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earning for monitoring the growth
stages of an agricultural crop†

Shara Ahmed, Nabanita Basu, Catherine E. Nicholson, Simon R. Rutter,
John R. Marshall, Justin J. Perry and John R. Dean *

As one of the world's major crops, oats (Avena sativa L.) require management strategies to increase their

yield and quality. This study utilised an unmanned aerial vehicle (UAV) with multispectral image sensors

to predict winter oats height (1.18 m at ripening stage) and yield (maximum >7.62 t per ha) using the

normalised difference vegetation index (NDVI) and chlorophyll green vegetation index (CI green VI)

across three different growth stages (flowering, grain filling and ripening). To corroborate the vegetation

indices ground truth data on the measured crop yield, a variety of chemical soil health indicators (i.e.

nitrogen, phosphorus, potassium, pH, and soil organic matter), and a crop quality indicator (b-glucan)

were determined. A hierarchical multinomial logistic regression machine learning model was developed

to predict the oats yield incorporating the chemical soil health indicators and crop quality indicator. The

determined ‘combination model’ using the CI green VI, with 16 soil feature parameters, showed good

specificity (0.87), sensitivity (0.95), and accuracy (0.93) at estimating the very high oat yield. Finally, the

study provides the range of soil nutrient levels and the crop quality indicator that farmers must maintain

to gain the highest oat yield at harvest. The findings of this research study will be particularly valuable as

a Precision Agriculture management strategy for maximising winter oat yield and quality.
Sustainability spotlight

The ability to maintain global crop security with a focus to end hunger and promote sustainable agriculture relies on an effective approach to crop management.
This paper seeks to address these issues using the specic crop of oats as its focus. Oats are one of the world's most grown cereal crops helping to feed the
population. To assist farmers to produce an oat crop of the highest yield and quality requires knowledge of the importance of providing soil nutrients at the right
time and in the right amount. Our research has shown that by using a UAV-MSI and a machine learning approach can provide that knowledge in terms of soil
nutrients and application times to achieve the highest yield.
Introduction

Oats (Avena sativa L.) are Europe's h largest crop and the
sixth most grown cereal worldwide, used extensively for both
animal feed and human consumption (in breakfast cereals,
beverages, bread, and infant foods), due to their high bre and
protein content.1,2 Given the global demand for oats, crop
evaluation across the ve phenological growth stages3 critical
for informing decisions as part of a Precision Agriculture
management strategy, to increase the crop yield and its quality.
Crop phenotypic information can be retrieved using both
manual and remote sensing techniques.4 Manual methods rely
ia University, Ellison Building, Newcastle

@northumbria.ac.uk

(ESI) available: Additional information
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be found:
yield_estimator_code/23608593/1. See

4, 2, 104–125
on hand-held spectrometers to collect phenotypic data in the
eld whereas remote sensing methods use either satellite or
unmanned aerial vehicles (UAVs) to gather phenotypic crop
data.5 Only a few studies have compared the performance of
different UAV-based cameras with a hand-held spectrometer in
cropmonitoring under the same environmental conditions.4,6–10

The crops investigated include barley,7 barley, onion, potato,
and rapeseed,8 maize,4 grassland,9 and the soil and vegetation
of a vineyard.10 In all cases good correlation was found between
the camera mounted UAV and ground-based spectral data,11

oen using the normalised difference vegetation index (NDVI).
Given the widespread use of UAVs by researchers in crop phe-
notyping, as part of a Precision Agriculture management
strategy, there is a need for additional performance evaluation
of UAV sensors to ground based eld spectrometers in terms of
different crops (e.g. oats) and evaluation of different vegetation
indices (VI's).

An important aspect of soil health management is the timely
and appropriate application of fertilisers to ensure favourable
nutrient conditions to maximise crop yield and thereby
© 2024 The Author(s). Published by the Royal Society of Chemistry
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contribute to global food security.12,13 Determination of
temporal and spatial patterns of crop growth are critical for
assessing fertiliser application. In many instances, the crop
nitrogen status is estimated indirectly from the variables of
chlorophyll content and the leaf area index as can be done using
a hand-held chlorophyll meter.14–16 However, this approach is
limited, as the chlorophyll meter does not capture the spatial
variability present within an agricultural eld. Also, these
ground-based methods necessitate the collection of many
samples' spectral data, which can be invasive as well as
destructive to crops, in addition to being labour-intensive.17

Remote sensing techniques are a viable alternative to
ground-based measurements as they provide crop reectance
and diagnostic information on crop nutrient concentration in
a timely and spatially contextualised manner.17 The two main
remote sensing technologies used in Precision Agriculture for
soil mapping are satellites and UAVs. For instance, VI's, derived
using remote sensing spectral data have been used to detect the
nitrogen status in crops18 using the strong correlation between
nitrogen concentration and chlorophyll content at the crop
canopy. In this way chlorophyll sensitive VI's have been
successfully employed to estimate chlorophyll in crops and
correlated to nitrogen concentrations using normalised differ-
ence red edge (NDRE) and chlorophyll (CI) green VI in spring
wheat.17 Meanwhile, a variety of methods including articial
neural network (ANN), partial least squares regression (PLSR),
random forest (RF), extreme learning machine (ELM) support
vector machine (SVM) and convolutional neural network (CNN)
have been used to estimated crop yield and biomass.19–21 For
example, four machine-learning algorithms were used to build
oat biomass estimation models using a variety of VI's derived
from UAV-based multispectral imagery.19 The machine learning
models demonstrated provided promising results at estimating
biomass as part of an oat breeding programme. An additional
study used UAV-imagery and the multiple machine learning
models of ANN, ELM, SVM, least absolute shrinkage and
selection operator to predict leaf nitrogen content in a wheat
crop.22 They concluded that the best model for predicting the
nitrogen content in the wheat crop was ELM, with a correlation
coefficient of R2 = 0.99. Further work from the same research
group applied an RF model to predict the soil sulfur content (R2

= 0.71, RMSE = 8.86) using a hand-held visible near-infrared
(VIS-NIR) reectance spectroscopic technique.23 In addition,
the group have applied a hand-held VIS-NIR spectroscopic
technique combined with a PLSR model to predict soil organic
carbon (R2 = 0.53, RMSE = 9.04).24

