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Genetic code expansion has emerged as a powerful tool in enzyme design and
engineering, providing new insights into sophisticated catalytic mechanisms and
enabling the development of enzymes with new catalytic functions. In this regard, the
non-canonical histidine analogue N;-methylhistidine (MeHis) has proven especially
versatile due to its ability to serve as a metal coordinating ligand or a catalytic
nucleophile with a similar mode of reactivity to small molecule catalysts such as 4-
dimethylaminopyridine (DMAP). Here we report the development of a highly efficient
aminoacyl tRNA synthetase (G1PylRSM'FAF) for encoding MeHis into proteins, by
transplanting five known active site mutations from Methanomethylophilus alvus
(MaPylRS) into the single domain PylRS from Methanogenic archaeon ISO4-Gl. In
contrast to the high concentrations of MeHis (5-10 mM) needed with the Ma system,
G1PylRSMFAF can operate efficiently using MeHis concentrations of ~0.1 mM, allowing
more economical production of a range of MeHis-containing enzymes in high titres.
Interestingly G1PylRSMFA™ is also a ‘polyspecific’ aminoacyl tRNA synthetase (aaR$),
enabling incorporation of five different non-canonical amino acids (ncAAs) including 3-
pyridylalanine and 2-fluorophenylalanine. This study provides an important step towards
scalable production of engineered enzymes that contain non-canonical amino acids
such as MeHis as key catalytic elements.

Introduction

In nature proteins perform a vast array of functions, including accelerating
biochemical reactions, transporting molecules across membranes, providing
structural support, and controlling signalling processes. Recent advances in high-
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throughput computation and experimentation have given us unprecedented
control over protein sequence, structure and function, resulting in the develop-
ment of a diverse array of engineered protein therapeutics, biocatalysts, and
advanced biomaterials."”® At present, our approaches to protein design, engi-
neering and production typically only make use of nature's standard alphabet of
twenty canonical amino acid building blocks. These standard amino acids are
limited in their chemical diversity, which ultimately restricts our ability to develop
proteins with new functions and desirable properties. To address this funda-
mental limitation, genetic code expansion (GCE) has emerged as a powerful and
versatile technology to site selectively install new functional elements into
proteins as non-canonical amino acids (ncAAs).”® GCE employs orthogonal ami-
noacyl tRNA synthetase (aaRS)/tRNA pairs to direct the incorporation of ncAAs in
response to a reassigned codon (most commonly the amber codon UAG) intro-
duced into a gene of interest. To date, a variety of aaRS/tRNA pairs have been
developed which display the required orthogonality across a range of host
organisms. Pyrrolysyl aaRS/™'tRNAcy, pairs from methanogenic archaea have
proven especially versatile, having been re-engineered to encode several hundred
ncAAs in bacteria, yeast and mammalian cell lines.” These systems have allowed
the development of new protein therapeutics, precision bioconjugates, responsive
materials, protein-based vaccines and new biocontainment strategies.

