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A comparative overview of the electrochemical
valorization and incorporation of CO, in
industrially relevant compounds

Jef R. Vanhoof, Sander Spittaels and Dirk E. De Vos 2 *

Climate change is a critical global challenge that requires urgent action to reduce greenhouse gas
emissions, including carbon dioxide (CO,). While essential efforts are being made to reduce emissions
by developing new manufacturing processes, it is also crucial to scrutinize sustainable uses for the CO,
that is already produced in excess. The electrochemical CO, reduction reaction (€CO,RR) is a highly
promising and versatile approach for converting CO; into valuable base chemicals and fuels, effectively
decarbonizing the chemical industry. New methodologies and electrocatalysts in this area are
increasingly being investigated, emphasizing the necessary transition to a more sustainable future. In this
review, we focus on the eCO,RR coupled with incorporation in organic or inorganic reactants towards
key industrial compounds such as carboxylic acids, ureas and dimethyl carbonate. We provide a broader
context by outlining the current industrial synthesis methods of the envisioned compounds. Recent
work is summarized in tables for quick comparison while innovations and improvements regarding
sustainability and applicability are addressed in more detail.

The unprecedented rise in atmospheric carbon dioxide (CO,) levels has emerged as a critical and multifaceted global challenge which extends far beyond
environmental science. The elevated greenhouse gas concentrations have set in motion a cascade of climate shifts, heralding an era marked by extreme weather
events, altered precipitation patterns, alarming loss of biodiversity and rising global temperatures. As nations grapple with the consequences of these changes,
it becomes imperative to develop and implement effective strategies to mitigate CO, emissions and to valorize CO, as a valuable resource. The chemical
industry plays a pivotal role as a potential driver in reducing CO, concentrations through technological innovation. Green chemistry, which emphasizes the
design of products and processes that minimize environmental impact, is gaining prominence. More specifically, electrochemistry stands as a cornerstone in
the pursuit of sustainability, enabling the direct use of renewable electricity to convert the excess CO, back to industrially relevant building blocks, like
carboxylic acids, urea and dimethyl carbonate. As such, CO, is reintroduced in the production chain, thereby directly addressing the pressing environmental

concerns.

1. Introduction

the CO, emissions even reached a new record in 2022 of over 36.8
Gt globally according to the international energy agency,” high-

Carbon dioxide (CO,) is a greenhouse gas that is naturally
present in the Earth’s atmosphere and plays a critical role in
regulating the planet’s temperature. Human activities such as
burning fossil fuels, deforestation and global industrialization
have led to rapid increases of CO, concentrations in the atmo-
sphere, leading to an anthropogenic climate change and its
associated impacts such as sea level rise, more frequent and
severe weather events, and shifts in ecosystems and agriculture.
After 2 years of varying emissions due to the COVID-19 pandemic,
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lighting that global warming is a pressing matter. The Paris
agreement, signed by nearly 200 countries in 2015, aims to limit
global warming to well below 2 °C above pre-industrial levels,
with efforts to limit it to 1.5 °C.> To achieve this goal, countries
must reduce their greenhouse gas emissions,” including CO,,
through a variety of measures such as transitioning to renew-
able energy sources® and sustainable production processes,®”
increasing energy efficiency in transportation'®"® and
industry,’*” and implementing carbon capture and storage
technologies.'®2* Specifically for the European Union with the
introduction of the European Climate Law, EU countries must
cut greenhouse gas (GHG) emissions with 55% by 2030, even-
tually reaching climate neutrality by 2050.
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Industrial manufacturing of chemicals is a significant con-
tributor to the global CO, problem due to the energy-intensive
production processes that largely rely on fossil fuels as a source
of energy and feedstock. Nevertheless, it has the potential to
play a decisive role in realizing the aforementioned necessities
by decarbonizing the chemical industry.>*® Additionally,
developing new materials and chemicals that have a lower
carbon footprint, as well as recycling and reusing materials to
reduce waste and emissions are important aspects towards
closing the carbon loop.””' A most viable strategy for CO,
valorization is to use it as a building block towards value-added
chemicals,** ¢ fuels®*”*® and construction materials.***° This
way, a sustainable source of chemicals and materials is provided
by introducing generated CO, back in the production processes
as an elementary building block, gradually transforming the
typical linear production chain to a more sustainable produc-
tion loop. Mineralization towards building materials,*'™*
biological**™*® and photochemical*®* conversion of CO, will
not be discussed and can be found elsewhere.

Of particular interest and high potential is the sustainable
transformation of CO, to industrial key chemicals using renew-
able electricity.”*® The electrochemical CO, reduction reac-
tion (eCO,RR) is a highly promising approach since a wide
variety of desired products are possible, such as carbon mon-
oxide (C0),>" % formic acid (HCOOH),*"** methanol
(MeOH),*> % methane (CH,)’®”? and even ethylene,”*”® etha-
nol (EtOH)”’"®° and other C,, products.®"®” Capturing a reac-
tive intermediate of the eCO,RR with a second substrate creates
structural motives ubiquitous in the chemical industry,?®°
expanding the product scope significantly and highlighting the
versatility of the eCO,RR. Owing to this large pool of high-value
products and the sustainable benefits of eCO,RR, industrial
viability is already being thoroughly investigated.”**°

In this comparative review, we present an overview of recent
protocols where CO, is electrochemically coupled with organic
and inorganic substrates to form crucial new C-C, C-N or C-O
bonds of industrially relevant compounds, such as carboxylic
acids, urea and dimethyl carbonate (Fig. 1). For each chapter,
the corresponding literature is summarized in tables to facil-
itate comparisons. Innovations and improvements on the gen-
eral methodologies will be discussed in more detail, with a
focus on sustainability, industrial relevance and applicability
and what we think are interesting concepts in general. In
addition, some suggestions regarding further investigations
will be presented.

Alkyl—CO,H
HCOOH c

MeOH Aryl—CO,H

co i Q
is
C,H, ref 5787 | €CO,RR W H2N’C‘NH2
CH, EtOH o
.C.
C,. products ~o o7

Fig. 1 Electrochemical CO, reduction reactions in literature and covered
in this review.
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2. Carboxylations

One of the most straightforward uses of CO, is the formation of
carboxylic acids since this amounts only to a decrease in carbon
oxidation state from +IV to +III. Carboxylic acids are crucial
base chemicals and can be fairly easily derivatized to metal
salts, esters, anhydrides and acid chlorides. As such, carboxylic
acids are (in)directly involved in numerous applications
ranging from pharmaceuticals and food additives to agro-
chemicals and plastics.”>®” Industrial synthesis still largely
relies on oxidation of aldehydes, which themselves are typically
generated by the widely employed hydroformylation of alkenes.
A second, less frequently used possibility, is the direct hydro-
carboxylation of olefins. Both methods exploit the high
reactivity of extremely toxic CO gas. An exception is the synth-
esis of ortho-hydroxycarboxylic acids in the Kolbe-Schmitt
reaction where alkali phenolates react under 1-100 bar CO,
atmosphere at temperatures of 120-180 °C.%® Salicylic acid, the
precursor for aspirin among others, is produced this way on a
global scale of 100.000 metric tons annually.’® Direct incorpora-
tion of CO, in other molecular structures is still a subject of
intense research due to the widespread use of carboxylic acids,
and the sustainability and safety benefits of using CO, instead of
CO. Recent reviews tackling non-electrified carboxylation protocols
using CO,, e.g. metal-catalyzed'®* and photochemical'®*™"%
ones, can be found elsewhere.'**2

Recent electrochemical carboxylation methods are summar-
ized in Table 1. When comparing the different protocols, three
aspects immediately catch attention. First of all, the mecha-
nism frequently involves the direct one-electron reduction of
either the substrate or of CO, itself, depending on the respec-
tive reduction potentials. Mechanisms of reported electrocar-
boxylations (EC) can be generalized as in Fig. 2A. In a small
variation (Fig. 2B), the starting substrate loses a molecule X.
Secondly, sacrificial anodes such as Mg or Zn are frequently
used, since the metal ions stabilize the cathodically formed carbox-
ylate ions, promoting the envisioned reactions and diminishing
unwanted side reactions. The products are obtained after an acidic
workup or by using methyliodide to create the methylester. Since
the reduction potentials of Mg and Zn are near or even more
positive than that of CO, (Fig. 2, bottom), it is also possible that in
reported reactions, involving the electrogeneration of CO," " radical
anions, these metal ions can be cathodically reduced. While in
some cases this results in undesired cathode passivation, this can
also advantageously result in the formation of Grignard reagents
when for instance halide-containing substrates are used."” The
Grignard reagent can also be formed when an electrogenerated
reactive anion of the substrate is associated with a Mg(u) ion.
Reaction with CO, then also produces the calrboxylate,114 but overall
this increases the complexity in the chemistry. Generally, identifying
an appropriate anodic reaction while maintaining high EC selectiv-
ity is required to preserve the metal electrodes and preventing ever
increasing metal concentrations in the electrolyte, demanding an
energy-intensive metal recovery. Finally, most methods use the
highly toxic solvents DMF or NMP. These solvents need to be
replaced when looking for industrial applications.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Overview of recent electrochemical syntheses of carboxylic acids using CO,
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Electrodes Q FE
No. Substrate(s)  Product(s) (/=) Catalyst + additive  Electrolyte EorJ] (Fmol™") (%) Ref.
O R? O R2 CO,H Mg or
1 » J\N,)\Ar RITONT A /Pt TEOA if Pt(+) is used 0.075 M TBAI/DMF 10 mA 5 <38 115
R'0 R? R10 CO,H
2 Y 7 cic TEOA 0.1 M TEAI/DMF 10vV(ah) 9415 <15 116
o R o R®R?
o CO,H
3 U+ Ar—NH, RISNAT Pt/GC — 0.14 M THACIO,/THF 12.7 mAcm > 4 <45 117
H
“ CO,H CO,H
4 ATY"0Ac A g g N A\) Mg/Pt — 0.05 M TBABF,/DMF 5 mA 4.5 <44 118
COH + +
5 ATN"0ac NN Mg/Pt Ef(()%AC)Z DPPPh+ 57 m TEANOTs/DMF 8 mA 3 <63 119
r
PN CO,H CO,H .
6 Ar o )\/ - /\) Mg/Ni Co(OAC), + PPh, 0.05 M TBAPF¢/DMF 10 mA 9 <18 120
R R
N A s0,Ph A I coH
7 Mg/Pt — 0.05 M TBABF,/DMF 15 mA 15 <13 121
Ar—==—S0,Ph Ar—=—CO,H
R
COH ) _
8 Ph X Ph)\/ 2 Mg/Ni H,0 0.1 M TBABF,/DMF 10mAcm™2 0.5 <89 122
R=Hor CO,H
A YN /\/\R/ R
9 X x\”ﬁCCOZH Al/Ni TBD + 5 A MS 0.15 M TBAI/NMP 12.5 mA 25 <6 123
X=C,N,0 CO,H
R2 @
o X A\ 4 CO,Me
10 Ry ¥ R . %cozm Mg/Pt — 0.1 M TBACIO,/MeCN 30 mA 3 <65 124
L e
X =NBoc, O, S X
OAc OAc
Mg or _a
11 N A SEO Z0/pt 0.1 M TBABF,/DMF 25 mA cm 3-10 <62 136
R Br R
12 Ar)\ KMo, A CoH Pt/C — 0.1 M TBPBF,/DMF —45V(12h) — ND 137
R
PN R
13 Ar7 X Arkco y SS/Sm TMSCI 0.02 M TBAI/MeCN 100 mA 7.5 <26 138
X =Cl, Br z
NHBoc NHBoc
—2
14 Ar)\ SO,Ph N Py co Mg/Pt 0.1 M TBABF,/DMF 10 mA cm 8 <22 139
R! R? R! R?
15 X S0,Ph o M . Mg/Pt — 0.4 M TBAI/DMF 10 mA 9 <22 140
)\ )\ Catholyte: 0.1 M TBAI/MeCN
16 Ph Bt Ph” > COH Pt/Ag - Anolyte: 0.5 M KHCO3/H,0 —14V 2.5 <60 141
X
rI \ o -COH
17 N RT GF/Pt Naphthalene + TBD 0.05 M TBABF,/DMF 20 mA 22 <9 145
X =Cl, Br
18 Ar—H Ar—COzH GF/GF — 0.075 M TEAI/DMF 20 mA 25 <7 146
X
rL A o COH
19 A RT Sm/SS — 0.01 M TBABF,/DMF 100 mA 3 <53 147
X=Cl,Br
CO,Me
Rl R2 _/\j Cu(OTf), + KO-tBu +
20 P R Zn/Fe H,0 + 0, 0.2 M TBAI/NMP 5 mA 9 <17 148
CO,Me
21 Ry 2 Pt/Fe KO-tBu 0.2 M TBAI/NMP 6 MA 36 <5 148
RN RT .
R? N