The ability to maintain global crop security with a focus to
end hunger and promote sustainable agriculture relies on an
effective approach to crop management. This paper seeks to
address these issues using the specic crop of oats as its focus.
Oats are one of the world's most grown cereal crops helping to
feed the population. To assist farmers to produce an oat crop of
the highest yield and quality requires knowledge of the impor-
tance of providing soil nutrients at the right time and in the
right amount. The aims of this research are to investigate the
phenological growth stages of a winter oats crop in North East
England using spectral data from both a hand-held and
© 2024 The Author(s). Published by the Royal Society of Chemistry
unmanned aerial vehicle, alongside normal farmer interven-
tions informed by investigative spatial and temporal soil anal-
yses, to assess both the yield and quality of the nal crop. This
has been done by (a) comparing the usefulness of a hand-held
multiwavelength spectrometer and an unmanned aerial
vehicle with multispectral image camera, (b) determination of
the soil nutrient prole of the agricultural eld across three
phenological growth stages, (c) determination of the nal oat
grain quality by determining the concentration of b-glucan, (d)
manual estimation of crop yield by weighing of sub-samples, (e)
use of different UAV-MSI camera derived VI's to create a crop
yield estimation model using pattern analysis based on a kernel
density estimation, and (f) nally to derive an machine learning
method to estimate crop yield based on multiple data inputs.

Experimental
Airy Holme farm

Winter oats seed (variety, Mascani) was planted at a rate of 155
kg/hectare using a Claydon Hybrid T4 trailed drill (Rickerby,
Hexham, UK) pulled by a Claas ARES 836 RZ tractor (Rickerby,
Hexham, UK) to a depth of 25–30 mm on the 28 September 2020
in a 3.58-hectare eld (lat. 54.880690; long. −1.915923), known
locally as Copse eld. The eld was subject to various treat-
ments across the ve phenological growth stages from sowing
of the seed to harvest, Fig. 1(a), which included pesticide
treatments, Fig. 1(b) and fertilizer treatments, Fig. 1(c). Full
details are provided in the ESI.† The desiccated crop was har-
vested on the 13 August 2021 using a Claas Lexion 570, Terra-
Trac combine harvester (Rickerby, Hexham, UK). The seed is
monitored by sensors (FarmTRX, Troo Corp., Ottawa, Canada),
which record both the yield, and its location using GPS tech-
nology, into an on-board data logger.

Copse eld

Initial soil analysis was done in March 2021 with data reported
on the 15thMarch 2021 (by an independent laboratory, Lancrop
Laboratories, Pocklington, UK in association with Agrovista UK
Ltd, Nottingham, UK). Soil analysis indicated the following
characteristics, a sandy silt loam (sand 41.3%; silt 47.3%, and
clay 11.4%) with a pH of 7.5, organic matter (4.7%) and a cation
exchange capacity of 19.0 meq./100 g.

Unmanned aerial vehicle

A multirotor UAV (DJI Phantom 4, supplied by Coptrz Ltd,
Leeds, UK) was used with a multispectral camera, stabilized
with a 3-axis gimbal, with a 5 camera-array covering the blue
(450± 16 nm), green (560± 16 nm), red (650± 16 nm), red edge
(730 ± 16 nm) and near-infrared (840 ± 26 nm) spectra with an
additional camera that can also provide live images in RGB
(visible) mode. The camera lenses had a eld of view of 62.7°,
a focal length of 5.74 mm, with the autofocus set at f, and an
aperture of f/2.2. In all cases, the camera was angled perpen-
dicular to the ground, with data capture occurring in hover and
capture mode. Images i.e. 1554 image les per ight, were
gathered over 256 waypoints and captured as 16-bit TIF les
Sustainable Food Technol., 2024, 2, 104–125 | 105
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Fig. 1 Chronology of (a) phenological growth stages of oats, (b) pesticide treatments, and (c) fertilizer treatments.
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corrected for ambient radiance values. The UAV speed was
5.0 m s−1 and had an average height of 50.6 m for the 2901 m
ight distance. All ights were recorded with a resolution of
2.7 cm per px, a front overlap ratio of 75%, a side overlap ratio of
60% and a course angle of 90°. Specic weather conditions
relating to daytime temperature during ight, wind speed and
direction (recorded using a handheld anemometer (Benetech®
GM816, Amazon UK)), and UAV pilot anecdotal observations on
cloud coverage are identied with specic dated data.
UAV photogrammetric processing

The multispectral UAV images were used to create an ortho-
mosaic image (Agiso Metashape Professional (64 bit) soware
v.1.7.1, Agiso LLC, St. Petersburg, Russia). The steps for UAV
photogrammetric processing were as follows. The aerial images
were rst merged and aligned to create a sparse point cloud by
matching similar image attributes. Following that, images were
precisely positioned to create a 3D point cloud based on the GPS
106 | Sustainable Food Technol., 2024, 2, 104–125
coordinates of each image. A solid mesh model was created
using the 3D point cloud. Following completion of the
preceding steps, an orthomosaic image was created using the
WGS 1984 Web Mercator coordinate system.
Collection of crop phenotypic data using multiwavelength
spectral imaging: ground reference data

Ground truth measurements were captured using a pocket-size
portable hand-held spectrometer (Spectro 1, Variable, Inc.,
Chattanooga, TN, USA). The Spectro 1, has an 8 mm measure-
ment aperture which allows spectrophotometric measurements
in the visible region from 400 to 700 nm at 10 nm intervals. For
this experiment 9 locations were selected within the Copse eld,
with 5 replicate measurements per location, for spectrophoto-
metric measurements over three different growth stages,
Fig. 1(a) i.e. Stage 3: owering (June); Stage 4: grain lling (July);
and, Stage 5: full ripening (August). Prior to each measurement,
the spectrometer was calibrated using a white plate according to
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Copse agricultural field planted with winter oats (September
2020–August 2021) (a) soil sample collection locations, and (b) within-
field zones soil health indicator maps (March 2022). Note: the soil
analysis data was abstracted from the independent laboratory results.
The average concentration or pH is indicated per zone.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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the manufacturer's instruction. As the device is operated with
the Spectro application soware (Variable, Inc., Chattanooga,
TN, USA) on the user's smartphone, the collected reectance
data was automatically uploaded and stored in the manufac-
turer's cloud storage service.
Comparison between UAV-MSI and ground reference data