The availability of an expanded genetic code also opens exciting new oppor-
tunities in enzyme design and engineering. For example, GCE has been used to
improve enzyme activity and stability,'"" to probe complex biological
mechanisms,™** and to develop enzymes with functions and modes of catalysis
beyond those found in nature."*® The non-canonical histidine analogue, Nj-
methylhistidine (MeHis), has proven to be an especially versatile tool in enzyme
design and engineering research, leading to catalytically modified enzymes with
augmented properties and entirely new functions, as well as new biocontainment
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Fig. 1 Crystal structures of MeHis-containing enzymes. (A) The crystal structure of the
myoglobin variant Mb*(MeHis) (PDB: 6G5B), in which substitution of His93 with MeHis
affords an oxygen tolerant carbene transferase.?® MeHis is shown as atom-coloured sticks,
carbon in red, showing the Fe(in) carbenoid complex (atom-coloured stick, carbons in blue
and yellow). (B) The designed esterase OE1.3 uses MeHis23 as a catalytic nucleophile.*®
The crystal structure (PDB: 6Q7R) shows MeHis23 (atom-coloured sticks, carbons in grey)
alkylated with the mechanistic inhibitor bromoacetophenone (atom-coloured sticks,
carbons in yellow). (C) Snapshot from an MD simulation of BHmenisl.8_Int2 complex.
BHmenis1.8 uses MeHis23 as a catalytic nucleophile (PDB: 8BP0, atom-coloured sticks,
carbons in blue). Int2 is shown in atom-coloured sticks with carbons in grey.?®
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strategies (Fig. 1).">***' For example, MeHis has been used as a metal chelating
ligand to probe the mechanisms of heme enzymes including ascorbate peroxidase
and cytochrome ¢ peroxidase.'”'> MeHis ligands have also been used to augment
metalloenzyme function, leading to improvements in both peroxidase and car-
bene transferase activities in engineered myoglobin variants.***>** MeHis has also
been shown to act as a potent catalytic nucleophile, leading to the development of
artificial hydrolases and proficient enzymes for valuable non-biological trans-
formations such as the Morita-Baylis-Hillman reaction.'>*"

To capitalize on these recent advances, it is important that we are able to
produce MeHis-containing enzymes in an efficient and economical manner. At
present, the engineered aaRS/tRNA pairs used to encode MeHis are relatively
inefficient, typically requiring 5-10 mM concentrations of the expensive ncAA to
be supplemented to the culture medium. For context, for a 30 kDa protein
produced at 100 mg per litre of culture, this equates to only 0.03-0.06% of MeHis
being incorporated into the target protein. Furthermore, even at these high
MeHis concentrations, a substantial proportion of undesired truncated protein is
typically observed. It is therefore evident that for any future large-scale applica-
tions of MeHis-containing enzymes, the efficiency of modified protein production
will have to be significantly improved. Here we report an efficient system for
producing MeHis-containing proteins in high titres using only low concentrations
of ncAA, providing an important step towards scalable production of these
modified biocatalysts.

Results and discussion

MeHis is commonly incorporated into target proteins using engineered PylRS
homologs from Methanosarcina mazei (Mm), Methanosarcina barkeri (Mb) or
Methanomethylophilus alvus (Ma).**** Two distinct sets of mutations have been
reported to confer activity towards MeHis incorporation, either L121M, L125I,
Y126F, M129A and V168F or L1251, Y126F, M129G, V168F and Y206F (based on

Fig.2 Crystal structure overlay of MaPylRS and G1PyIRS. An overlay of wild-type MaPylRS
(red, PDB: 6JP2)%¢ and wild-type G1PyIRS (blue, PDB: 8IFJ).2° Two distinct sets of muta-
tions have been reported to confer activity towards MeHis incorporation in MaPy(RS. The
residues mutated in these two variants are shown as atom-coloured sticks with black
carbons. The specific mutations present in each variant are detailed in the main body of
text.
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Ma numbering), affording MaPylRS™"™F or MaPylRS"™ " respectively (Fig. 2).26%
A recent study showed that MaPylRS™“*F gave modest improvements in protein
yield compared with the analogous MmPylRS™C™ variant, although high
concentrations of MeHis are required in both cases. With the aim of identifying
more efficient systems, we elected to explore a wider range of PylRS homologs,
namely Methanogenic archaeon 1SO4-G1 (G1) PylRS and Methanomassiliicoccales
archaeon RumEn M1 (RumEn) PylRS.? Similar to MaPyIRS, these homologs lack
the N-terminal tRNA binding domain that is essential for activity in MmPyIRS and
MDbPyIRS. To develop engineered G1PylRS and RumEnPyIRS for encoding MeHis,
we mapped mutations from MaPylRS™*** and MaPylRS"™*" into these homo-
logs, which along with their respective cognate ®tRNAy,, gave rise to four new
aaRS/tRNA pairs for experimental characterization.

