.

3.3.1 Active-space selection and clustering. For these results, we have
considered the full p-system orbital active space (42 orbitals consisting of the 2pz
orbitals on each carbon) using the cc-pVDZ basis set.91 Viewing hexabenzocor-
onene as a collection of seven benzene rings, we partition the 42 orbitals into 7
clusters of 6 orbitals. A depiction of this clustering is shown in Fig. 7(a). The
geometry is optimized at the B3LYP/cc-pVDZ level of theory. The cMF optimiza-
tion (including orbital rotations between clusters) is performed using our open-
source Julia package ClusterMeanField.jl.92 For each cluster, a local many-body
basis was constructed using the embedded Schmidt truncation (EST) approach,
where we dene the cluster basis as the singular vectors of the FCI ground state on
the cluster plus an orbital bath. We discarded Schmidt vectors with singular
values smaller than a threshold value of 1 × 10−4. Detailed analysis of the EST
approach has been carried out in our recent TPSCI paper.23

3.3.2 Convergence of the TPSCI ground state. In Fig. 7(b), we plot the
extrapolation of the TPSCI variational energy as a function of the PT2 correction.
We use 3FOIS = 1 × 10−6 (threshold on the external space couplings), and tightest
3CIPSI = 1.5 × 10−4 through the bootstrapping HOSVD approach for this calcu-
lation.24 Here we see that our ground-state TPSCI + PT2 energy is only about 5 mH
away from the extrapolated result. Further, this was with a variational dimension
of only around 114k. The extrapolated total energy of the molecule is −1601.6971
± 0.0001 au. It's important to emphasize that the uncertainty here is due to the
linear t and does not imply a variational guarantee. If we knew that the rela-
tionship was indeed linear over the full range, then our energy would be correct to
0.1 mH.

We note that the performance of TPSCI on such delocalized p systems depends
signicantly on the topology of the molecule. For the complex considered here,
there is a well dened Clar's structure that suggests a unique clustering. We
expect this to be key to achieving accurate solutions. In contrast, our recent work23

revealed that p systems without a well-dened clustering into a Clar's structure
(such as coronene) are signicantly slower to converge. We plan to explore this
topic in the future for a more extensive set of polyaromatic hydrocarbons.

3.3.3 Correlations in between clusters. In Fig. 7(c), the charge covariances
between the clusters are depicted as a heatmap, with each row/column corre-
sponding to a given cluster labeled by the number on the diagonal. Looking rst
at the diagonal of the matrix (the charge variances), we see that the outside
clusters (1–6) all have equivalent charge uctuations, while the central benzene
unit has signicantly larger uctuations in the ground state. Because the variance
quanties the uncertainty in the number of electrons in a given cluster, each of
the outer and inner clusters has a number of electrons of 6.0 ± 0.5 and 6.0 ± 0.7,
respectively (using a 3s condence interval). Considering next the off-diagonal
matrix elements, we see that all nearest-neighbor cluster couplings are approxi-
mately the same. Assuming that two-body correlations dominate, this means that
148 | Faraday Discuss., 2024, 254, 130–156 This journal is © The Royal Society of Chemistry 2024
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Table 5 Unique cluster correlations in hexabenzocoronene. N̂I is the number operator for
cluster I. ŜzI is the spin magnetization operator for cluster I. Q̂I is the projector onto the
orthogonal complement of the cMF ground state for cluster I. Cluster pair indices
correspond to the labeling in Fig. 7(a) with the description of the interaction type in
parenthesises

Cluster pair cov(N̂i,N̂j) cov(Ŝzi ,Ŝ
z
j ) cov(Q̂i,Q̂j)

1,1 (outer) 0.02551 0.00925 0.03307
7,7 (inner) 0.05729 0.02103 0.06867
1,2 (nearest neighbor) −0.00759 −0.00276 0.01079
1,3 (meta) −0.00018 −0.00005 −0.00010
1,4 (para) −0.00040 −0.000134 −0.00006
1,7 (outer-inner) −0.00956 −0.00350 0.01342
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the central carbon should have a variance that is about twice that of the outer
clusters, just based on the fact that it has twice as many nearest neighbors,
which is consistent with the observed results. Because small differences are
difficult to see in the heatmap, we have listed the unique covariance quantities in
Table 5. Very similar results exist for the ŜzI correlations, as can be seen in Fig. S2
in the ESI.†

By considering the wavefunction directly, we notice that about 89.6% of the
wavefunction is attributable to TPSs that have 6a and 6b in each cluster, whereas
9.1% is due to charge-transfer congurations, and 1.3% is due to local spin-ip
congurations.