For ground reference data, GRVI was calculated by using the
reectance data of green and red provided by the Spectro 1
spectrometer. The orthomosaic image generated by the Agiso
Metashape soware for the UAV-MSI data are not reported in
reectance mode but as “reectivity”. Therefore, a pseudo
correction was applied that normalised the data as reectance
values between 0 and 1. This was done based on the UAV image
histogram; the maximum DN value was divided with each
spectral band by using the raster calculator tool in the ArcGIS
Pro soware, for VI calculation, Fig. S1.† The GRVI VI raster was
derived by calculation of the reectance of green and red
orthomosaic image (eqn (1)). GNDVI was derived by calculation
of the reectance of green and NIR orthomosaic image (eqn (2)).
NDVI was derived by calculation of the reectance of red and
NIR orthomosaic image (eqn (3)). NDRE was derived by calcu-
lation of the reectance of red-edge and NIR orthomosaic image
(eqn (4)). SAVI was derived by calculation of the reectance of
red, NIR orthomosaic image and a soil brightness correction
factor (L) dened as 0.5 (eqn (5)). CI green was derived by
calculation of the reectance ratio of NIR and green orthomo-
saic image (eqn (6)).

GRVI ¼ ðgreen� redÞ
ðgreenþ redÞ (1)

GNDVI ¼ ðNIR� greenÞ
ðNIRþ greenÞ (2)

NDVI ¼ ðNIR� redÞ
ðNIRþ redÞ (3)

NDRE ¼ ðNIR� rededgeÞ
ðNIRþ rededgeÞ (4)

SAVI ¼ ðNIR� redÞ
ðNIRþ redþ LÞ � ð1þ LÞ (5)

CI green ¼ ðNIRÞ
ðgreenÞ � 1 (6)
Soil sample collection and determination of soil health check
indicators during active growing stages of oat crop

Soil samples (48) from the oats eld were collected, during the
rst week of June, July and August 2021, from 6 rows (labelled
A–F) with 8 sampling points, 30 m apart, per row in a grid
format, Fig. 2(a). Surface soil samples, between 0–10 cm depth,
were collected using a stainless-steel trowel. To avoid cross-
contamination, the trowel was cleaned with a new
Sustainable Food Technol., 2024, 2, 104–125 | 107
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antibacterial wipe, between each sample. The collected soil
samples were placed in labelled collection bags (Kra sample
bags) and transported back to the laboratory for analysis of
nitrogen, phosphorus and potassium, NPK, and pH using a soil
Palintest kit (SKW500, Palintest UK, Kingsway, Team Valley,
England) which was previously validated by the manufacturer.25

All soil samples were analysed within one week of collection,
using manufacturer's instructions and prepared reagents.
Nitrogen was always analysed rst on damp soil, as per manu-
facturer's instructions, to prevent nitrogen loss due to biological
activity. Results, using the SKW500, were displayed for nitrate
(mg l−1), phosphorus (mg l−1), and potassium (0–450 mg l−1)
using the digital photometer. Soil pH was reported, using the
manufacturer's instructions, using the calibrated multiparam-
eter pocket sensor. Additionally, soil organic matter was deter-
mined using the loss on ignition method using a muffle furnace
pre-heated to 800 °C.26 Further details of the sample prepara-
tion for NPK, pH and organic matter are presented in the ESI.†
Fig. 3 Analysis of soil phosphorus (mg l−1) across the three phenologica

108 | Sustainable Food Technol., 2024, 2, 104–125
Determination of oat grain yield and its quality

The yield of oats grain was calculated by harvesting 48 × 1 m2

area of oats on 4 August 2021 when the crop was fully ripe and 9
days prior to harvest, Fig. 2(a). Harvesting was done bymanually
cutting the crop and carefully placing it upside down in a large
brown paper sample bag prior to transportation back to the
laboratory. In the laboratory the oat-husk was manually
detached from the straw, followed by subsequent manual de-
husking, liberating the oat grain. Sub-sampling (20 g accu-
rately weighed) of the oat (+husk) from the 1 m2 was done to
allow calculation of the yield, in t per ha, Table S1,† based on
three replicates, from each of the 48 samples. The quality of the
oat grain was assessed by determination of the b-glucan
concentration. Full details of the extraction method, modied
from27 for the determination of b-glucan and its subsequent
analysis are provided in the ESI.†
l growth stages (a) June, (b) July, and (c) August 2021.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Analysis of the soil potassium (mg l−1) across the three phenological growth stages (a) June, (b) July, and (c) August 2021.
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Oat crop analyses using UAV-MSI camera derived data

Agiso's 3D point clouds were extracted and used by ArcGIS Pro
to generate a canopy height model (CHM), of the crop, based on
time-series data relating to the phenological growth stages. The
height between the ground and the top of the oat crop, CHM,
was calculated in ArcGIS using the raster calculator tool, CHM=

DSM - DTM.
The yield of the oat crop was estimated using the pixelated

data from the digitised UAV-MSI images, using iso-cluster
classication (ArcGIS pro), to generate the VI's of NDVI (eqn
© 2024 The Author(s). Published by the Royal Society of Chemistry
(3)) and CI green (eqn (6)). Previously published work,28 used
a simplied pixel-based approach to estimate crop yield (t per
ha) using the following equation:

Estimated yield ¼ F$PðoatsÞ
A

(7)

where F is the extracted oat pixels/
P

pixels; P(oats) is the area of
oats in the eld calculated by multiplying the oat pixels by the
resolution of the UAV images i.e. (0.027 m)2 per pixel in tonnes;
and, A is the area of the eld in ha. As a result, the oat yield for
the 48 sampling locations was calculated using the two VI's.
Sustainable Food Technol., 2024, 2, 104–125 | 109
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The kernel density estimation (KDE) is a non-parametric
spatial analysis method of estimating probability function.29

The KDE mathematical function can be dened as a kernel
density estimator, f̂ , at a location x taken from a set of data (e.g.
crop yield), where x1, x2 . xn represents the number of samples
(N) with an unknown probability function f(x) and dened as
a kernel estimate f̂ (x):

f̂ ðxÞ ¼ 1

Nb

XN
N¼i

KðdiÞ (8)

f̂ ðxÞ ¼ 1

Nb

XN
N¼i

K

�
Xi � x

b

�
(9)

where di is the distance between two points (e.g. Xi − x); b the
bandwidth (b > 0, a positive number that denes the smooth-
ness of a density plot); and K= denotes the kernel function. The
Fig. 5 Analysis of the soil nitrate (mg l−1) across the three phenological