© 2024 The Author(s). Published by the Royal Society of Chemistry

EES Catal., 2024, 2, 753-779 |

755


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ey00005f

Open Access Article. Published on 16 February 2024. Downloaded on 1/29/2026 6:59:37 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

Review EES Catalysis
Table 1 (continued)
Electrodes FE
No. Substrate(s)  Product(s) (/=) Catalyst + additive  Electrolyte Eorj] (Fmol™") (%) Ref.
R—'(j " 00 Ni(acac), + dtbbpy +
22 N R—:()/ Zn/C KOLBY PY ¥ 0.02 M Nal + MgBr,/NMP 8 mA 4-24 <46 149
X =Cl, Br, I, SO,R
23 o R-COH Zn/C NiBr, +dmbpy + o 5 M Liclo,/NMP 8 mA 14-19 <11 149
X =Cl, Br, |, SO,R CsF ) N
R-X
24 = CLBr 1 R-COH Pt/Ag MgBr, 0.1 M TBABIr/DMF 20mAcm 2 12 <13 151
o HO co,H
25 on J "4 Mg/GC — — 0.4 M TBAPFs/MeCN —2.6 V(12 h) 0.5 <72 154
0o OH 2
| B _
26 A Ar)\COZH GIG 0.3 M TBA/PC 8 mA cm 2 <63 154
OH HQ co,H . )
27 NP - GC/Ni TEMPO + H,0 0.1 M TEAAc/MeCN 7mAcm % 3 <41 155
r
0
R COH
28 A ol ot Mg/t  — 0.1 M TBAI/DMF 10 mA 4.4 <41 157
n=123 "
o
R CO.H
2o A A\, OH Mg/Pt  — 0.1 M TBABI/DMF 10 mA 3.7 <51 158
n=1.23 "
ArVR Ar R
30 o HOZCJ\MHJ\COZH Zn/Nb — 0.075 M TBABF,/NMP 15 mA 22.5 <9 159
Ar. N-OBz
t(/ CO,H
31 ( W o )\MA oN Mg/GC — — 0.1 M TBAI/DMF 8 mA 7.5 <24 160
F CO,Me
32 Af/\Ff A’/\F/ Ni/Pt — 0.07 M TBAI/DMF 8 mA 6.7 <25 161
CF4 CF,
33 A A A I com Pt/Pt — 0.07 M TBACIO,/DMF 8 mA 6 <28 162
r r

The free acids are obtained from electrogenerated carboxylates via an acidic work-up. In some cases, a work-up employing methyliodide (MeI) is

used, resulting in methyl esters.

2.1 Carboxylations involving double bonds

In the carboxylations involving double C—=C or C=N bonds
(Table 1, entries 1-10),">** a non-sacrificial Pt'*> or C''°
anode can be used when triethanolamine (TEOA) is added as
a sacrificial reactant (entries 1 and 2, respectively); alternatively,
a solvent like THF is used, which itself undergoes anodic
oxidation (entry 3).''” However, these methods only shift the
problem of identifying an anodic counterreaction and still
produce unwanted byproducts. The alkene starting materials
in entries 4-6 provide unsaturated carboxylation products,
which might be interesting for further derivatization, due to
the allylic nature of the reaction products."****° It is note-
worthy that both the selectivity and faradaic efficiency of two
possible products out of the same starting material could be
improved by using an electro-active Pd catalyst (entries 4 vs.
5).11%119 Additionally, enantioselective carboxylation with a
moderate ee of up to 67% was possible using chiral bidentate
triarylphosphine ligands. Although higher ee values are
required for applications, asymmetric electrochemistry towards

756 | EES Catal, 2024, 2,753-779

chiral scaffolds is a highly interesting concept gaining
increased attention."*>"*°

(Di)carboxylation of simpler alkenes seems more challenging as
literature reports are scarce.’*® Nam and coworkers (entry 8)
reported that even small amounts of water guide the selectivity
of styrene carboxylation towards dicarboxylation or f-hydro-
carboxylation."” When using neat DMF as the solvent, highly
selective (97%) dicarboxylation of styrene occurred with a FE of
89%, whereas addition of only one equivalent of water relative to
styrene shifted the selectivity towards B-hydrocarboxylation (71%)
in 65% FE (Fig. 3A). The selectivity for B-hydrocarboxylation over
dicarboxylation even reached 96% when 10 equivalents of water
were used, albeit with a lower FE of 47% due to competitive H, and
methane formation. It was argued, based on p-labeling experi-
ments and kinetic studies, that the protonation or incorporation of
a second CO, molecule on the benzylic position happened
competitively after primary formation of the B-carboxylate inter-
mediate (¢f Fig. 2). Coupling an appropriate anodic reaction
with the (di)carboxylation of alkenes, especially aliphatic

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Sub (or COy,) Sub = alkenes, alkynes,

ketones, arenes, ...
+1e

Sub (or CO,) |

k €O, (or Sub) -2¢
M2+ -

Sub—CO,

1e H* work-up

Y H-Sub—CO,H

“Sub-CO,
; HO,C-Sub—CO,H

CO, + H* work-up

PPN

-2e
X (X=1,Br, Cl, OAc, SOAT, ...) M2+ /

Sub
H* or Mel

\: 1e CO, work-up
Sub~ —\~> Sub—CO, —\~> Sub—CO,R
C R=H, Me A

Mg?* + 2e — Mg °=237V

Zn** +2¢ — Zn

°=-076V

Eyj2 (vs SHE) =-1.96 V in DMF

CO, + & —> 'O/go )
E4j (vs SHE) = -2.06 V in MeCN

Fig. 2 Top: General reaction mechanism of the electrocarboxylation with
CO, (A) and variant where the substrate loses a molecule X (B). Bottom:
Reduction potentials of Mg, Zn, and CO,. Sub = substrate. M = metal.
SHE = standard hydrogen electrode. DMF = dimethylformamide. MeCN =
acetonitrile. C = cathode, A = anode.

alkenes, is challenging but would expand the applicability of the
alkene (di)carboxylation protocol drastically. Buckley and cow-
orkers employed triethanolamine (TEOA) in combination with
Et,NI in DMF."""®> An interesting strategy can be paired
electrosynthesis, which has been demonstrated for butadiene

1
A) ! B)
1
1
H 1
co, Ph)vcoz' !
= 1
<+1e Path A FE=65% |
- 1
co,! s H0 1
%‘ (1 equiv.) 1
1
. . Hle - . 1
W COE = L A _CO; .
1
o '
u = l co, 1
Ph ™ 1
1
+1e  PathB §0or :
e 'al -
Ph)\/coZ :
Ph X FE = 89% |
C 1
1

Fig. 3

+1e

- FF
o, 4\_, X

R R .
X/*/ X/*/
or

co, \j\/coz-

1€
R - R

s 7 .
X Cco, X co,

co, co,

(A) Influence of water on the outcome of styrene carboxylation. The anodic reaction is the oxidation of a sacrificial Mg anode. (B) proposed

C
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and derivatives in MeCN by our group in the past.'*® Extrapolat-
ing this paired methodology concept to other abundant alkenes
is a most valuable option.

Cyclic adipic acids can be synthesized from unconjugated
dienes following the protocol of Yu and coworkers (Fig. 3B)."*?
Compared to 1,3-dienes, the diminished reactivity of these
unactivated alkenes (E < —3.00 V vs. SCE) requires that CO, is
cathodically activated, as confirmed by control experiments. DFT
calculations indicate that the carboxylated, secondary radical
species favors the 5-exo cyclization with a slight preference for
the cis-configuration (free energy barrier of 6.8 kcal mol ™) over
the trans-configuration (free energy barrier of 8.2 kcal mol™ "), as
also observed by experimental results, even if the trans-
configuration is thermodynamically more stable. Side reactions
like intramolecular 1,4-HAT or 6-endo cyclization involved larger
calculated kinetic barriers. Evidence for a carboxylated carbanio-
nic species was found with trapping experiments using different
electrophiles like acetone or an isocyanate. Addition of molecular
sieves was necessary to trap water and avoid hydrocarboxylation
byproducts, as outlined by Nam'** (see above). The desired
products are only obtained if Br~ or I" are used as the anion of
the conducting salt, suggesting that competitive anodic halide
oxidation plays a role in the product formation, as is also
observed for other EC protocols (see further). Greener solvents
or sacrificial anode-free alternatives were not pursued.