We also note that in Table 5, we see stronger particle number and spin
correlations between benzenes connected in the para position than between those
with meta connections, despite being further in distance, indicating a slight
directing effect of the central benzene. However, the opposite is seen with the
cluster excitation, Q̂I, correlations.

Although the particle number covariance between each pair of neighboring
clusters is negative (indicating charge transfer), the Ŝ2I correlations are positive
between neighboring clusters. This is consistent with the description of charge
correlation. When an electron from a cluster hops into another cluster, then
a doublet state will be formed in both of the clusters. One cluster will be one
electron decient, giving rise to a cationic doublet state, and the extra electron
forms an anionic doublet state in the neighboring cluster. Consequently, when
one cluster is in a doublet state, its neighbors have a higher probability of also
being found in a doublet state, making the correlation positive. The entanglement
between clusters leads each to acquire a non-zero average Ŝ2I value. The outer
clusters have total spin of 0.034 ± 0.55, whereas the central cluster as a local
S2I value of 0.078 ± 0.84, where uncertainty is given as 3s.
4. Conclusions

In this paper, we have explored the ability of TPSCI to provide accurate yet
interpretable approximations to FCI on relatively large orbital active spaces.
Because TPSCI works in a basis consisting of products of local FCI states, the
more separable a system is, the easier it should be to simulate. As such, in this
paper, we consider three example systems, which range in the degree of
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 130–156 | 149
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separability: (i) a completely non-bonded tetramer of tetracene molecules, (ii)
a more strongly interacting dichromium organometallic complex that, while
bonded, is still characterized with local quantities like oxidation state, and (iii)
a completely delocalized p system of hexabenzocoronene.

For the dichromium example, this was the rst TPSCI calculation applied to
open-shell biradical systems. We found that TPSCI was able to compute exchange
coupling constants that are larger in magnitude (presumably more accurate) than
recent DMRG calculations.

For each of these systems, we characterized the resulting wavefunctions using
quantities that are easily accessible from the TPS basis. By leveraging the natural
diabatic character of the TPS basis, we are able to easily construct Bloch effective
Hamiltonians, which provide quantitative relationships between physically rele-
vant degrees of freedom. This provided access to quantities such as the effective
coupling between the bright states and the multiexcitonic states, hS1jĤeffj1TTi,
which implicitly includes the downfolded effects from charge-transfer couplings,
which are substantially enhanced compared to the direct coupling.

We additionally used correlation functions of quantities like particle number,
spin, and cluster excitation to provide a more detailed analysis of the various
variational TPSCI eigenstates, and ultimately compare the results to inspection of
the wavefunction itself, which is particularly interpretable due to the diabatic
nature of the basis. This work helps lay out approaches for extractingmore insight
from TPSCI wavefunctions (and other TPS-based wavefunctions) in the future.
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Interactions in Molecules and Highly Correlated Materials: Physical Content,
Analytical Derivation, and Rigorous Extraction of Magnetic Hamiltonians,
Chem. Rev., 2014, 114, 429–492.

44 N. J. Mayhall, P. R. Horn, E. J. Sundstrom and M. Head-Gordon, Spin-ip non-
orthogonal conguration interaction: a variational and almost black-box
method for describing strongly correlated molecules, Phys. Chem. Chem.
Phys., 2014, 16, 22694–22705.

45 N. J. Mayhall and M. Head-Gordon, Computational Quantum Chemistry for
Multiple-Site Heisenberg Spin Couplings Made Simple: Still Only One Spin–
Flip Required, J. Phys. Chem. Lett., 2015, 6, 1982–1988.

46 N. J. Mayhall, From Model Hamiltonians to ab Initio Hamiltonians and Back
Again: Using Single Excitation Quantum Chemistry Methods To Find
Multiexciton States in Singlet Fission Materials, J. Chem. Theory Comput.,
2016, 12, 4263–4273.

47 P. Pokhilko and A. I. Krylov, Effective Hamiltonians derived from equation-of-
motion coupled-cluster wave functions: Theory and application to the
Hubbard and Heisenberg Hamiltonians, J. Chem. Phys., 2020, 152, 094108.

48 D. Casanova and A. I. Krylov, Quantifying local exciton, charge resonance, and
multiexciton character in correlated wave functions of multichromophoric
systems, J. Chem. Phys., 2016, 144, 014102.