The resulting G1PyIRSM™A* G and RumEnPyIRSMFAFIFSFY yariants were
evaluated using an established GFP production assay and their activity compared
to the analogous Ma systems. Of the two existing Ma variants, MaPylRS"™ " was
shown to be slightly more effective in suppressing the UAG codon to produce full
length GFP containing MeHis at position 150 (Fig. 3A). The UAG suppression
efficiency of RumEnPylRSM™AFFGFF wwag substantially reduced compared to the
Ma variants. In contrast, both active-site transplanted G1PyIRS variants showed
substantially improved UAG suppression efficiency. G1PylRS™"™¥ displays both
high activity and specificity for MeHis (purple bars) over incorporation of
canonical amino acids (grey bars), whereas the G1PylRS"“** variant suffers from
a high background of phenylalanine incorporation in cultures grown in the
absence of MeHis. This newly engineered G1PyIRSM™AF variant produces
approximately 4-fold more full length GFP than MaPylRS®* when 0.5 mM
MeHis is supplied to the culture medium.

To further compare the G1PyIRS™™A* and MaPylRS" " systems, we next
evaluated GFP production across a range of MeHis concentrations (Fig. 3B, C and
ESI Fig. S11). Remarkably, G1PylRS™FF can operate efficiently using a MeHis
concentration of 0.1 mM, with detectable levels of GFP production even observed
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Fig. 3 Production of MeHis-containing GFP using engineered PylRS homologs. (A)
Bar chart showing production of GFP containing MeHis at position 150, using
either MaPylRSMIFAF/IFGFE /PYY RN ACUA, RUMENPyIRSMIFAF/IFGFE PV RNAC A or
G1PyIRSMIFAFIFGFF /PYRNA A pairs. Cultures grown in the presence of 0.5 mM MeHis (purple
bars) or with no MeHis supplemented (grey bars). Error bars represent the standard deviation
of measurements made in triplicate. (B) Bar chart showing GFP production in cultures
containing varying MeHis concentrations (0—5 mM) using MaPylRSTSFF/PMRNAcya. Error
bars represent the standard deviation of measurements made in triplicate. (C) Bar chart
showing GFP production in cultures containing varying MeHis concentrations (0—1 mM)
using GlelRSM‘FAF/PyltRNACUA. Error bars represent the standard deviation of measurements
made in triplicate.
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at 0.01 mM. Increasing the MeHis concentration to 0.5 mM or 1 mM led to only
modest improvements in MeHis incorporation, suggesting that G1PylIRSM"™ is
saturated at a concentration between 0.1 and 0.5 mM. For comparison,
G1PylRSM™F was a more effective aaRS at 0.1 mM MeHis than MaPylRS"™ ™" at
1 mM. Even using 50 times more MeHis (5 mM), MaPyIRS"“** is only marginally
more active. To illustrate the efficacy of G1PyIRS™"*¥, we further increased the
stringency of GFP production assays by introducing an additional UAG codon at
position 40 (Fig. 4). The G1PylRS™FAF system is able to efficiently read through
two UAG codons to produce GFP containing MeHis at positions 40 and 150, with
only minor reductions in protein yield (Fig. 4B). In contrast, with the less efficient
MaPylRS"™*F system yields of doubly modified GFP are extremely low. It is
notable that many enzymes contain multiple catalytically important histidine
residues.’*®* The ability to efficiently produce proteins containing multiple
MeHis residues will open up new opportunities to study and/or tune the functions
of these enzymes.