Finally, selective formation of trans-configured 2,3-
dicarboxylates has been achieved by Mita and coworkers in a
dearomatizing dicarboxylation of various N-, O-, or S-
heteroaromatics (entry 10)."** Based on DFT calculations and
constant potential experiments with their model compound N-
boc-indole, they found that the one-electron reduction of CO,
to its CO,*" radical anion is the preferred mechanism here,
leading after radical addition to a carboxylate intermediate at
the 2-position rather than at the 3-position. They observed that
substrates with reduction potentials between —3.0 Vand —2.3 V
(vs. SCE) all reacted well in the dicarboxylation protocol.
Substrates having a reduction potential lower than —3.0 V
possessed too high activation barriers, favoring the reverse
decarboxylation and formation of oxalate products after radi-
cal-radical coupling of two CO,*~ radical anions. On the other

co,

X =
NNy AF R

\A_COr

s

Cis: energy barrier = 6.8 kcal.mol!
AG = - 8.6 kcal.mol!

Trans: energy barrier = 8.2 kcal.mol!
AG =-10.4 kcal.mol'

mechanism of the dicarboxylation of skipped dienes. C = cathode. Adapted from ref. 122 and 123, respectively.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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hand, if the reduction potential was more positive than the CO,
reduction potential in MeCN (—2.3 V vs. SCE), the substrate
itself undergoes one-electron reduction, potentially lowering
the yield of dicarboxylation due to side reactions and decom-
position. Analogously as before, addition of four equivalents of
water resulted in monocarboxylation, due to protonation of the
C3 position in the 2-carboxylate intermediate. In a later study,
they found that addition of 1 equivalent of water is also
beneficial for the dearomatizing monocarboxylation of
electron-deficient naphthalenes with FEs up to 57% for 1,2-
dihydronaphthalene derivatives.'**

2.2 Benzylic carboxylations

Electrosynthesis of arylacetic acids, which are essential organic
synthons,"> has been primarily investigated using starting
materials that follow the mechanistic pathway in Fig. 2B
(entries 11-16)."*°"™" When using quaternary ammonium bro-
mide salts as the reactant (entry 12), the bromide anion can be
anodically oxidized, making it possible to use a non-sacrificial
Pt anode, but this also results in brominated byproducts."’
However, product formation is still observed if BF, is used as
the anion, suggesting that the trimethylamine, which is
detached after C-N cleavage in the reactant, can also undergo
anodic oxidation, as was observed by CV measurements. This
concept, by derivatizing the halide precursors in a fairly easy
preparation step to make a tetraalkylammonium halide salt, is
able to work under sacrificial anode-free conditions. However,
much like with Mg or Zn anodes, stoichiometric byproducts of
anodic oxidation are still unavoidable.

In an attempt to avoid DMF and to work in the more
anodically stable MeCN as the solvent with a non-sacrificial
anode, Mellah and coworkers reported the use of an electro-
active SmX, species which generates a coordinated CO,* "~ radical
anion (Fig. 4)."*® This way, CO, is indirectly activated, followed by
a radical substitution on the benzyl halide. This concept can
diminish byproduct formation, e.g. dimerization, if the substrate
is sensitive to direct electro-activation. After product formation,
the produced Sm(m) species is reduced back to Sm(u) to close the
catalytic cycle. However, it is not clear what the anodic reaction in
this case is; we assume it is halide oxidation since both CI and I
are present in the system. Although the concept of CO, activation
by a redox active metal salt like Sm(u) is interesting, we envision
that further improvements regarding practicality are still

R

Ar/kx X=Cl, Br
R

Sm'''X I,

Ar” " CO,H
+2e -2e

co, I

sm'X, ——— ( .Sm'X; 20

o
C  .x A

Fig. 4 Mechanism of the carboxylation of benzyl halides using a Sm(u)/
Sm(in) catalyst. C = cathode, A = anode. Adapted from ref. 138.
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necessary since a Sm rod is temporarily used as a sacrificial
anode to electrogenerate a defined amount of 20 mol% of the
Sm(u) species, after which the polarity of the electrodes is
switched to start the actual catalytic cycle. Using more common
glassy as the cathode or adding a Sm(u) or Sm() species as such
would circumvent this rather circuitous methodology, but
resulted in a large drop in product yield.

Another approach towards sacrificial anode-free conditions
is by employing a divided cell set-up. This way, the envisioned
reduction can be coupled with various electrooxidation reactions,
even in aqueous anolytes, even if this is less practical than working
in an undivided cell. Klinkova and coworkers thoroughly investi-
gated the EC of simple o-methylbenzyl bromide by examining
membrane effects, applied potential, total charge, precursor
concentration, electrolyte and temperature on the product
distribution.’*! It was found that an anion-exchange membrane
(AEM, with high proton blocking capability based on polyaromatic
structure with quaternary ammonium bromide) yielded excellent
selectivities and lowest cathode passivation. The authors suggested
a detailed reaction mechanism for all observed products in
different potential ranges accounting for both protic and aprotic
environments. In contrast with the work of Mita,'** the reduction
potential of the benzyl bromide here is more positive than that of
CO,. The product formation is dependent on the operating
potential range, involving either R°, R~ without competing CO,
reduction, or R~ with competing CO, reduction, as is summarized
in Fig. 5. It was found that the presence of H' in the catholyte is
crucial for the formation of both R-H and R-OR, since these
products were not found in experiments employing the AEM at
—0.8 V. Additionally, the concentration ratio of CO,/R-Br is an
important factor, since CO, needs to prevent fast formation of R™
from reacting with R-Br. However, at potentials <—1.5 V the
formation of CO and reaction of the CO,* "~ radical anion with R-Br
towards CO,R°®, leading to CO,R™ and ultimately to ester bypro-
ducts, need to be taken into account.

In a later CV study, a broad scope of metal cathodes were
investigated in the reductive transformation of benzylic halides
to their radicals and carbanions, which are the common inter-
mediates in the EC reaction (¢f, Fig. 2A)."** Potential zones were
identified for one- and two-electron reduction of organic
halides in MeCN, and a window could be defined in which
the electrochemical activation of CO, does not occur. The onset
potentials for benzylic halide reduction were observed to greatly
depend on the cathode material. Non-catalytic metals like Fe,
Al, Sn, Zn and Ti directly formed the benzylic halide derived
anion species due to the high energy input requirements, while
for catalytic metals like Ag, Au, Cu, Pt, Pd and in some cases Ni
and Pb, the reduction of benzylic bromides to the benzylic
anion proceeds in two distinct steps via the benzyl radical
species. This radical is formed at potentials between —0.78 V
and —1.28 V (vs. SCE) while further reduction to the anion was
observed at potentials E < —1.28 V (vs. SCE). In contrast,
reduction of benzylic chlorides directly yields the benzyl anion
without any observed radical intermediate formation, which
most likely correlates with a higher bond dissociation energy of
C-Cl bond (~300 k] mol ™" vs. ~257 kJ mol " for C-Br). It was

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Overview of the proposed mechanisms and side reactions during the carboxylation of benzyl halides at different potential ranges. (A) E; > —1.0V, (B) -15V <
E> < =10V, (C) Es < —15V. The CO,* "~ radical anion can react with CO,, followed by reductive disproportionation to CO and Cng’. Reused from ref. 141.

found that, when working in the ‘radical formation’ zone
between —0.78 V and —1.28 V (vs. SCE), no interaction with
CO, occurred and thus no carboxylic acids were formed.
Additionally, working at potentials more negative than the
CO, reduction potential resulted in formation of CO and thus
in a decrease in FE. This potential gap AE between a suitable
potential for EC and the potential where CO formation
becomes significant is cathode dependent and can be as
narrow as <0.3 V for suitable EC metals like Ag. In general,
when working at the organohalide reduction peak potentials,
the highest FEs for EC of up to 81% were observed for catalytic
metals like Au, Cu, Pb and Ag, without any contribution of CO,
reduction. When working under CO, activation conditions (E <
—1.68 V vs. SCE), the highest rates for EC are expected for Ag
and Au, followed by Cu, Pt and Pd. It might be of interest to
investigate whether electrocatalysts can aid in enlarging the
potential gap AE to perform selective EC via organohalide
reduction, thereby increasing the FE.

2.3 Aromatic carboxylations

Similar to the benzylic carboxylic acids discussed above, aromatic
carboxylic acids are key chemicals®”"***'** and recent electroche-
mical synthesis methods are summarized in Table 1, entries 17—
22."°7%% Qiu and coworkers (entry 17) employed the strategy of
indirectly activating the starting substrate by using simple
naphthalene as a catalyst, which undergoes a single electron
reduction at the cathode.* After a single electron transfer (SET)
to the substrate, the mechanism follows a similar pathway as
depicted in Fig. 2B, though involvement of CO,*~ radical anions
cannot be ruled out. Although the method is a applicable to a wide
variety of aryl halides and some alkyl bromides, a drawback is the

© 2024 The Author(s). Published by the Royal Society of Chemistry

need for a small excess of TBD (1,5,7-triazabicyclo[4.4.0]dec-5-ene)
as a sacrificial reagent; but the TBD makes it possible to employ a
cheap graphite felt anode. TBD can also act as a CO, trapping
reagent,'*® promoting the envisioned reactions.

A real breakthrough followed in 2023 where the same
research group could perform a site-selective C-H carboxylation
of various simple and polycyclic (hetero)arenes under simple and
practical conditions (entry 18)."*® The direct reduction of the
arene at the cathode is combined with an anodic oxidation of the
iodide electrolyte, generating I, which aids in the rearomatization
towards the final product (Fig. 6). This reaction protocol can be

A
| —+R
Pz
+1¢e” Path A
\ j
| R .
Pz o}
77
[ IR
Nene i )
- /
1 H™ “co,
COZ 2
121, ~
+1e  PathB N -1e
co, R I /
c COZ- A

Fig. 6 Proposed mechanism of the selective C—H carboxylation of are-
nes. C = cathode, A = anode. Adapted from ref. 146.
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Fig. 7 Proposed mechanism of the site selectivity in N-heteroarene
carboxylations. BDFEc_; = bond dissociation free energy of the indicated
C—H bond. C = cathode, A = anode. Energy values are given in kcal mol ™.
Adapted from ref. 148.

considered as a paired electrosynthesis, making it possible to use
common graphite felt electrodes as non-sacrificial electrodes.
Again, depending on the respective reduction potentials, direct
reduction of CO, to a CO,*~ radical anion cannot be ruled out for
some substrates. The regioselectivity originates from the electro-
nic properties of the substrates, where the meta-position addition
is the most kinetically favorable, as evidenced by DFT calcula-
tions on 1,3-dimethoxybenzene. Nonetheless, the faradaic effi-
ciency (<7%) should be improved for future applications.
Attempts to change the DMF solvent to MeCN or DMSO resulted
in drastic drops in product yield.