49 A. V. Luzanov, D. Casanova, X. Feng and A. I. Krylov, Quantifying charge
resonance and multiexciton character in coupled chromophores by charge
and spin cumulant analysis, J. Chem. Phys., 2015, 142, 224104.

50 Q. Sun, et al., Recent developments in the PySCF program package, J. Chem.
Phys., 2020, 153, 024109.

51 N. J. Mayhall, V. Abraham, N. M. Braunscheidel and A. Bachhar, FermiCG,
2024, https://github.com/mayhallgroup/FermiCG, accessed 03-03-2024.
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 130–156 | 153

https://github.com/mayhallgroup/FermiCG
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00049h


Faraday Discussions Paper
O

pe
n 

A
cc

es
s 

A
rt

ic
le

. P
ub

lis
he

d 
on

 2
8 

M
ar

ch
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

/1
5/

20
26

 3
:1

5:
47

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
52 M. B. Smith and J. Michl, Recent Advances in Singlet Fission, Annu. Rev. Phys.
Chem., 2013, 64, 361–386.

53 M. C. Hanna and A. J. Nozik, Solar conversion efficiency of photovoltaic and
photoelectrolysis cells with carrier multiplication absorbers, J. Appl. Phys.,
2006, 100, 074510.

54 J. C. Johnson, Open questions on the photophysics of ultrafast singlet ssion,
Commun. Chem., 2021, 4, 1–3.

55 R. D. Pensack, A. J. Tilley, S. R. Parkin, T. S. Lee, M. M. Payne, D. Gao,
A. A. Jahnke, D. G. Oblinsky, P.-F. Li, J. E. Anthony, D. S. Seferos and
G. D. Scholes, Exciton delocalization drives rapid singlet ssion in
nanoparticles of acene derivatives, J. Am. Chem. Soc., 2015, 137, 6790–6803.

56 G. D. Scholes, Correlated Pair States Formed by Singlet Fission and Exciton-
Exciton Annihilation, J. Phys. Chem. A, 2015, 119, 12699–12705.

57 T. C. Berkelbach, M. S. Hybertsen and D. R. Reichman, Microscopic theory of
singlet exciton ssion. III. Crystalline pentacene, J. Chem. Phys., 2014, 141,
074705.

58 T. C. Berkelbach, in Advances in Chemical Physics, Vol 162, ed. S. A., Rice, A. R.,
Dinner, 2017, vol. 162, pp. 1–38.

59 Y. Shu, E. G. Hohenstein and B. G. Levine, Conguration interaction singles
natural orbitals: an orbital basis for an efficient and size intensive
multireference description of electronic excited states, J. Chem. Phys., 2015,
142, 024102.

60 R. Ditcheld, W. J. Hehre and J. A. Pople, Self-Consistent Molecular-Orbital
Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies
of Organic Molecules, J. Chem. Phys., 1971, 54, 724–728.

61 S. Lehtola and H. Jónsson, Pipek–Mezey Orbital Localization Using Various
Partial Charge Estimates, J. Chem. Theory Comput., 2014, 10, 642–649.

62 T. C. Berkelbach, M. S. Hybertsen and D. R. Reichman, Microscopic theory of
singlet exciton ssion. II. Application to pentacene dimers and the role of
superexchange, J. Chem. Phys., 2013, 138, 114103.

63 V. Abraham and N. J. Mayhall, Simple Rule To Predict Boundedness of
Multiexciton States in Covalently Linked Singlet-Fission Dimers, J. Phys.
Chem. Lett., 2017, 8, 5472–5478.

64 A. Caneschi, D. Gatteschi, R. Sessoli, A. L. Barra, L. C. Brunel and M. Guillot,
Alternating current susceptibility, high eld magnetization, and millimeter
band EPR evidence for a ground S = 10 state in [Mn12O12(Ch3COO)
16(H2O)4].2CH3COOH.4H2O, J. Am. Chem. Soc., 1991, 113, 5873–5874.

65 S. Demir, M. I. Gonzalez, L. E. Darago, W. J. Evans and J. R. Long, Giant
coercivity and high magnetic blocking temperatures for N2 3- radical-
bridged dilanthanide complexes upon ligand dissociation, Nat. Commun.,
2017, 8, 2144.

66 M. Gil-Sepulcre and A. Llobet, Molecular water oxidation catalysts based on
rst-row transition metal complexes, Nat. Catal., 2022, 5, 79–82.

67 Y. Tanabe and Y. Nishibayashi, Recent advances in catalytic nitrogen xation
using transition metal–dinitrogen complexes under mild reaction conditions,
Coord. Chem. Rev., 2022, 472, 214783.