110 | Sustainable Food Technol., 2024, 2, 104–125
ArcGIS soware employs the quartic (bi-weight) kernel function,
which is dened as:

KðuÞ ¼
ð15
16

0

�
1� di

2
�
2; for jdij# 1 and jdij$ 1 (10)

This process allowed thematic maps to be generated for the
oat grain yield as measured in the laboratory and estimated by
NDVI and Cl green VI.
Results and discussion
Soil nutrient data

Validation of the soil test kit was previously corroborated
between standard laboratory methods for soil analysis with
growth stages (a) June, (b) July, and (c) August 2021.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Analysis of soil pH across the three phenological growth stages (a) June, (b) July, and (c) August 2021.
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good correlation between the methods for nitrate (R2 = 0.96),
phosphate (R2 = 0.95), potassium (R2 = 0.96), and pH (R2 =

0.98).25 As a result, the soil test kit is a viable method for soil
analysis. In addition, previous independent soil analysis was
done in March 2021 on behalf of Agrovista Co. U.K. using
standard laboratory soil test methods.30 This soil data was re-
ported in 4 zones across the agricultural eld, Fig. 2(b). The
reported mean (minimum and maximum) nutrient levels,
across the 4 zones, are 27 mg l−1 (17–38 mg l−1) for phosphorus,
173.8 mg l−1 (112–214 mg l−1) for potassium and a pH of 7.4
(7.3–7.5) (Table S2†). No nitrate data was available. As a result,
we have reported our determined soil nutrient data for the 48
samples across the 4 zones for consistency. The full results for
analysis of the 48 soil sub-samples, with respect to nitrate,
phosphorus, potassium, pH and soil organic matter for the
months of June, July and August are reported, Table S3(a and
© 2024 The Author(s). Published by the Royal Society of Chemistry
b).† It is noted that the impact on the soil nutrients was inu-
enced, pre-soil analyses, by application of two rounds of soil
fertiliser (on 28/09/2021 and 06/03/2021). The determined soil
analyses data are mapped, over June–August, for phosphorus in
Fig. 3, potassium in Fig. 4, nitrate in Fig. 5 and pH in Fig. 6.
Estimation of plant height and links to soil analysis data

The UAV-MSI camera data was used to estimate the crop height
using the CHM (Fig. 7). To validate the data, the height of the
wall adjacent to the oats eld was measured. The manually
measured wall heights (1.07 m ± 0.04 m, N = 3) were statisti-
cally analysed (t-test) against the UAV-MSI camera data, using
CHM, and estimated to be 1.00 ± 0.11, N = 3. The latter was
averaged over three different days. There was no statistical
difference between the two measurements (p-value of 0.17, at
the 95% condence interval). Therefore, the estimated oats
Sustainable Food Technol., 2024, 2, 104–125 | 111
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Fig. 7 Canopy height model for oat at the phenological growth stages. Note: the apparent excessive height (>1.6 m) of the crop in selected
places was in fact due to the presence of invasive brome grass and wild oats, that occurred within the Copse field.

Fig. 8 Oat canopy height at phenological growth stages. Note: the limits of the box represent the upper and lower quartile of the data as
assessed at the 95% confidence limit while the whiskers show theminimum andmaximumheights determined. The horizontal line within the box
represents the median height while the cross is the mean height.
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plant height measurements, using the CHM, are appropriate for
this study. The variation in canopy height across the ve
phenological growth stages are shown in Fig. 8. The mean
height at Stage 5 (ripening) is 1.18 m which corresponds to the
mean typical height of oats crop grown in the North of the UK
(1.00 m).31

Themean height of the crop has been plotted against the soil
nutrient concentrations, for the four eld zones, Fig. 2(b),
across the ve phenological growth stages from December 2020
to August 2021. For soil phosphorus levels, Fig. 9, it is noted that
as the concentration in the soil decreases, a corresponding
growth in the crop height occurs. Similar trends occur for soil
112 | Sustainable Food Technol., 2024, 2, 104–125
nitrate, Fig. 10. However, the trend for soil potassium differs,
Fig. 11. This is due to the addition of potassium fertiliser in
June, resulting in a signicant increase in soil potassium
concentration, Table S3(b)† across all 4 zones.
b-Glucan concentration of oat grain

Validation of the b-glucan determination, determined as
glucose, was assessed across its four extraction stages, and re-
ported, Table S4(a).† The mean extraction efficiency, assessed
by spiking glucose (15 mM) on oat extracts, was as follows: Stage
1 (before alkali extraction): mean 84.4% (85.2%; 83.5%); Stage 2
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Soil phosphorus (ppm) and oats height (m) in (a) zone 1, (b) zone 2, (c) zone 3, and (d) zone 4.

Fig. 10 Soil nitrate (ppm) and oats height (m) in (a) zone 1 (b) zone 2 (c) zone 3 (d) zone 4. Note: no soil nitrate concentration data was available
for March 2021.
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(before acid neutralisation): mean 90% ± 5% (n = 6); Stage 3
(before freeze drying): 95% ± 6% (n = 6); and, Stage 4 (before
acid hydrolysis): mean 105% ± 12% (n = 6). In addition, the
© 2024 The Author(s). Published by the Royal Society of Chemistry
conversion efficiency of b-glucan to glucan was assessed by
spiking a sample with b-glucan (15 mM); this was determined to
be 102%± 8% (N= 6), Table S4(b).† The analytical performance
Sustainable Food Technol., 2024, 2, 104–125 | 113
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Fig. 11 Soil potassium (ppm) and oats height (m) in (a) zone 1, (b) zone 2, (c) zone 3, and (d) zone 4.
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data, using this colorimetric assay method, was determined as
follows: for glucose, a lower limit of detection (LLOD) of 34 mg
l−1 and a limit of quantitation (LOQ) of 102 mg l−1. Precision
was determined to be 9.5% at the low concentration (0.1 mM
glucose) and 1.9% at the higher concentration (40 mM glucose).
The equivalent LLOD for b-glucan was 30 mg l−1 with an LOQ of
92 mg l−1, Table S4(c).† The LLOD and LOQ were determined
using the standard curve method: LLOD = (3.3s)/S and LOQ =