In line with these site-selective aryl C-H carboxylations, Lin
and coworkers (entries 20 and 21) reported a protocol for
various N-heteroarene substrates, with a strong focus on
2-arylpyridines.'*® Remarkably, the site selectivity was depen-
dent on the reactor type: while a divided cell produced C5
carboxylated products, an undivided cell resulted in C4 carbox-
ylations (Fig. 7). Both protocols required the addition of a
strong KO'Bu base, while optimal conditions for the C5 carbox-
ylations demanded additional Cu(OTf),, H,O and O,. Cyclic
voltammetry experiments revealed the preferential reduction of
Cu(n) to metallic Cu on the cathode, altering the electrode
surface and thus possibly enhancing the reaction rate. Inter-
estingly, using a Cu cathode without usage of Cu(OTf), reduced
the selectivity and product yield with more than 20%. Reusing
electrode materials is necessary for possible future applications
and a functional alternative for this cathode with ever changing
surface should be searched for. In addition, a sacrificial Zn
anode was used, although it could be replaced by Pt with only a
slight decrease in product yield, while obtaining unaltered
selectivity levels. Using a Pt anode requires a different anodic
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reaction, most likely the oxidation of iodide electrolyte. The
regioselectivity of the C5 carboxylation in the divided cell
originates from the intrinsic electronic properties of the radical
intermediate. DFT calculations supported a mechanism in
which the C5 position bears the highest electron density after
one-electron reduction of the model substrate 2-phenyl-
pyridine. Nucleophilic addition of the radical intermediate to
CO, is reversible and slightly endergonic by 8.9 kcal mol *
(12.3 keal mol " for C4 addition).

However, it was found that the bond dissociation free energy
(BDFE) of the C4-H bond is lower than that of the C5-H bond if
the CO, adds on those respective C-atoms. As a consequence,
the regioselectivity could be altered if a follow-up irreversible
step such as addition of a hydrogen-atom acceptor is included.
By changing to an undivided cell setup, the anodically formed
I, served as this H-atom acceptor through direct HAT or proton-
coupled electron transfer (PCET), but at the expense of lower
FEs due to unproductive reduction of I, at the cathode. This C4
carboxylation in an undivided cell follows a paired mechanistic
pathway very similar to what Qiu and coworkers found in Fig. 6,
where anodic oxidation of the iodide electrolyte aids in catho-
dic product formation.

2.4 Aliphatic carboxylations

Aliphatic carboxylic acids are more arduous targets since start-
ing materials like aliphatic halides are more difficult to be
directly reduced at the cathode. One strategy to circumvent this
issue is by using an electroactive metal catalyst. Yu and cow-
orkers employed a Ni catalyst to transform unactivated aryl and
alkyl halides to the respective carboxylic acids (entries 22 and
23),'*° whereby Ni(u) gets cathodically reduced to Ni(0) in order
to start the catalytic cycle. Subsequent oxidative addition of the
organohalide to form Ni(u), cathodic reduction to Ni(i) and
incorporation of CO, followed by a second cathodic reduction
to Ni(0) with release of the product closes the catalytic cycle.
When changing the set-up from undivided to divided, the
sacrificial Zn anode could be replaced by C while the anodic
oxidation reaction was provided by chlorination of toluene.
Aromatic substrates yielded similar results in this setup, but
the yield for aliphatic substrates dropped drastically with
maximum yields up to 45%.

The group of Manthiram successfully employed an undi-
vided cell setup to transform alkyl, benzylic and aryl halides to
the corresponding carboxylic acids (entry 24) without the use of
such a homogeneous electroactive metal catalyst.'>" Their
sacrificial-anode free method makes use of Mg(u) or Al(m) salts
to maintain the selectivity of carboxylation as outlined in the
beginning of this chapter. They elucidated a protective property
of the carboxylate products towards cathode passivation by remov-
ing electrogenerated insoluble carbonates like MgCO; from the
surface; the latter were observed to be formed using a Mg
sacrificial anode. In the presence of the protective Mg(u) cation,
the main side reaction was the formation of R-H, due to protona-
tion of R™, cathodically formed from the organic halide substrate
R-X (cf. Fig. 5). The origin of protonation was due to deprotonation
of the solvent (c¢f dicarboxylation vs. monocarboxylation as

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 (A) Molecular structures and abbreviations for solvents, where the

most acidic protons are indicated in red. (B) Correlation between the
deprotonation free energy AG,, and the carboxylation-to-hydrogenolysis
ratio CHR. Dashed line is the best linear fit with a Pearson correlation
coefficient of r = 0.92. Experimental details can be found in the corres-
ponding literature. Reused from ref. 152 (open access).

reported by Nam'** and Mita,'** see above). In a follow-up study,
this role of the solvent was examined carefully and a strong
correlation between the free energy of solvent deprotonation and
selectivity was identified (Fig. 8).">> The side reaction of hydro-
genolysis appeared to occur via solvent deprotonation rather than
hydrogen abstraction. Interestingly, the solvent choice with regard
to EC selectivity appeared to be essential for alkyl halides, while it
had a less pronounced effect with benzylic halides.

2.5 Hydroxycarboxylic acids

Hydroxycarboxylic acids are an important subclass of carboxylic
acids as they are frequently present in nature as metabolic
intermediates®®® and in pharmaceuticals, but they are also used
in pesticides and as plastic monomers.’® Their current indus-
trial synthesis often involves the transformation of an aldehyde
or epoxide with the highly toxic HCN to the corresponding a- or
B-cyanohydrins, respectively. Hydrolysis of these intermediates
yields the hydroxycarboxylic acids. To avoid this dangerous two-
step protocol, the direct incorporation of CO, in both alde-
hydes/ketones or epoxides seems a most valuable alternative
(Table 1, entries 25-29).'>*7'%8

A sustainable metal-free protocol was developed by Waldvo-
gel and coworkers who reported the sacrificial-anode free synth-
esis of ao-hydroxycarboxylic acids from aryl aldehydes and
ketones in a green propylene carbonate solvent, which out-
performed the reactions in both DMF and MeCN (Fig. 9A)."°
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Using a divided cell set-up equipped with two graphite electro-
des, yields of up to 63% were achieved. The concentration of the
electrolyte was found to be crucial, since a higher amount of
tetraalkylammonium cations resulted in higher product yields.
It is thought that they stabilize the produced carboxylate ions,
similar to what metal ions like Mg(u) tend to do. Finally, the
aprotic nature of the solvent is essential to (partially) prevent
formation of byproducts such as alcohols and dimers.

In order to work in a more practical undivided cell, an
appropriate anodic reaction should be investigated. Our research
group utilized the facile TEMPO-mediated alcohol oxidation to
transform benzylic alcohols to a-hydroxycarboxylic acids, providing
an elegant paired electrosynthesis in MeCN (Fig. 9B)."* Increasing
amounts of a protic impurity like H,O resulted in decreasing
carboxylate selectivities. However, a small amount of 0.03 M of
H,0 proved to be necessary to obtain satisfactory conversions of
the aromatic alcohol. Further investigation towards other alcoholic
or carbonyl species, especially aliphatic ones, seems to be the
logical next step.

Transformation of O-heterocycles like epoxides, oxetanes
and tetrahydrofurans to the corresponding f-, y- and o-
hydroxycarboxylic acids (entries 28-29) has been reported by
the groups of Qiu'>’ and Zhang.'’® CV measurements and
detection of oxalic acid and formic acid during isotope labeling
experiments'®® indicate that depending on the respective
reduction potentials, CO, or the substrate preferably undergo
one-electron reduction. However, since these reduction poten-
tials are close to each other, both pathways can occur simulta-
neously. Furthermore, Qiu found that the reduction potential
of their model compound styrene oxide underwent a positive
shift when Mg(u) or Al(ur) was added to the solution, suggesting
that the metal ions can serve as a Lewis acid to activate the
epoxide.”” In addition, both authors report a racemic product
mixture when starting with (R)-styrene oxide, which suggests a
benzylic radical intermediate.

Zhang and coworkers studied the mechanism more in depth
and noted that this radical intermediate rapidly reacts with CO,
to form a carboxylated radical anion. Deuterium labeling
experiments also showed the intermediacy of the a-carbanion,
most likely formed via an o-radical intermediate. They per-
formed an additional radical clock control experiment with a
similar aromatic epoxide bearing a cyclopropyl substituent at
the benzylic position. This substrate did not undergo a radical

] co. HO_ €Oy
DU T

Ar R
+1e”

Fig. 9 Proposed mechanisms of the carboxylation of aromatic aldehydes/ketones towards a-hydroxycarboxylic acids. Adapted from ref. 155 (A) and 156
(B). Cathodic product formation in B can be envisioned to be similar as in mechanism A. C = cathode, A = anode.
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Fig. 10 Proposed cathodic reaction mechanism for the carboxylation of
O-heterocycles. Adapted from ref. 157 and 158.

opening reaction under standard conditions, hinting towards a
rapid transformation of the radical carboxylated anion through
another one-electron transfer process towards a dianion. This
way, CO, functions both as a carboxylating agent and as a
promotor. Additionally, DFT calculations indicate that the
single-electron reduction of the carboxylated radical intermedi-
ate was more exothermic (26.5 keal mol™") than that of the non-
carboxylated radical intermediate (9.8 kcal mol™"). Combining
all these results, including the activation effect of the metal ion
discovered by Qiu and coworkers, they proposed the putative
reaction mechanism in Fig. 10. This mechanism is commonly
denoted as an ECEC mechanism, where two electrochemical
steps (E) are followed by a chemical step (C) towards product
formation.

Finally, some more distinctive substrates are listed in entries
30-33,"°9716% creating products with specific functionalities,
such as the gem-difluoroalkene moiety.

3. Urea

Urea is one of the most crucial chemicals worldwide and its
global production reached approximately 180 million metric
tonnes in 2022."°*'%* More than 90% is destined for fertilization
due to the high nitrogen content. Urea is also employed in
selective catalytic reduction (SCR) technology in cars and other
combustion processes in order to reduce NO, pollutants in
exhaust gases. Other uses include urea-formaldehyde resins,
explosives, energy carriers, textiles, melamine production and
pharmaceuticals. As soon as the Haber-Bosch process was estab-
lished in 1913, industrial urea synthesis involved the reaction
between NH; and CO, at elevated temperatures and pressures
(Bosch-Meiser process following the Basaroff equations, Fig. 11).
Thermodynamic limitations on the conversion per pass through
the urea reactor, a corrosive ammonium carbamate intermediate,
hydrolysis of urea and biuret formation side reactions require
specific equipment and precise design of operating and recycling
conditions."®>'® In addition, the energetically voracious Haber-
Bosch process and the immense urea production scale justify the
quest for more sustainable urea synthesis protocols, as nowadays
approximately 2% of the annual global energy consumption is
attributed to urea synthesis alone.
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2NH;(g) + CO (@) === NH,COONH, ()
AH =-117 kl.mol*at 110 atm and 160 °C

NH,COONH4, (1) NH,CONH, (1) + H,0 (1)
AH = +15.5 kl.mol* at 160-180 °C
Fig. 11 Basaroff equations to synthesize urea from NHz and COs,.