Having established an efficient aaRS/tRNA pair, our attention now turned to
the production of engineered enzymes that use MeHis as an important catalytic
element. To this end we selected the engineered peroxidase APX2_MeHis, where
MeHis serves as an axial ligand and leads to dramatically improved turnover
numbers, and designed enzymes OE1.4 (stereoselective hydrolase) and BH.
Menisl.8 (Morita-Baylis-Hillmanase) that both employ MeHis as a catalytic
nucleophile.’®*>?® Using only 0.1 mM MeHis, these engineered enzymes are all
produced in >100 mg L' in standard laboratory Escherichia coli strains and
culture conditions, corresponding to an impressive 4-6% of the total MeHis
supplemented being incorporated into protein (Table 1). In all cases, protein
yields achieved with G1PyIRS™'*F are substantially higher than those produced
with MaPylRS™*F using 10 times higher MeHis concentrations (1 mM).

Given the high efficiency of G1PyIRS™"*¥, we wondered whether this aaRS is
highly specific for MeHis or whether it could also be used to encode other ncAAs.
We therefore tested G1PylRSM™*F activity towards a small panel of ncAAs (10 mM)
using the aforementioned GFP production assay. In addition to MeHis,
G1PylRSM™F is able to encode five of the other ncAAs tested (Fig. 5, structures 4,
6, 7, 8, and 9). These substrates include the hydrophobic ncAAs 3-(2-naphthyl)
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Fig.4 Production of GFP containing two MeHis residues. (A) Schematic representation of
modified GFP expression, introducing two MeHis residues in response to UAG codons at
positions 40 and 150. (B) Bar chart showing GFP production containing MeHis at either
position 150 (grey bars) or at positions 40 and 150 (purple bars) using either
MaPylRSFEFF/PARNACuA or GIPYIRSMFAF/PYYRNACuA. Cultures were supplemented with
0.5 mM MeHis. Error bars represent the standard deviation of measurements made in
triplicate.
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Table 1 Protein titres of engineered enzymes containing MeHis

Protein yield (mg L)

Synthetase [MeHis] (mM) APX2 BHpenis1.8 OE1.4
MaPylRS™ " 1 107 58 71
G1PyIRSMFAF 0.1 188 127 106
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Fig. 5 Comparison of the polyspecificity of GIPylRSMAF and MaPylRS'FSFF systems. Bar
chart showing the activities of GIPYIRSM™AF (blue) and MaPyIRS'TSF (red) towards a small
panel of ncAAs (10 mM, 1-9). PylRS activity was determined by monitoring production of
modified GFP containing the appropriate ncAA at position 150. Error bars represent the
standard deviation of measurements made in triplicate.

alanine and 2-fluorophenylalanine, as well as 3-pyridylalanine, a potentially
valuable histidine analogue that is a poor substrate for MaPylRS™C™ and
MaPylRSM™AF (ESI Fig. S27). The ability of G1PylRS™FAF to efficiently discriminate
between phenylalanine and 2-fluorophenylalanine is particularly notable.

Conclusion

In summary, we have developed a highly efficient aaRS for encoding MeHis by
introducing five known active site mutations into a single domain PyIRS from
Methanogenic archaeon 1SO4-G1. The successful development of G1PylIRS™'A¥
serves to highlight the importance of exploring a wider range of PylRS homologs
when developing orthogonal translation components. This G1PylIRS™™F has
allowed the efficient and economical production of a range of MeHis-containing
enzymes using only 0.1 mM MeHis supplemented to the culture medium. Moving
forward, there are several avenues for investigation to further enhance the
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production of valuable proteins containing MeHis to underpin any future
commercial applications. Firstly, it is likely that even more efficient G1PylRSM™*F
descendants can be developed through directed evolution using established high-
throughput assays. Switching to high-density fermentation technologies will also
likely boost protein yields. Secondly, we can take advantage of engineered or
synthetic E. coli strains that have been specifically tailored for more efficient ncAA
incorporation.®**¢ Alternatively, we can explore engineered yeast strains or
mammalian cell lines that can be advantageous for selected protein
applications.’”* Finally, considering MeHis is a naturally occurring amino acid,
we can envision the development of engineered production hosts that contain the
necessary biosynthetic machinery to produce MeHis and direct its selected
incorporation into target proteins. For these reasons, we are optimistic that the
work presented in this paper will provide an important step towards commercially
viable production of MeHis-containing enzymes.