(10s)/S, where s is the standard deviation and S is the slope of
the curve.32 The full results for analysis of the 48 oat grain sub-
samples for their b-glucan content in August are reported in
Table S3.† It is noted however, that the b-glucan content of
winter oat Mascani grown in the north of the UK ranges from
3.7% to 4.2%, with a mean of 3.9%.28 In our study however, the
b-glucan content ranges between 0.37–2.26%. Differences in the
b-glucan content of oats can, however, vary between cultivator,
growing location, storage, and processing conditions.2
Evaluation of vegetation indices from the UAV-MSI and
ground reference data

A comparison of the spectral reectance derived from multi-
spectral and multiwavelength spectral data (derived from the
UAV-MSI camera and hand-held spectrometer, respectively),
over three months of the growth stages, is shown in Fig. 12. It is
noted that the multispectral data (derived from the UAV-MSI
camera) always had higher reectance values; a trend also re-
ported by others.33 It was postulated that the reasons could be
due to the differences in ight height; a higher altitude between
the sampling location and the remote sensing platform, which
could have an impact on the quality of the data. Others have
postulated,10 that the variability can be justied due to the
114 | Sustainable Food Technol., 2024, 2, 104–125
opposite data acquisition approaches adopted by the two
methods; the data collected by the hand-held spectrometer is
proximal and static, whereas the UAV-MSI data collection is
remote and dynamic. Furthermore, reectance values can be
affected by the illumination geometry i.e. the time of day when
the data was collected.34

Spectral VI's were generated from data derived from both the
UAV-MSI camera and hand-held spectrometer, noting that the
latter can only operate in the visible region, and hence is limited
to GRVI only (eqn (1)). A statistical comparison (Student's t-test)
of UAV-MSI and ground reference spectral data with respect to
generation of VI's is represented in Table S5.† If p < 0.05, the VI
is statistically signicant indicating there is a difference
between the VI derived from the UAV-MSI camera data and the
ground reference data, or vice versa. Statistical differences (p <
0.05) between the GRVI generated values from both approaches
are noted in June and July, no such differences are noted in
August. However, the extended range of spectral bands that can
be used to generate a diverse range of VI's (eqn (1)–(6)) makes
the data from the UAV-MSI cameramore informative. Generally,
the numerical values for the VI's follow the trend (highest to
lowest): CI green VI > NDVI > SAVI > GNDVI > NDRE > GRVI. The
results, Table S5,† highlight the most suitable VI's as
a phenology indicator for the oats crop to be GRVI, NDVI and
the CI green VI. Firstly, this is since the index values of the
GNDVI, SAVI, and NDRE do not vary signicantly across
phenological growth stages; hence it is challenging to differ-
entiate the oats crops in the different phenological growth
stages. Conversely, GRVI, NDVI and CI green VI values have
been shown to vary signicantly across the phenological growth
stages, Table S5.† Finally, when the oats were initially green and
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 12 Comparison of spectral profile in reflectance between multispectral UAV (blue) and multiwavelength spectral ground reference data
using a Spectro-1 spectrometer (orange) across three growth stages of oats. (a) June (Stage 3 – flowering), (b) July (Stage 4 – grain filling), and (c)
August (Stage 5 – ripening).
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then fully ripe, the NDVI and CI green VI values varied widely
between high and low values, indicating that these indices
could be used to differentiate oats at different phenological
growth stages. As a result, the NDVI and CI green VI were used
to examine the relationship between soil health indicators and
yield estimation over the phenological growth stages of oats.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Correlation between estimated and actual oats grain yield

The estimated oats grain yield was determined at the peak of
owering (stage 3, Fig. 1). Iso-cluster classication was used to
classify the VI maps into three clusters: soil surface, grasslands,
and oats crop, Fig. 13. Oats were classied using NDVI values
between 0.6–0.8 and CI green VI values between 2–7, grasslands
Sustainable Food Technol., 2024, 2, 104–125 | 115
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Fig. 13 (a) RGB image (b) NDVI iso-clustered image (c) CI green VI iso-
clustered image. Note: dark green represents oats crop. Light green
represents grasslands. Brown represents soil surface.

Fig. 14 Correlation between estimated and actual yield (a) NDVI (b) CI
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between 0.59–0.12 (NDVI) and 1.8–0.5 (CI green VI), and soil
surfaces were classied as <0.12 (NDVI) and <0.5 (CI green VI).
As a result, the nal oats grain yield (in August) was estimated
by calculating the pixel areas of the oats crop visible at the top of
the panicle and classied by iso-cluster classication for the
NDVI and CI green VI maps, Fig. 14. Moderate correlation of
determination, determined using linear regression, was found
between the estimated oats grain yield and the actual oats grain
116 | Sustainable Food Technol., 2024, 2, 104–125
yield for NDVI (R2 = 0.74) and CI green VI (R2 = 0.70). It was
noted that the NDVI iso-cluster classied image in Fig. 13(b),
demonstrated better classication of the crop from
surrounding grasslands and soil surfaces than the CI green VI.
Therefore, this could explain the slightly better correlation
between estimated and actual oats grain yield by NDVI in
comparison to CI green VI. Also, other researchers have indi-
cated that NDVI has a stronger correlation when estimating
white oat grain yield in comparison to other VI's.35,36
Evaluation of thematic yield maps by kernel density
estimation

Yield maps using estimated and actual oats grain yield were
generated by the statistical pattern analysis method of KDE. The
oats grain yield map variation was highlighted as follows: low
(red = 0–4.97 t per ha), medium (orange = 4.97–6.18 t per ha),
high (yellow = 6.18–7.11 t per ha) and very high (green > 7.62 t
per ha) yield areas. It is noted (Fig. 15(a–c)) that the estimated
oats grain yield maps by NDVI, in Fig. 15(b), and the CI green VI
in Fig. 15(c), represent visually similar patterns to the actual
oats grain yield measured in the laboratory, Fig. 15(a). Also,
a signicant proportion of the lower yield areas identied, in
both the estimated and actual yield maps, are at the top (north
green VI.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 15 Oats grain yield maps by KDE (a) actual yield as measured in laboratory (in August), (b) estimated yield by NDVI (in June), (c) estimated
yield by CI green VI (in June), and (d) from on-board combine harvester yield monitor (FarmTRX system) (in August).