Therefore, other nitrogen sources like NO;~, NO, ™, NO and
even N, are increasingly investigated in electrochemical co-
reduction with CO, in aqueous environment. Looking more
closely to urea seems to indicate that CO, does not need to be
reduced, as the oxidation state of carbon in both CO, and urea is
+IV. However, partially reducing CO, is needed to increase
reaction rates, making it possible to perform the C-N coupling
with an activated N-species, in which process the oxidation state
of C increases again. Sluggish C-N bond formation kinetics
together with low activity and selectivity based on the reactants
are amongst the greatest challenges towards an applicable and
sustainable electrocatalytic urea formation protocol. Simulta-
neous eCO,RR and electrochemical nitrogen reduction reaction
(eNRR) should occur in close proximity of one another at the
catalyst to generate the necessary reactive intermediates in order
to form the essential new C-N bonds. Additionally, an effective
catalyst should also be able to reduce the coupling barrier
between the electrochemically formed C- and N-intermediates,
thus minimizing the formation of (incompletely reduced) bypro-
ducts from the individual eCO,RR and eNRR such as CO,
HCOOH, NO, and NH;3/NH,", while also suppressing the compe-
titive hydrogen evolution reaction (HER). An optimum in operat-
ing potential needs to be found since generally this competition
is more intense when the potential is increased below a certain
value, ultimately leading to a decrease in FE for urea.

In general, the catalysts can be a variety of transition metals
but also metals like In, Te, Ce, Bi and even non-metals like C.
Quite often, a combination of two different metals and/or
materials is used in order to exploit their synergistic effects
towards the individual eCO,RR and eNRR to effectively perform
the C-N coupling of the activated intermediates. Notably, struc-
tural modifications of the composite material have also been
demonstrated to enhance catalytic activity. Examples include
introduction of oxygen vacancies or employing nanostructures
with increased specific surface areas, such as nanoparticles
(NPs), nanotubes (NTs), nanobelts (NBs), multiholes, etc.

When comparing all reported methods, it is clear that a
plethora of intermediates have been proposed to ultimately
form urea. The combination of control experiments and various
(in situ) spectroscopic techniques, supported by DFT calcula-
tions, is able to pinpoint some crucial coupling partners and
intermediates. However, various pathways to these detected
intermediates are possible and are often not all accounted
for. In addition, when multiple N-intermediates are observed,
two different N-coupling partners can play a role, creating even
more possibilities. In order to have a clear overview in the long
list of possibilities, we present the following overview (Fig. 12).

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 12 Overview of mechanistic pathways starting from various N-sources and CO, towards urea. (A) Individual ‘N" and CO, reduction pathways. (B)
Different pathways towards urea depending on the first C—N bond formation, with a special case for *ONCONO. The asterix * means that the species is
adsorbed on the catalyst. Active species like *NH,OH and *COOH have also (rarely) been reported as coupling partners (see Table 2, entries 7 and 23).
The net result would be as if *NH, or *CO, would be used as the coupling partner, respectively.

This roadmap might serve as a guideline when computing a
theoretically optimal reaction mechanism, accounting for the
discovered intermediates via various spectroscopic techniques.
This visual tool can aid in pinpointing which pathway seems
more feasible and is ultimately energetically favorable.

The reduction of the described N-containing species to the
presumed active species all the way to *NH; (* means adsorbed
on the catalyst), is depicted in Fig. 12A. Based on all reported
protocols, it seems that *NO,, *NO and *NH, are the most
plausible N-containing coupling partners. Therefore, in order to
avoid overly complex pathways and to keep a clear overview, the
intermediates in the *NO reduction towards *NH, are considered
non-reactive towards coupling with any C-containing moiety, also
in the second C-N bond formation step. *CO,, if deemed
necessary, has a straightforward reduction pathway towards
*CO via *COOH. This combination of three active N-species
(*NO,, *NO and *NH,) with two active C-species (*CO, and
*CO), results in six possible combinations for the first C-N bond

© 2024 The Author(s). Published by the Royal Society of Chemistry

formation: *O,NCO,, *O,NCO, *ONCO,, *ONCO, *H,NCO, and
*H,NCO.

Once the first C-N bond formation occurred, multiple
reduction pathways open up, depending on the two coupling
partners. The different possibilities, ultimately leading to urea,
are closely intertwined via the ‘N’- and ‘C’-reduction pathways
and are presented in Fig. 12B. Species like *O,NCO and *ONCO,
in which the N atom is already bound to a C atom, are not able
to reduce via the *NH,O and *NH,OH pathway. Additionally, C-
N coupling with the second N-containing moiety, creating the
N-C-N backbone, needs to be taken into account. For instance,
if *NH, and *CO react to form the *H,NCO intermediate, the
only possible reaction forward is the coupling of the second N-
coupling partner, which can be *NO,, *NO or *NH,. Apart from
when *NH, is the reactive species, which creates urea directly,
the produced intermediate needs to be further reduced. How-
ever, if the first C-N bond formation step occurs between less
reduced N- and C-containing moieties towards e.g. *ONCO,

EES Catal., 2024, 2,753-779 | 763


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ey00005f

Open Access Article. Published on 16 February 2024. Downloaded on 1/29/2026 6:59:37 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Review

*O,NCO or even *O,NCO,, multiple pathways are possible: (1)
reducing the ‘C’ unit, (2) reducing the ‘N’ unit, or (3) coupling
of a second N-containing partner. A special case arises when
*ONCONO is described as an intermediate. Apart from the
complete reduction of one NO-group towards H,NCONO,
reduction towards the intermediate *NCON can also be envi-
sioned, where both NO-groups are reduced alternatingly. This
tower-like ¥NCON intermediate is well established, especially in
the case where N, is used as the N-feed (see further).

Recent electrochemical urea synthesis protocols are sum-
marized in Table 2. They are ordered along three levels: first
according to the oxidation state of the employed nitrogen
source, followed by the key first C-N bond formation step
and finally by increasing FEs. In this review, we will compare
the various urea synthesis protocols focusing on the mecha-
nistic investigations. Other reviews about this topic can be
found elsewhere.'®”"'7!

3.1 Urea production starting from nitrate

Nitrate is an enduring contaminant in industrial wastewater
and groundwater due to anthropogenic activities like industrial
discharge and fertilizer-intensive agriculture, inducing serious
environmental and health issues."””>'”* Therefore electroche-
mically transforming both nitrate and CO, to a valuable
chemical such as urea can be considered to be advantageous
from a sustainability viewpoint."”*'”> However, the overall
reduction of these two starting materials to urea involves 16
electrons and 18 protons, resulting in complex chemistry. It is
challenging to find the optimal catalyst and reaction conditions
to reach high urea selectivities and rates. Therefore, it is useful
to elucidate the formation and coupling abilities of key inter-
mediates via various spectroscopic and theoretical techniques.

Many reports argue that the coupling of *NH, (* means:
adsorbed on the catalyst), via an almost complete reduction of
NO; , with *CO towards *H,NCO is the crucial first C-N bond
formation step (Table 2, entries 1-6)."”*"%! For instance, Yu
and coworkers synthesized Zn covered Cu nanowires (Cu@Zn)
which effect an electron transfer from Zn to Cu, as demon-
strated by their different work functions (4.30 eV for Zn and
4.63 eV for Cu)."”® They calculated a more negative Gibbs free
energy for both the individual nitrate reduction and for the
coupling of *CO with *NH, to *H,NCO compared to pristine Cu
or Zn materials. Thus, the effective electron transfer from the
Zn shell to the Cu core enhances the performance towards
formation of the key intermediates and the C-N bond. DEMS
measurements showed decreased signal intensities of CO and
NH, when electroreducing the mixture CO, + NO;~ compared
to mixtures in the absence of NO;~ or CO,, respectively,
indicating the competition between eCO,RR and eNRR
(Fig. 13A). Additionally, ATR-FTIR measurements at different
potentials revealed the formation of *CO (2060 cm™") and
*COOH (1360 and 1210 cm™ ") in the individual eCO,RR, and
of *NO (1310 cm™ '), *NO, (1210 cm ™ ') and *NH, (1140 cm™ ') in
the individual eNRR (Fig. 13B)."”° For the mixture of CO, +
NO;, ATR-FTIR showed no signal of *CO, while a signal at
1420 cm™ ' appeared, characteristic for the C-N bond. Jiang and
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coworkers performed ATR-FTIR measurements as a function of
time (Fig. 13C)."®" With increasing time, two new bands of the
stretching vibrations of C-O (1101 em™') and H-N-H
(1171 em™ ") appear. More specifically, the stretching vibration
of C-N (1450 cm ') was only observed after the appearance of
the C-O and H-N-H signals, suggesting that *CO and *NH, are
indeed the coupling partners. Urea synthesis is accomplished
by reaction of *H,NCO with a second *NH, intermediate, as
indicated by an accompanying drop of free energy in theoretical
calculations when comparing the pristine materials with the
modified catalysts.

However, it might be misleading to consider *NH, as the
only active N-coupling partner when species like ¥NO, and *NO
are also detected. Li and coworkers discuss whether there is
enough experimental and theoretical evidence to support the
general claim of an *NH, intermediate and studied the involve-
ment of the N-intermediates in more detail on their AuPd
nanoalloy catalyst (Table 2, entry 7)."®> Analogously as for the
Cu@Zn catalyst, a slight electron transfer from Au to Pd was
found via XPS. The authors exploit the synergism of the metals
in this combined material where *CO is easily formed on Pd
while eNRR occurs more readily on Au. The combination of Au
with Pd was found to also reduce the coupling energy barrier
opposed to the pristine Au and Pd materials. Control experi-
ments indicate that both NO,  and NH,OH are formed before
urea and NH;, whereas using NH; or NH," did not result in
urea formation (Fig. 14). NH,OH seems to be a critical inter-
mediate for urea formation in this case. Urea is also formed
when using CO as the C-source, giving experimental indications
of *CO as the key C-coupling partner. Additionally, using CO,
resulted in higher urea formation rates compared to CO,
indicating that *CO, activated via in situ CO, reduction is more
reactive for coupling with *NH,OH.

A series of catalysts has been developed by Wang and Zhang
that perform the C-N coupling at an even earlier stage of
reduction, namely the coupling between *CO and *NO towards
*ONCO (Table 2, entries 8-12)."%7'%” For instance, Wang et al.
introduced oxygen vacancies in CeO, nanorods creating coor-
dinatively unsaturated sites that enhance adsorption of both
reactants and that stabilize N-intermediates by inhibiting their
hydrogenation to NH;."®® Later, they modified the CeO, nanor-
ods with various metals but only Cu resulted in a significant
improvement,'®* almost quadrupling the urea formation rate.
It was found that the N-O bonds in NO;™ are elongated and
that the O-C-O bond angle in CO, changes from 180° to 124.4°,
destabilizing its electron cloud. This results in strengthening of
the adsorption and activation of both CO, and NO; . They
postulate that the replacement of certain high-coordinating Ce
atoms with low-coordinating Cu induces formation of a unique
Cu-O-Ce moiety exhibiting frustrated Lewis acid-base pair
properties, a Lewis acid and base sterically prevented from
bonding, that enhance the urea synthesis. The Lewis acid site
enhances adsorption of the N-containing moiety, while the
Lewis base site does the same for the C-containing reactant.