Methods

Materials

All chemicals and biological materials were obtained from commercial suppliers.
Escherichia coli DH108 cells were purchased from Thermo Fisher. Escherichia coli
BL21(DE3), Q5 polymerase, T4 ligase and restriction enzymes from New England
BioLabs (NEB). PylRS and tRNA gene sequences were synthesized by Twist
Bioscience. Primers were synthesized by IDT. Kanamycin, chloramphenicol and
5-aminolevulinic acid were purchased from Sigma-Aldrich. (S)-2-Amino-3-(5-
bromothiophen-2-yl) propanoic acid, 2-fluoro-i-phenylalanine, 3-(3-pyridyl)-r-
alanine and 3-(2-naphthyl)-t-alanine were purchased from Fluorochem. 3-(2-
Thienyl)-L-alanine and 3-(2-pyridyl)-L-alanine were purchased from Fisher Scien-
tific UK. 3-(4-Pyridyl)-L-alanine was purchased from Alfa-Aesar. H-His(1-Me)-OH
was from abcr. LB agar, LB media, 2xYT media, isopropyl-B-p-1-thiogalactopyr-
anside (IPTG) and arabinose were from Formedium. H-His(3-Me)-OH (MeHis) was
from Bachem.

Defined autoinducing medium (500 mL) had the following composition:
25 mL aspartate (5%, pH = 7.5), 25 mL glycerol (10% w/v), 20 mL 18-amino-acid
mix (5 g L™ glutamic acid, 5 ¢ L' aspartic acid, 5 g L™ " lysine-HCl, 5 g L™"
arginine-HCI, 5 g L™ " alanine, 5 g L™ " proline, 5 g L™" glycine, 5 g L™ " threonine,
5¢ L ' serine, 5 g L' glutamine, 5 g L™ " asparagine-H,0, 5 g L " valine, 5 g L™ "
leucine, 5 g L ™" isoleucine, 5 ¢ L™ phenylalanine, 5 g L' tryptophan, 5 g L ™"
methionine, histidine-HCI-H,O 5 g L7, sterile filtered), 1.25 mL arabinose (20%
w/v), 20 mL 25 x M salts (0.625 M NaH,PO,, 0.625 M KH,PO,, 1.25 M NH,CI,
0.125 M Na,S0,), 1 mL MgSO, (1 M), 0.625 mL glucose (40% w/v), 100 puL 5000 X
trace metals solution (20 mM CaCl,-2H,0, 10 mM MnCl,-H,0, 10 mM ZnSO,.
-7H,0, 2 mM CoCl,-6H,0, 2 mM CuCl,, 2 mM NiCl,, 2 mM Na,MoO,-2H,0,
2 mM NaSeOs, 2 mM H;BO;, 50 mM FeCl;), 1 mL MgSO, (1 M), 500 uL IPTG (0.1
M). The solution was made up with sterile water to 500 mL.

DNA constructs

PEVOL_MaPyIRS™ " /Ma™'tRNAy, was available from a previous study.>® PyIRS
genes (G1PylIRS™™¥ and RumEnPylRS™"™¥), optimized for E. coli expression, and
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the tRNAs (G1¥ tRNAcya and RumEnP ltRNACUA] were synthesized by Twist
Bioscience. Two copies of each PylRS gene and their corresponding tRNA were
cloned into their respective pEVOL vectors using Ndel/PstI and BglII/Sall restric-
tion sites for PylRS genes and ApaLl/Xhol for the tRNA. To make MaPylRS™'™F,
G1PyIRS" " and RumEnPylRS"™ " primers to introduce the required mutations
were used to make gene fragments which were combined using overlap extension
PCR. Two copies of each gene were cloned into their respective pEVOL vectors
using Ndel/PstI and BglIl/Sall restriction sites.