Paper Sustainable Food Technology

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
O

ct
ob

er
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

1/
9/

20
25

 5
:2

6:
12

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
end) of the eld. This was visually noted on the regular visits to
the site over the duration of the project. Furthermore, the yield
was conrmed by the combine harvester on-board tracking
system, Fig. 15(d). In comparison to the grain yield map
generated by the combine harvester on-board system, Fig. 15(d),
the yield maps generated by the KDE method show improved
spatial resolution, Fig. 15(a–c). As a result, it was concluded that
the use of VI iso-cluster classication can successfully estimate
oats grain yield, using the KDE method, two months prior to
harvesting of the crop.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Hierarchical multinomial logistic regression model

A hierarchical multinomial logistic regression model was built
(Matlab, version R2021a), for a given set of independent vari-
ables, to predict the probabilities of the possible outcomes of
a categorical dependent variable i.e. oat grain yield, categorised
into ve classes, Fig. 15(d). The independent variables were the
soil concentration of nitrate, potassium, and phosphorus, as
well as the soil pH and SOM as determined in the period June–
August and the b-glucan concentration, in August only. The
signicance of building a model using the measured yield, and
the UAV-MSI estimated yields using NDVI and CI green VI
Sustainable Food Technol., 2024, 2, 104–125 | 117
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Fig. 16 Flow chart representing data generation, model training and performance evaluation.
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alongside soil indicators is that it helps identify the range of soil
properties that are required to be obtained and maintained to
obtain the desired yield. This in turn provides the users
(farmers and agronomists) who are operating a Precision Agri-
culture management strategy the information required to
maintain the soil nutrient concentration by appropriate
118 | Sustainable Food Technol., 2024, 2, 104–125
intervention, by the application of fertilisers. A ow chart,
Fig. 16, outlines the key steps required to build this machine
learning model. Firstly, the measured yield in Table S1,† as well
as the NDVI and CI green VI estimated yields, for the 48 loca-
tions in Table 1, were recoded into the ve yield classes. Aer
recoding, only 40–50% similarity was evidenced in the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 NDVI and CI green VI basic statistical parameters across phenological growth stages at 48 location points

Phenological growth stage

NDVI CI green VI

Mean � SD Min Max N
Mean �
SD Min Max N

Stage 3 – owering (June) 0.64 � 0.083 0.46 0.81 48 2.63 � 0.82 1.01 4.62 48
Stage 4 – grain lling (July) 0.41 � 0.13 0.18 0.64 48 1.64 � 0.71 0.27 2.91 48
Stage 5 – ripening (August) 0.34 � 0.11 0.11 0.57 48 1.55 � 0.73 0.31 3.15 48
Mean: June, July and August 0.46 � 0.17 0.11 0.81 144 1.94 � 0.88 0.27 4.62 144

Table 2 Similarity in the recoded class assigned to the measured yield estimate, NDVI estimated yield and CI green VI estimated yield

Recoded yield classes
Measured
yield

Estimated yield
by NDVI

Estimated yield
by CI green VI

Measured yield 1 0.4167 0.4792
Estimated yield by NDVI 0.4167 1 0.4583
Estimated yield by CI green VI 0.4792 0.4583 1

Fig. 17 Scatter plot of CI green VI estimated yield for selected features of potassium (mg l−1) (in June), potassium (mg l−1) (in July) and % b-glucan
(in August). (a) Using the actual 48 determined datapoints, and (b) the linearly interpolated datapoints along with the original 48 determined
datapoints [note: datapoints defined in terms of the soil nutrients were grouped based on the recoded five yield classes. Datapoints pertaining to
each yield class were separately interpolated].
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measured yield, as well as the NDVI and CI green VI estimated
yields, Table 2. Since 48 data points are insufficient for devel-
oping an effective model and validating its accuracy, the dataset
was augmented using six different approaches to generate
sufficient data: multivariate linear interpolation of datapoints
for each yield class; random selection of datapoints from
a normal distribution tted to the sample dataset (consisting of
original and interpolated datapoints for each yield class);
selection of datapoints from a bias corrected normal distribu-
tion tted to the sample dataset; random selection of
© 2024 The Author(s). Published by the Royal Society of Chemistry
datapoints from a lognormal distribution tted to the sample
dataset; random selection of datapoints from a bias corrected
lognormal distribution tted to the sample dataset; and
random selection of datapoints from a skewed normal distri-
bution tted to the sample dataset.

Firstly, for each of the yield approaches, data was grouped
into the 5 yield classes. Then, multivariate datapoints were
assigned to each class, and then linearly interpolated to have
a substantial number of datapoints in each class to train and
test a classication model and to t a multivariate probability
Sustainable Food Technol., 2024, 2, 104–125 | 119
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Fig. 18 Multivariate normal distribution for nitrate (mg l−1) (in June) and nitrate (mg l−1) (in July) fitted to the datapoints grouped using the (a)
recoded measured yield, (b) recoded NDVI estimated yield, (c) the recoded CI green VI estimated yield.
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distribution. An example for the CI green VI is shown in Fig. 17.
As the linearly interpolated data assumes a constant rate of
change between variables it is limited to the sample dataset's
range of feature values. As a result, the linearly interpolated data
across the ve yield classes does not accurately reect the
population from which the data points have been derived.
Hence, in the absence of a representative sample dataset, the
linearly interpolated dataset along with the original datapoints
for each yield class, was used to t the ve parametric distri-
butions. Multivariate parametric distributions were tted
separately to the sample dataset for each yield class in each yield
approach. It is hypothesized, that if sufficient datapoints were
collected for each yield class then the data would follow
a normal distribution. Therefore, a multivariate normal distri-
bution was tted to datapoints for each yield class and a total of
ve multivariate normal distributions were developed for each
yield approach i.e., measured and the NDVI and CI green VI
estimated yields, and shown in Fig. 18. By neglecting datapoints
120 | Sustainable Food Technol., 2024, 2, 104–125
consisting of any negative values, a set of 100 datapoints were
randomly selected from each multivariate distribution. Due to
the presence of some extreme values i.e., outliers, in the data,
the covariance and mean of the tted distribution are
frequently overestimated and/or biased. The Orthogonalized
Gnanadesikan Kettenring algorithm,37 was therefore applied to
the dataset, since this corrects for the overestimation of
parameters in the distribution tted to the sample dataset. The
corrected mean and covariance value for each multivariate
normal distribution was generated for each of the 5 yield
classes, Fig. 19. This allowed a set of 100 random points, with
no negative values in any of the 16 features, to be selected for
each yield class.