Spectroscopic evidence of *ONCO involvement was found
due to the consistent evolution of its infrared band with the
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Fig. 13 Mechanistic investigations involving the formation of *H,NCO. (A) Online DEMS spectra of CO and NH; signals over Cu@Zn catalyst in mixtures
containing CO,, NO3~ or CO, + NO3™. (B) In situ ATR-FTIR spectra of CO,, NOs~ and mixture of CO, + NOs~ electroreduction over Cu@Zn catalyst over
different potentials. (C) In situ ATR-FTIR spectra as a function of electrolysis time for CoPc-COF@TiO, NTs catalyst and the intensity of the signals for C—
O, H-N-H and C-N stretching vibrations as a function of electrolysis time. Adapted from ref. 176 (A) and (B) and 181 (C).

evolution of the urea yield rates along the tested potential range
with the optimum at —1.6 V (Fig. 15). The appearance of the C-N
and NH, signals follows a similar increase with potential. Control
experiments using NO and NH,OH as the N-feed (¢f. work of Li, see
above), might strengthen their postulated mechanism. However,
*NO, might also be a key intermediate, since Wang confirmed a
significantly increased urea yield rate for both the multihole Cu,0'*
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and N-C-1000 catalyst,"® if NO;~ was replaced with a NO,~ feed.
Even though nitrite is more easily reduced than nitrate’’® and that a
similar supply of electrons can improve the urea yield rate, this
might also suggest that *NO, plays an important role in the reaction
pathway and that *NO, is not only further reduced to *NO.

The involvement of *NO, as a key intermediate was eluci-
dated by Li et al. (Table 2, entry 13)."%® They outline that the

© 2024 The Author(s). Published by the Royal Society of Chemistry
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No. C-source N-source Products
1 co, NO, NH,OH, NH;, Urea
2 o, NH,OH NH,, Urea
3 Cco, NH; or NH,* No Urea
4 co NO; NO,", NH,0H, NH;, Urea
5 co NO, NH,0H, NH3, Urea
6 co NH,OH NH;, Urea
7 co NH; or NH,* No Urea

Fig. 14 Control experiments for urea formation using different N- and C-
sources. Adapted from ref. 182.

applied potentials of the reported methods generally range
between —0.6 V and —1.5 V vs. RHE, which exceeds the thermo-
dynamic potential for the co-reduction of NO;~ and CO, towards
urea (0.48 V vs. RHE). Consequently, such negative potentials
increase byproduct formation from the competitive HER and the
individual eCO,RR and eNRR, reducing the urea selectivity and
FE. Utilizing a high-valence metal center can result in a more
positive reaction overpotential since it can decrease the electron
density of the adsorbed species. Li et al. combine the advantages
of WO;, which has a low *NO, formation potential, with Cu,
which has a low *CO formation potential. Their CuWO, catalyst
can achieve very high FEs of up to 70% with only an applied
potential of —0.2 V vs. RHE. Interestingly, *NO, was the only
reduced NO; ™ intermediate detected using in situ Raman spectro-
scopy at this applied potential (Fig. 16A). DEMS measurements
showed only fluctuations in the signals of CO, NH;, NO, and NO,
with the switching cycles of open circuit and working states,
confirming the involvement of *CO and *NO, (Fig. 16B). Analo-
gously to Li and coworkers,'®* the authors performed several
control reactions utilizing various C- and N-sources. Only NO,
(apart from nitrate) was capable of forming urea with either CO,
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or CO, whereas further reduced N-species, even NO, ", failed to
deliver urea (Fig. 16C).

Performing the first C-N coupling at an even earlier stage of
the urea synthesis, such as coupling of *CO, with *NO,, can
effectively reduce even the formation of HCOOH and CO
byproducts resulting in faradaic efficiencies of up to 75%
(Table 2, entries 14-18)."**"'*> The In(OH); catalyst of Yu and
coworkers showed facet-dependent activity, where the *NO,
and *CO, intermediates are preferably coupled on the {100}
facets rather than on the {110} facets."*® Remarkably, the only
byproduct observed during the co-reduction is NH;, meaning
that the C-selectivity for urea synthesis is near 100%; HCOOH
or CO are not detected. Control experiments indicate that CO,
promotes nitrate reduction with increased FE and significantly
suppresses HER, even though the individual eCO,RR, which
otherwise competes with HER, is not involved here. To further
investigate this phenomenon, the authors performed Mott-
Schottky (M-S) measurements (Fig. 17A). Under Ar atmosphere,
a positive slope in the M-S plot indicates intrinsic n-type
semiconductor behavior. When CO, is introduced, p-type semi-
conductor behavior is observed as well. In addition, the elec-
tron concentration in n-type In(OH); decreases in the CO,
atmosphere since the slope, which is inversely proportional to
the carrier concentration, increases. These results demonstrate
that a hole accumulation layer on the surface of the catalyst is
formed due to the capture of electrons by CO,, effectively
repelling protons to approach the catalyst and impeding the
HER (Fig. 17B). A similar advantageous effect of CO, in dimin-
ishing side reactions like HER and eNRR was also observed by
Zhao et al. for their PACU catalyst.'®" In addition, the electron
transfer between Cu and Pd resulted in a change of the
electronic states of the d-band centers. The PdCu nanoalloy
can provide more d-bands, favoring adsorption and activation
of the reactants, compared to monometallic Pd or Cu. Oper-
ando Raman spectroscopy'®* as a function of time and in situ
ATR-FTIR'® or SR-FTIR'>'®! spectroscopy at various poten-
tials provided experimental evidence for some intermediates
like the well-known *H,NCO, formed after consecutive ‘N’- and
‘C’-reductions of *O,NCO,.

Sargent and coworkers studied both the formation of
*0,NCO, and its further reduction in more detail."*> Initially,

5 (N-H)
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8 1 (NHz)
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5
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Fig. 15 Mechanistic investigations involving the formation of *ONCO using the Cu;-CeO; catalyst. Operando SR-FTIR spectroscopy measurements at
different potentials during electroreduction of CO, and NOz™~. Adapted from ref. 184.
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Fig. 16 Mechanistic investigations involving the formation of *O,NCO using the CuWOy, catalyst. (A) In situ Raman spectra at different potentials. (B)
Online DEMS at —0.2 V vs. RHE. (C) Control experiment with various C- and N-sources. Adapted from ref. 188 (Open Access).

they screened various metals, such as Cu, Bi, Zn, Ag and Sn,
which are known to prefer both eCO,RR and eNRR over HER.
Already decent FEs for urea of <20% were obtained. When
constructing a hybrid Zn/Cu (or Zn/Ag) material, the FE for urea
improved drastically to 50% and 75% using 100 ppm and 1000
ppm NO; ™, respectively. These results indicate that both Zn
and Cu are used for their advantageous C-N bond formation
and reducing properties, respectively. They performed in situ
infrared reflection-absorption spectroscopy (IRRAS) across a
potential range (Fig. 18A). The C-N bond in urea appears at
1417 cm ™' but diminishes at higher overpotentials due to more
competitive side reactions. The band at 1694 cm ™" is assigned
to the C—0 in *H,NCO,H, and diminishes to near zero at
—1.2 V. Additionally, the band at 1403 cm ™" followed a similar
increase-decrease trend with increasing potential and is
ascribed to OCO vibrational band of *H,NCO,. This suggests
that indeed the protonation of *H,NCO, to *H,NCO,H is a

768 | EES Catal, 2024, 2,753-779

crucial step in urea formation. Furthermore, they compared
these results with similar measurements on single-component
Zn or Cu catalysts. On Zn, the weak band for *H,NCO arises,
but no signal for *H,NCO,H is found, which suggests that the
rate-determining step on Zn is this protonation step. On the
other hand, neither signals were found on Cu, suggesting that
the initial C-N bond formation step is rate-determining here
(Fig. 18B). Additional in situ surface-enhanced Raman spectro-
scopy (SERS) measurements compared with ammonium carba-
mate + KHCO; as a reference, also indicated that Zn indeed
helps to form *H,NCO, and thus initially *O,NCO, (Fig. 18C).

3.2 Urea production starting from nitrite and nitric oxide

Using nitrite, which equally is a pollutant due to anthropogenic
ativities, as the N-coupling partner would obviously show great
similarities to the reactions with nitrate in terms of materials
and active sites. Overall, employing nitrite results in analogous

© 2024 The Author(s). Published by the Royal Society of Chemistry
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faradaic efficiencies and urea formation rates (Table 2, entries
19-23)."*"% i and coworkers characterized in depth their Co-
NiO,@GDY catalyst, which comprises in situ grown graphdyine
(GDY) on the surface of Co-Ni mixed oxides (entry 23)."*® Graph-
diyne is an upcoming carbon material consisting of sp/sp’
cohybridized carbon atoms. It exhibits uneven surface charge
distribution, uniform pores, a highly conjugated n-system and
excellent stability, making it an interesting material for applica-
tions in photocatalysis, electrocatalysis, gas separation and energy
conversion."® The synthesized superhydrophilic catalyst displays
an incomplete charge-transfer between the GDY (donor) and the
mixed metal oxide (acceptor). AFM measurements revealed the
superposition of a 1.5 nm Co-NiO, layer and a 1.8 nm GDY layer,
connected via ‘C-O-metal’ structures. The enhanced CO, uptake
ability at 298 K (3.86 em® g~') and a specific surface area of
13.7 m” g ! indicate the presence of numerous active sites. The
combination of mesoporous character and highly mixed valence
state of the material leads to performance enhancement and
ultimately to a FE for urea of 64%. Advanced operando SR-FTIR
measurements at different potentials revealed the presence *NH,.
Additionally, the intermediate *CO,NH, was faintly visible
(1200 em ™), suggesting that *NH, couples with *CO, or *COOH
to create the first C-N bond (1419 cm™").