68 This is true for the Hubbard model at half-lling. Situations with away-from
half-lling can be mapped onto different Hamiltonians, such as the tJ model.
154 | Faraday Discuss., 2024, 254, 130–156 This journal is © The Royal Society of Chemistry 2024

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00049h


Paper Faraday Discussions
O

pe
n 

A
cc

es
s 

A
rt

ic
le

. P
ub

lis
he

d 
on

 2
8 

M
ar

ch
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

/1
5/

20
26

 3
:1

5:
47

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
69 L. Noodleman, Valence bond description of antiferromagnetic coupling in
transition metal dimers, J. Chem. Phys., 1981, 74, 5737–5743.

70 K. Yamaguchi, F. Jensen, A. Dorigo and K. N. Houk, A spin correction
procedure for unrestricted Hartree–Fock and Møller-Plesset wavefunctions
for singlet diradicals and polyradicals, Chem. Phys. Lett., 1988, 149, 537–542.

71 S. Yamanaka, T. Kawakami, H. Nagao and K. Yamaguchi, Effective exchange
integrals for open-shell species by density functional methods, Chem. Phys.
Lett., 1994, 231, 25–33.

72 M. Reiher, O. Salomon and B. Artur Hess, Reparameterization of hybrid
functionals based on energy differences of states of different multiplicity,
Theor. Chem. Acc., 2001, 107, 48–55.

73 M. Reiher, Theoretical Study of the Fe(phen)2(NCS)2 Spin-Crossover Complex
with Reparametrized Density Functionals, Inorg. Chem., 2002, 41, 6928–6935.

74 D. A. Pantazis, Meeting the Challenge of Magnetic Coupling in a Triply-
Bridged Chromium Dimer: Complementary Broken-Symmetry Density
Functional Theory and Multireference Density Matrix Renormalization
Group Perspectives, J. Chem. Theory Comput., 2019, 15, 938–948.

75 S. Szalay, M. Pfeffer, V. Murg, G. Barcza, F. Verstraete, R. Schneider and
r. Legeza, Tensor product methods and entanglement optimization for ab
initio quantum chemistry, Int. J. Quantum Chem., 2015, 115, 1342–1391.

76 A. Baiardi and M. Reiher, The density matrix renormalization group in
chemistry and molecular physics: Recent developments and new challenges,
J. Chem. Phys., 2020, 152, 040903.

77 U. Schollwöck, The density-matrix renormalization group in the age of matrix
product states, Ann. Phys., 2011, 326, 96–192.

78 S. Wouters and D. Van Neck, The density matrix renormalization group for ab
initio quantum chemistry, Eur. Phys. J. D, 2014, 68, 272.

79 J. J. Eriksen, et al., The Ground State Electronic Energy of Benzene, J. Phys.
Chem. Lett., 2020, 11, 8922–8929.

80 R. Olivares-Amaya, W. Hu, N. Nakatani, S. Sharma, J. Yang and G. K.-L. Chan,
The ab-initio density matrix renormalization group in practice, J. Chem. Phys.,
2015, 142, 034102.

81 S. Sharma, K. Sivalingam, F. Neese and G. K.-L. Chan, Low-energy spectrum of
iron-sulfur clusters directly from many-particle quantum mechanics, Nat.
Chem., 2014, 6, 927–933.

82 S. Sharma, G. Jeanmairet and A. Alavi, Quasi-degenerate perturbation theory
using matrix product states, J. Chem. Phys., 2016, 144, 034103.

83 T. V. Harris, Y. Kurashige, T. Yanai and K. Morokuma, Ab initio density matrix
renormalization group study of magnetic coupling in dinuclear iron and
chromium complexes, J. Chem. Phys., 2014, 140, 054303.

84 N. J. Mayhall and M. Head-Gordon, Computational quantum chemistry for
single Heisenberg spin couplings made simple: Just one spin ip required,
J. Chem. Phys., 2014, 141, 134111.

85 A. Niemann, U. Bossek, K. Wieghardt, C. Butzlaff, A. X. Trautwein and
B. Nuber, A New Structure–Magnetism Relationship for Face-Sharing
Transition-Metal Complexes with d3–d3 Electronic Conguration, Angew.
Chem., Int. Ed. Engl., 1992, 31, 311–313.

86 For each active space, we solve for the lowest M states in the lowest Ms-
subspace, and then generate the higher Ms vectors by directly applying Ŝ±.
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