The 16 features i.e., nitrate, potassium, phosphate, pH, SOM
in June–August, alongside the % b-glucan content in August,
representing the soil characteristics and crop quality do not
contain any negative values, Table S3.† Due to this character-
istic of the sample dataset, a multivariate lognormal
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 19 (a) Example of univariate distribution of b-glucan (%) (in August) for the low yield estimate using the CI green VI method, (b) example of
multivariate overestimation/bias corrected normal distributions of nitrate (mg l−1) (in June and July) fitted to datapoints pertaining to each yield
class based on the CI green VI yield estimate [note: the univariate representation shows the effect of the orthogonalized Gnanadesikan Ket-
tenring method on the distribution of the normal distribution fitted to the variable. The original distribution is represented in blue. The over-
estimation of variance owing to the presence of outliers is compensated by the orthogonalized Gnanadesikan Kettenring method].
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distribution was tted to the sample data for each of the 5 yield
classes, in the three datasets pertaining to the yield estimation
approach, Fig. 20(a). The tted multivariate lognormal distri-
butions were used to randomly select 100 datapoints for each
yield class. Furthermore, aer correction for overestimation
and/or bias the mean and covariance, were used to t lognormal
distributions, as shown in Fig. 20(b), and 100 datapoints were
randomly selected from each yield estimation approach. Aer
a closer examination of the 48 datapoints it was revealed that
the variables can have absolute zero values, for example, the
absence of nitrate in August, Table S3.† Hence, the dataset was
adjusted by adding a value of 1.001 to t a lognormal distri-
bution. In view of the sample data characteristics, a skewed
normal distribution was tted to the sample dataset for each
yield class, as shown in Fig. 20(c). From the skewed normal
distribution, a set of 100 datapoints with no negative variable
values were selected.

Then, the datasets generated using six different approaches
for each of the 5 yield classes was used separately to train and
test hierarchical multinomial logistic regression models. The
goodness of t of the trained model and its performance on the
test data set, was investigated using the following metrics:
trained model deviance over an intercept only model (assessed
at the 0.05 signicance level); McFadden's pseudo R2; and the
accuracy, sensitivity, and specicity of the model.

The variability (or proportion of variation) in yield that can
be explained by the trained model is expressed using McFad-
den's pseudo-R2 approach,38 and if the given model perfectly ts
the data, the McFadden's R2 value will be close to 1.39 Specicity
© 2024 The Author(s). Published by the Royal Society of Chemistry
indicates whether the model correctly identies a datapoint as
not belonging to a specic class. Whereas sensitivity indicates
whether the model correctly identies whether a datapoint
belongs to a specic class. Finally, accuracy identies the
correctly predicted total number of datapoints by the model.
Hence, all generated datapoints and original samples were used
to train and test the performance of a single hierarchical
multinomial logistic regression model. The generalised format
of the regression model for the different yields are shown in the
ESI.†

To prevent localized clustering of datapoints that have the
same yield class assigned, or were generated from the same
distribution, the datapoints were randomly shuffled. Then, 70%
of the unique datapoints in the dataset were used to train the
model, and the remaining 30% were used to test the model. As
the recoded yield class assigned to the manually measured yield
and the estimated yields using NDVI and CI green VI repre-
sented about 40–50% similarity, shown in Table 2, three hier-
archical multinomial logistic regression models were separately
trained and tested. The hierarchical multinomial logistic
regression models trained on the data developed using the six
different approaches will hereaer be referred to as a ‘combi-
nation model’.

From the training data, sets of variables/features i.e., soil
nutrients including nitrate, phosphorus, potassium, pH, SOM
and the b-glucan concentration, that had a correlation lower
than 0.4 (arbitrarily attributed), were selected and the logistic
regressionmodel was trained and tested using a dataset dened
by only these sets of variables. The prediction accuracy of the
Sustainable Food Technol., 2024, 2, 104–125 | 121
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Fig. 20 Multivariate distribution for CI green VI yield estimate representing the feature nitrate (mg l−1) (in June and July) (a) multivariate log
normal distributions fitted to datapoints grouped to the 5 classes of the CI green VI yield estimate, (b) multivariate lognormal distribution
corrected for overestimation due to outliers by the orthogonalized Gnanadesikan Kettenring method, and (c) skewed normal distributions fitted
to datapoints grouped based on the CI green VI yield estimate.
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models trained on the selected feature sets was compared
among themselves and with a model that is trained on a dataset
that takes into consideration all the 16 variables/features. This
was done to estimate the effect of multi-co-linearity i.e., features
bringing in similar or overlapping information, based on clas-
sier performance.

For the datasets generated, based on the estimated yield
using NDVI and the CI green VI, the combination model using
all 16 features i.e. nitrate, phosphorus, potassium, pH and SOM
across June–August and the b-glucan in August, was found to
have the best prediction accuracy, Table 3. However, this soil
feature set selection is dependent on the training set and the
prediction performance of the trainedmodel on the test set data
used in the study. While for the measured yield data a subset of
9 features i.e. potassium and phosphorus in June, nitrate,
potassium, phosphorus and SOM in July and nitrate, potassium
122 | Sustainable Food Technol., 2024, 2, 104–125
and b-glucan in August, was found to perform best, Table 3.
These 9 features are found to be relevant for all the three yield
models, separately trained and tested, using the multinomial
logistic regression model. As shown in Table 3, the hierarchical
multinomial logistic regression model for the CI green VI esti-
mated yield data provides the best performance in terms of
specicity, sensitivity, and accuracy. The nal trained hierar-
chial multinomial logistic regression model for the different
yields is provided in the ESI,† along with their variable and
coefficients, Table S6.† The specicity, sensitivity and accuracy
on the trained measured yield data model, yield estimated
using NDVI and CI green VI data models are provided in Table
S7.† The performance of the models separately tted to the
linearly interpolated datapoints and the randomly selected
points from different tted parametric distributions for the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Performance of hierarchical multinomial logistic regression model (i.e., combination model) trained on measured yield data, and the
estimated yield data using the NDVI and CI green VIa

Combination model – measured yield

Signicance of model developed over intercept only model c2 (36) = 4.6701 × 103, p = 0 < 0.05 [based only on training data]
McFadden's R2 0.9476 [based only on training data]
Test data Specicity Sensitivity Accuracy
Class 1 – very low yield (0–4.97 t per ha) 0.56 0.98 0.89
Class 2 – low yield (4.97–6.18 t per ha) 0.75 0.94 0.91
Class 3 – medium yield (6.18–7.11 t per ha) 0.76 0.97 0.93
Class 4 – high yield (7.11–7.62 t per ha) 0.89 0.88 0.88
Class 5 – very high yield (>7.62 t per ha) 0.72 0.90 0.86
Overall 0.74