Using nitric oxide as N-source occurs less frequently, but
Zhang and coworkers (Table 2, entry 24) note that employing

© 2024 The Author(s). Published by the Royal Society of Chemistry

NO results in a less complex reaction mechanism (¢f 16e~
reduction when using NO;).>°° Additionally, NO (or *NO) is
often postulated as an important intermediate, thus it is
reasonable to expect urea formation when working with a
NO-feed. Out of 10 commercial bulk metals, Zn foil was found
to be the best cathode material in terms of urea yield rate when
operating at a potential of —0.92 V, with Cu and Fe foil also
exhibiting relatively good activity. They argue that the high
activity of Zn is due to the inhibition of dimerization side
reactions. In order to enhance the catalytic performance, they
switched to Zn nanobelts, which results in a relatively low FE of
11.3% but at a fairly high current density of 40 mA cm™>. The
combination of DEMS, ATR-FTIR (Fig. 19A and B) and DFT
calculations reveal that *NO is reduced to *NH, (or further
towards NH3;) via the *NHO, *NHOH and *NH,OH intermedi-
ates (¢f Fig. 12A). The successful control experiment with
NH,OH as the N-feed confirmed this claim.

3.3 Urea production starting from dinitrogen

Using N, as the nitrogen source for urea production poses
obvious challenges due to the enormous dissociation energy of
the nitrogen triple bond (941 k] mol ™) and poor solubility in
water (0.02 v/v, 298 K, 1 atm).'®”"'®® However, the reaction
towards urea requires only 6 electrons, compared to 16 when
using nitrate, suggesting less complexity in the total reaction
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pathway. It is imperative that the inert N, (and CO,) are
sufficiently adsorbed on the catalytic surface in order to start
the reduction process. The reported protocols (Table 2, entries
25-33) attempt to enhance the chemisorption of both gases
(CO, and N,) on the catalyst.”*' % Temperature-dependent
desorption (TPD) measurements (amount of N,) and Brunauer-
Emmett-Teller adsorption-desorption isotherms (specific sur-
face area) are very useful tools in identifying suitable catalyst
candidates. In terms of mechanism, almost all protocols report
the formation of the intermediate *NCON after reaction
between *N, and *CO. Subsequent hydrogenation steps lead
to urea (c¢f Fig. 12B). Generally, formation of *NCON is more
favorable than reduction of *N, to an intermediate like *NNH
before the C-N coupling. Again, various spectroscopic techni-
ques, supported by DFT calculations, on the different catalyst
systems are required to confirm this. Some extensive and purely
theoretical reports modeling various catalytic systems for urea
formation are also available and can be found elsewhere.*' "7

770 | EES Catal.,, 2024, 2, 753-779

ref. 200.

Understanding how the inert N, gets adsorbed and activated
is paramount for rational design of an efficient catalyst. In
general, a donor-acceptor process is operational, where the
occupied o orbitals of N, donate electrons to the catalyst, which
in turn donates electrons to the empty m* orbitals of N,
reducing the N-N bond order. One often employed catalyst
material is Bi, due to its known CO,*'® and N,**° reduction
capabilities and its relative inertness towards protons. Guo and
coworkers modified BiO, clusters with Sb, leading to formation
of Bi(u) with unsaturated coordination rather than Bi(0) under
reductive conditions, as revealed by XAS measurements.’**?
They noticed using calculations and Raman spectroscopy that
CO, binds with its C-atom to the catalyst surface rather than via
O-mediated adsorption due to the introduction of Sb (Fig. 20A).
In the Raman spectra of pure BiO, clusters with applied
reduction potentials, an extra peak at 537 cm™ ' appeared,
corresponding to the out-of-plane swaying vibration of *OCO™
(O-bonded). This is an intermediate ultimately leading to

© 2024 The Author(s). Published by the Royal Society of Chemistry
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HCOOH formation. Using their Sb,Bi;_,O, clusters, this peak is
not observed. However, two other signals at 1046 cm ™' and
2041 cm™' emerged, indicating the stretching vibration of
*COO™ (C-bonded) and *CO.

Effective urea formation requires C-N coupling of *CO with
*N,, which is acknowledged to be a rate limiting step due to the
inertness of N,. The authors argue that the mismatch of the
symmetry between the molecular orbitals of *CO and *N, is
responsible for this arduous, yet essential C-N bond formation
step. The HOMO of *N, does not match the LUMO of *CO,
inhibiting electron injection. Calculations show that Bi(u) can
inject electrons into the LUMO of *N,, leading to a modified
HOMO now matching the symmetry of the LUMO of *CO and
C-N bond formation becomes more feasible towards the

*NCON intermediate (Fig. 20B). Thus, Bi(u) effectively decreases
the free-energy change of the C-N coupling reaction. DFT
calculations and experimental evidence for *NCON and further
reduced intermediates were not pursued.

Other Bi-containing materials are reported by Zhang and
coworkers, exploiting local charge redistributions of the hetero-
interfaces that create local electrophilic and nucleophilic
regions, responsible for the enhanced targeted adsorption of
N, and CO,, respectively.”**?°® Notably, the reduction of *CO,
to *CO is facilitated when *N, is adsorbed in close proximity
due to a lower calculated AG. The same research group also
exploited the concept of frustrated Lewis pairs to act synergis-
tically towards the targeted capture of N, and CO, (Fig. 21A).
The InOOH?®® and Niz(BO;),-150%°” catalysts under study
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Fig. 21 Mechanistic investigations regarding CO, and N, activation using the Niz(BO3),-

150 (A)=(C) and CoPc—MoS, catalyst (D). (A) Schematic

illustration of adsorption of CO, and N, on frustrated Lewis pairs. (B) Temperature-dependent inverse susceptibility 1/y plots for pristine Niz(BOs), and

Niz(BOsz),-

150 catalyst. (C) Schematic illustration of the spin-state regulation of Niz(BOs), after annealing treatment. (D) Schematic illustration of N, and

CO; activation (left) and *NCON formation (right) on the CoPc—MoS, catalyst. Adapted from ref. 207 (A)—(C) and 205 (D), respectively.
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comprise coordinatively unsaturated metal sites and neighbor-
ing surface hydroxyl groups, creating the Lewis acid and base
sites, respectively. For instance, N, donates electrons via o
orbitals to the empty d orbitals of the Lewis acid metal site,
while the lone pair electrons in the filled p orbital of the Lewis
base hydroxyl site donates electrons to the m* orbitals of N,.
This results in polarization of the N, molecule with elongation
of the chemical bond.

Additionally, these frustrated Lewis pairs aid in the C-N
bond formation step towards the crucial *NCON intermediate,
as indicated by theoretical calculations. For the Niz(BOj3),-150
catalyst (150 indicates an annealing temperature of 150 °C), this
reaction step is studied in more detail (Fig. 21B).>*” The
emergence of a newly empty e, orbital after annealing that
participates in a so-called c-orbital carbonylation to couple *N,
with *CO towards *NCON was revealed. More specifically, *N, is
now able to donate ¢ orbital electrons in this empty e, orbital of
Ni, after which *CO is capable of injecting its ¢ orbital electrons
into *N, (Fig. 21C). Without this annealing treatment, the fully
occupied e, orbitals of Ni would cause strong electrostatic
repulsion between the occupied o orbital electrons of both
*CO and *N, if they wanted to react, thus preventing their
coupling to *NCON. The presence of *NCON was also verified
by SR-FTIR where the Niz(BO;),-150 catalyst showed a signifi-
cant characteristic signal at 1449 cm™ ' that was absent in the
pristine Niz(BO;), material under identical potential condi-
tions. Overall, the combination of frustrated Lewis pairs with
low-spin Ni** sites results in one of the highest FE and urea
yield rates using CO, and N, so far reported (Table 2).

Ghorai and coworkers exploited the donor-acceptor mecha-
nism using the dual metal sites in their CoPc-MoS, catalyst
(Pc = phthalocyanine), where the CoPc is embedded on MoS,
nanosheets.”® Both Mo and Co use their empty d orbitals to
pull at a lone pair at the end of N, while filled d orbitals feed
electrons back to N, antibonding orbitals, effectively elongating
the N-N bond from 1.130 A to 1.196 A. The N, can be
envisioned to be positioned in between the CoPc and MoS,
nanosheets, anchored to both metal centers, inducing spatial
distribution of the charge and effectively polarizing and activat-
ing N, (Fig. 21D). Thermodynamically spontaneous reaction
with formed *CO again results in *NCON.

Chen and coworkers also utilized Mo, this time in combi-
nation with P (Table 2, entry 33).>°° Due to the slightly larger
electronegativity of P (2.1 vs. 1.8 for Mo), a small electron
transfer from Mo to P creates moderate coupling between
Mo-4d and P-3p orbitals. Theoretical calculations also indicated
that the 4d,. orbital of Mo is empty, while the other 4d orbitals
are occupied. These filled and empty orbitals can enable the
abovementioned donor-acceptor mechanism, where the empty
d orbitals accept electrons from both CO, and N, while the
filled d orbitals donate electrons to the anti-bonding orbitals of
CO, and N,. Again, this results in enhanced adsorption and
activation. The N-N bond is elongated to 1.20 A while the O-C-
O bond angle is significantly bent at about 47°. Theoretical
calculations suggest that *NNH is preferentially formed over
the coupling of *N, with *CO and that the coupling takes place
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between *HNNH and *CO. However, when reduction of *N, is
necessary before C-N bond formation, it might also be insight-
ful to investigate the occurrence and origin of byproducts
like NH; and hydrazine. Chen and coworkers report that the
computed limiting potential for ammonia synthesis is —0.86 V,
which is more negative that the value of —0.27 V for urea,
suggesting good selectivity for urea synthesis with an experi-
mental FE of 37%. In situ spectroscopic investigations would be
useful to strengthen the claim for this rather unusual reaction
mechanism.

4. Dimethyl carbonate

Dimethyl carbonate (DMC) is a carbonate ester of methanol
with various applications. Its high polarity enables the dissolu-
tion of high concentrations of lithium ions, making it an ideal
solvent for lithium batteries which are widely used in house-
hold portable devices and even transportation.”?° Due to the
high oxygen content and low vapor pressure it is used as a fuel
additive in order to minimize the production of soot, while it
can also aid in the reduction of CO, SO, and NO, emissions due
to its significant blending octane number.”*" Additionally,
DMC is considered environmentally friendly and can be
labelled as a green solvent; it can be used as an alternative in
industrial paint applications.*** Finally, the greenness of DMC
makes it an attractive organic building block. For instance, it is
a sustainable substitute for methyl iodide and dimethyl sulfate
in methylation reactions of various compounds like phenols,
anilines, thiols, amides and heterocyclic compounds. Addition-
ally, DMC can be used in carboxymethylation reactions, repla-
cing hazardous phosgene.””® One of the most important
applications of this reaction is the carboxymethylation of
phenol, which is used in the production of polycarbonate via
a diphenyl carbonate intermediate.?>**?*

Besides the oxidative carbonylation of methanol with a
copper catalyst and the phosgenation of methanol, the majority
of the DMC worldwide is produced by the transesterification of
ethylene or propylene carbonate, using tetravalent Lewis acidic
catalysts such as ZrCl, or Ti(acac),.”***** The cyclic ethylene or
propylene carbonate themselves are obtained from the reaction
between the corresponding epoxide with CO,.>*>?>¢ These syn-
thetic pathways have some disadvantages, due to the use of toxic
chemicals (e.g. phosgene or CO), costly processing, high tem-
perature and pressure, and the use of explosive compounds (e.g.
ethylene oxide).**® A promising and sustainable alternative is to
capture a reactive intermediate of the eCO,RR with methanol.