GFP expression assays

Chemically competent E. coli BL21(DE3) cells containing the appropriate pEVOL
vector were transformed with either pET28_GFP_Asn150TAG or pET28_GF-
P_Asn40TAG_Asn150TAG plasmid. Single colonies of freshly transformed cells
were cultured in 5 mL of LB media containing 50 ug mL ™" kanamycin and 25 pg
mL ™" chloramphenicol for 18 h at 30 °C. Expression cultures were grown in 96-
deepwell blocks sealed with a breathable membrane. 20 pL of the starter culture
was used to inoculate 480 uL of defined auto-induction medium containing 50 pug
mL~" kanamycin and 25 pg mL™' chloramphenicol (for the cultures with
Asn40TAG_Asn150TAG plasmid, IPTG was removed from the auto-induction
medium and added when the cultures reached ODgy = 0.6). Expression
cultures were grown in the presence of the appropriate ncAA (0-10 mM) and
incubated at 30 °C with shaking at 850 rpm for 20 h. ODg, and GFP fluorescence
(Aexcitation: 395 NIM, Aemission: 509 NmM) measurements were recorded using a BMG
LabTech CLARIOstar spectrophotometer.

Protein production and purification of MeHis-containing proteins

For the expression of APX2_MeHis, chemically competent E. coli BL21(DE3) con-
taining either pEVOL_MaPylRS"™/Ma™tRNAcysa or pEVOL_G1PylRS™ A/
G1™'tRNAcy, were transformed with pET29b_APX MeHis. A single colony of
freshly transformed cells were cultured in 5 mL of LB media containing 50 pg mL
kanamycin and 25 pg mL ™" chloramphenicol for 18 h at 30 °C. 300 uL of the starter
cultures was used to inoculate 30 mL 2xYT medium supplemented with 50 ug mL ™"
kanamycin, 25 pg mL~" chloramphenicol, 5-aminolevulinic acid (1 mM final) and
MeHis (1-0.1 mM final) and cultures were grown at 37 °C, 200 rpm to an ODgg of
0.6. Protein expression was induced with the addition of IPTG (0.1 mM final) and
arabinose (5 mM final) and the cultures grown for a further 20 h at 20 °C.

For the expression of BHyenis1.8 and OE1.4, chemically competent E. coli
DH10B containing either pEVOL_MaPylRS™™/Ma™'tRNAcys or pEVOL_G1-
PyIRSMFAF/G1™tRNAy, were transformed with either pBbESK_ BHyersis1.8 Or
PBbESK_OE1.4. A single colony of freshly transformed cells were cultured in 5 mL
of LB media containing 50 ug mL ™" kanamycin and 25 ug mL™" chloramphenicol
for 18 h at 30 °C. 300 puL of the starter cultures was used to inoculate 30 mL 2xYT
medium supplemented with 50 pg mL~" kanamycin, 25 pg mL~" chloramphen-
icol, and MeHis (1-0.1 mM final) and cultures were grown at 37 °C, 200 rpm to an
ODggo Of 0.6. Protein expression was induced with the arabinose (10 mM final)
and the cultures grown for a further 20 h at 20 °C.

The cells were harvested and purified as stated above for PylRS purification.
Purified proteins were desalted using 10DG desalting columns (Bio-Rad) with PBS
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pH 7.4 and analysed by SDS-PAGE and protein MS. Protein concentrations were
determined by measuring the absorbance at 280 nm using calculated extinction
coefficients (EXPASy ProtParam).

MS analysis

Purified protein samples were diluted to a final concentration of 0.5 mg mL "
with 0.1% acetic acid. MS analysis was performed using a 1200 series Agilent LC, 5
pL injection into 5% acetonitrile (with 0.1% formic acid) and desalted inline for
1 min. Protein was eluted over 1 min using 95% acetonitrile and 5% water. The
resulting multiply charged spectrum was analyzed using an Agilent QTOF 6510
and deconvoluted using Agilent MassHunter software.
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