Combination model – NDVI yield

Signicance of model developed over intercept only model c2 (64) = 4.9506 × 103, p = 0 < 0.05 [based only on training data]
McFadden's R2 0.5594 [based only on training data]
Test data Specicity Sensitivity Accuracy
Class 1 – very low yield (0–4.97 t per ha) 0.13 1.00 0.83
Class 2 – low yield (4.97–6.18 t per ha) 0.36 0.89 0.78
Class 3 – medium yield (6.18–7.11 t per ha) 0.81 0.80 0.80
Class 4 – high yield (7.11–7.62 t per ha) 1.00 0.86 0.89
Class 5 – very high yield (>7.62 t per ha) 0.73 0.97 0.92
Overall 0.61

Combination model – CI green VI yield

Signicance of model developed over intercept only model c2 (64) = 5.7487 × 103, p = 0 < 0.05 [based only on training data]
McFadden's R2 1.00 [based only on training data]
Test data Specicity Sensitivity Accuracy
Class 1 – very low yield (0–4.97 t per ha) 0.58 0.99 0.91
Class 2 – low yield (4.97–6.18 t per ha) 0.47 0.94 0.84
Class 3 – medium yield (6.18–7.11 t per ha) 0.95 0.86 0.88
Class 4 – high yield (7.11–7.62 t per ha) 1.00 0.96 0.97
Class 5 – very high yield (>7.62 t per ha) 0.87 0.95 0.93
Overall 0.76

a The performance is dened based on the goodness of t of the model to the training data and the model's ability to make predictions on unseen/
test data

Table 4 Proportional concentration range of soil nutrients that
resulted in very high yield across all 3 methodsa

Class 5 – very high yield (>7.62 t per ha)

Phenological growth
stage

Stage 3:
owering

Stage 4: grain
lling

Stage 5:
ripening

Month June July August
All yield estimates
Nitrate (mg l−1) 16–81 6.6–38 3.5–35
Phosphorous (mg l−1) 20–33 13–27 7–20
Potassium (mg l−1) 90–165 105–235 125–190
pH 7.46–7.84 7.31–7.83 7.65–7.87
SOM (%) 9.2–10.8 9.1–11.7 7.8–10.5
b-Glucan (%) NA 0.37–2.26

a NA = not applicable.
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measured yield, the yields estimated using NDVI and CI green
VI are also provided in Table S8.†

In terms of the usability of the model as part of a Precision
Agriculture management strategy, based on the nutrient
© 2024 The Author(s). Published by the Royal Society of Chemistry
content, soil organic matter and pH of the soil in June–August
and crop quality, as assessed by the b-glucan concentration in
August, the ‘combination model’ using the CI green VI can
assist farmers, and agronomists, to estimate the oat crop yield,
across the 3 phenological growing seasons (months). This is
since the chosen 16 soil feature parameters show good, speci-
city, sensitivity, and accuracy at estimating the oat crop yield
over the ve different classes, Table 3. However, this probabi-
listic machine learning model only holds if the crops aren't
affected by any natural or adverse conditions in the months
before harvest. To further improve the proposed yield predic-
tion model and the proportional soil nutrient concentrations,
as shown in Table 4, more data collection and further experi-
mentation would be required. However, this ‘combination
model’, and particularly the CI green VI, Table 3, could be used
for future studies in alternate crops to identify if the chemical
soil health indicators and crop quality features aid in estima-
tion of crop yield. This important development of predicting
crop yield, using machine learning, can be extremely useful in
Sustainable Food Technol., 2024, 2, 104–125 | 123
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supporting the World Health Organization's food security and
nutrition programme for communities around the world.40
Conclusion

This research has demonstrated the important of using vege-
tation indices as predictors of crop yield ahead of harvesting. It
has additionally shown that using an unmanned aerial vehicle
with a multispectral image camera, that can operate in the near
infra-red and visible spectral region, is more effective at
obtaining the necessary spectral data compared to hyper-
spectral data in the visible spectral region only. The use of an
unmanned aerial vehicle also allows rapid data collection
compared to a hand-held spectrometer. By integrating chemical
soil health indicators and crop quality into a hierarchical
multinomial logistic regression has allowed an effective model
to be developed to predict the highest crop yield. This is an
important component of an effective Precision Agriculture
management strategy designed to maximum crop yield. Adop-
tion of the generic framework of this research can be imple-
mented in local, regional, and global contexts to inform farmers
of the necessary actions to maximise crop yield. The adoption of
the framework does require however, both soil nutrients levels
to be monitored and controlled pesticide application to maxi-
mise yield. Additionally, the effective deployment of a low cost
commercially available UAV with MSI camera does allow effec-
tive crop monitoring.
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O. R. Mancilla-Villa and M. A. Vázquez-Peña, Corn Grain
Yield Estimation from Vegetation Indices, Canopy Cover,
Plant Density, and a Neural Network Using Multispectral
and RGB Images Acquired with Unmanned Aerial Vehicles,
Agriculture, 2020, 10(7), 277, DOI: 10.3390/
agriculture10070277.

17 O. S. Walsh, S. Shaan, J. M. Marshall, C. Jackson,
J. R. McClintick-Chess, S. M. Blanscet and W. L. Walsh,
Assessment of UAV Based Vegetation Indices for Nitrogen
Concentration Estimation in Spring Wheat, Adv. Remote
Sens., 2018, 7(02), 71–90, DOI: 10.4236/ars.2018.72006.

18 M. Schlemmer, A. Gitelson, J. Schepers, R. Ferguson,
Y. Peng, J. Shanahan and D. Rundquist, Remote
estimation of nitrogen and chlorophyll contents in maize
at leaf and canopy levels, Int. J. Appl. Earth Obs. Geoinf.,
2013, 25, 47–54, DOI: 10.1016/j.jag.2013.04.003.

19 P. Sharma, L. Leigh, J. Chang, M. Maimaitijiang and
M. Caffe, Above-Ground Biomass Estimation in Oats Using
UAV Remote Sensing and Machine Learning, Sensors, 2022,
22(2), 601, DOI: 10.3390/s22020601.

20 K. Y. Li, R. Sampaio de Lima, N. G. Burnside, E. Vahtmäe,
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