A lot of research concerning the direct electrochemical con-
version of CO, and methanol to DMC employs imidazolium-
based ionic liquids with a BF,” anion.>?”?*® These ILs are
preferred due to their remarkable capacity to dissolve CO,, which
surpasses that of conventional solvents, creating CO,* as the
reactive species at the cathode. The main drawback of these
systems with costly ionic liquids is that methyl iodide, a highly
toxic and carcinogenic compound, is needed as methylating
agent for the CH;0CO, intermediate. An alternative method

© 2024 The Author(s). Published by the Royal Society of Chemistry
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starts by reducing CO, to CO in situ, followed by the carbonyla-
tion of methanol. This is a redox-neutral process, as the oxidation
number of the central carbon atom remains the same before and
after the reaction, since CO,(+1IV) is first reduced to CO(+II) and
afterwards oxidized to DMC(+IV), making it necessary to couple
both half-reactions in the electrolytic cell. Additionally, using
more common solvents would be advantageous from a practical
point of view. Recent reports are summarized in Table 3.
Figueiredo and coworkers confirmed with in situ FTIR that
CO was the responsible species in the electrocarbonylation
reaction with methanol instead of CO,*” in an MeCN
solvent.?”® DMC could not be directly identified and the main
observed product was an alkyl ammonium methyl carbonate.
However, it was noticed that DMC decomposes under these
strongly reducing conditions (—1.4 V) to the same alkyl ammo-
nium methyl carbonate. They hypothesize that it is indeed
possible to synthesize DMC from methanol and CO, electro-
chemically, but it is not stable under the studied conditions.
Nam and coworkers developed a mediated pathway using
MeOH as both reactant and solvent (Table 3, entry 2).>*° Pd-
and Cu-based catalysts are known for DMC synthesis. There-
fore, Pd/C, PdBr,, Cu/C and CuBr, were screened and Pd/C
showed the best performance with a total FE of 60%. The
proposed mechanism starts with simultaneous activation of
CO, and methanol to CO and methoxide (Fig. 22A). Next, CO
and 2 methoxide ions bind to the Pd catalyst and through a
catalytic cycle, DMC is formed (Fig. 22B). This reduces the Pd(u)
to Pd(0). The employed halide mediator allows for electroche-
mical re-oxidation of the metal catalyst. All three halides proved
effective, with Br~ exhibiting the highest FE of 57%, in com-
parison to Cl™ (51%) and I — (33%). This is because I, has a
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relatively low oxidizing power compared to Cl, and Br,, and Br,
has a higher solubility in methanol compared to Cl,. Direct
oxidation of the metal catalyst was also tested by the addition of
redox inactive electrolytes (e.g. NaClO,), but this resulted in a
very low FE (8%). The high activity for halide oxidation on the
GC cathode suppresses side reactions such as metal dissolution
and the formation of dimethoxymethane through methanol
oxidation. Ag and Au were tested as cathode materials due to
their known CO selectivity in CO, electroreduction. Cyclic
voltammetry was used to determine the onset potential for
CO formation which was —1.1 V vs. Ag/Ag". Also, the optimal
current density for CO production was determined to be
12 mA ecm 2, which is the same optimal value for the produc-
tion of DMC, indicating that the production of CO is the
determining factor for DMC synthesis. Extrapolating this reac-
tion protocol to diethyl carbonate using ethanol resulted in a
moderate yield of 18%.

Zhu and coworkers were able to further improve the system.
They introduced single atom catalysts (SAC) dispersed on carbon
supports as a cathode.”®" These individual metal atoms function
as active sites due to their distinctive electronic structures and
coordination environments, features that have been extensively
proven to result in high activity and selectivity for eCO,RR.
Different variations of the catalyst were screened (Ni-free, N-free,
varying pore content) and the catalyst denoted as Ni SAs/OMMNC
was found to give the highest FE.**" This is a pentacoordinated Ni
SAC with an asymmetric charge distribution, believed to enhance
the activation of the reactants. This catalyst had a FE of 99% for
CO and a FE of 80% for DMC. Also, an overpotential of only —0.6 V
was needed, which is substantially less in comparison to previous
work and can aid in preventing DMC decomposition.>*

Table 3 Overview of recent electrochemical methods towards dimethyl carbonate

No. Catalysts Electrodes (+)/(—) Solvent Electrolyte E (vs. RHE) FE (%) Ref.
1 — Pt/Cu MeCN 0.1 M Et;NBF, -1.4V — 229
2 Pd/C and Br~ GC/Au MeOH 0.1 M NaBr -1.1V 60 230
3 Pd/C and Br~ CC/Ni SAs-OMMNC®@CC MeOH 0.1 M KBr —-0.6 V 80 231
SA = single atom. RHE = reversible hydrogen electrode. FE = faradaic efficiency.
1
A) ! B) DMC Br,
i // Pd(0) \\
CO, +2 MeOH 1
1
+2€ : o
: i Pd(I1)Br,
CO +2 MeO ™+ H,0 O.
2 ! ~pd 07
1
Pd(ll) 2Br : o
+2e° +2e” -2e : co
Pd(0) Br. :
: H MeO" o
1
[o DMC A ! BrPd)J\O/ Pd(IlBr,
co
i Y
1 MeO"
1

Br

Fig. 22 Mechanism for the Pd-catalyzed carbonylation of methanol with in situ electrogenerated CO from CO,. (A) General mechanism. (B) Detailed

Pd(0)/Pd(i) catalytic cycle. A = anode, C = cathode. Adapted from ref. 230.
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5. Conclusions and outlook

Electrochemical CO, reduction offers a sustainable tool to
produce numerous crucial products under mild and safe condi-
tions. In this review, we highlight the electrochemical valoriza-
tion of CO, towards value-added chemicals like carboxylic acids,
urea and dimethyl carbonate with focus on sustainability and
mechanistic insight. Carboxylic acids have been prepared starting
from a wide variety of organic chemicals. Important aspects for
the future that are increasingly being addressed are sacrificial-
anode free processes, more benign solvents and regio- and
chemoselective C(sp®)-H carboxylations, other than allylic and
benzylic. Also, the electrochemical asymmetric insertion of CO, is
an important upcoming field. Mechanistic investigations
revealed the importance of water for the reaction outcome.
Additionally, a suitable cathode is of utmost importance to
activate either CO, or the substrate without causing run-off
reactions. Ag seems a promising candidate for this type of
reactions. Together with the potential dependent studies
described in Section 2.2, in depth mechanistic investigations
with modern techniques such as DEMS and time-resolved elec-
tron paramagnetic resonance might elucidate paramount infor-
mation and ultimately lead to fastened discoveries and
improvements towards new catalytic systems with enhanced FEs.
Besides the need for developing appropriate operating tech-
niques for large-scale applications, the scope of starting mate-
rials should be expanded to abundant industrial chemicals to
facilitate the incorporation of eCO,RR in industry. Especially
the transformation of unbiased aliphatic alkenes is underde-
veloped. Additionally, maintaining the olefinic character dur-
ing carboxylation of these unactivated alkenes would create
much more valuable building blocks. For instance, synthesis of
acrylic acid from ethylene and methacrylic acid from propylene are
very interesting and relevant syntheses to be investigated."'%>*>
Electrochemical synthesis of urea from CO, and abundant
N-sources (NO;~, NO,™, NO and N,) offers huge sustainable
benefits over its current industrial counterpart. Being an
ongoing challenge, the reported research is greatly focused at
elucidating and characterizing a stable and efficient electro-
catalyst deposited on the cathode while also deeply investigat-
ing the mechanistic reduction pathways in order to determine
the key intermediates and their correlation with the catalyst.
Several analysis techniques are useful tools to identify the
active coupling species. Control experiments with different N-
containing feeds combined with isotope-labeled characteriza-
tion techniques and TPD measurements can give initial leads
regarding the intermediates. Advanced spectroscopic measure-
ments such as in situ Raman and ATR-FTIR/SR-FTIR spectro-
scopy measured at different potentials or as a function of time
can give valuable mechanistic insights due to the increase and
decrease of certain signals, hinting towards certain active
species. Online DEMS measurements, where one hunts for
certain m/z values of possible intermediates, can give additional
information. Our mechanistic roadmap (Fig. 12) can quickly
visualize the link between the observed intermediates and can
guide DFT calculations to support the experimental findings.
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Combined, these experimental and theoretical results lead to
an in depth understanding of the formation and stability of
intermediates that are pivotal in the rational design of an
appropriate catalyst. Experimental evidence for the second C-
N bond formation step is scarce and highly challenging but
might give valuable insights in the total urea synthesis pathway.

There is always some trade-off between FE and current
density leading to the highest urea production rate, when often
a more negative potential results in an increased ureayield rate,
but lower FE. This highlights the main obstacle, namely highly
competitive side reactions and HER, which need to be sup-
pressed. Generally, it seems from Table 2 that an early C-N
bond formation step, e.g. coupling of *CO, or *CO with *NO,,
results in higher FEs for urea up to 75%, although higher FEs
are still required for commercialization. On the other hand,
achieving a high urea production rate with unavoidable but
selective formation of useful byproducts like NH3, and thus a
relatively low FE for urea, might also be interesting for applica-
tions. Investigating and controlling the microenvironment
(electrolyte, local pH, electrical double layer, electric field
distribution, .. .) is often overlooked, but is an important aspect
regarding diffusion, adsorption, selectivity and activity of the
catalyst next to the intrinsic properties of the active sites.”**

Cu appears to be a highly promising catalyst leading to the
highest FEs when using nitrate or nitrite, while other metals
such as Mo, Co and In are also encouraging, even when work-
ing with N, (Table 2). Since two different species, i.e. CO, and
“N”, need to be activated, a dual-site catalyst is often employed
to exploit its synergistic effect,®® as extensively outlined in
Section 3. An additional advantage of incorporating a second
material can be in preventing byproduct formation, since for
instance neighbouring Cu-sites are more likely to form C-C
coupled byproducts.'®® In addition, introducing nanostruc-
tures, surface vacancies and maximizing the number of active
sites enhance the specific surface area and the catalytic perfor-
mance. Moreover, innovative conductive supports like CBC'*
and graphdiyne'®® seem to have a positive influence on urea
synthesis due to enhanced interactions. It is noteworthy that
relatively cheap and expensive metal-free catalysts generate
decent FEs and urea production rates. A cheap, simple, robust
and easily mass-produced catalyst is essential for large-scale
applications and will be an important aspect in regulating the
current mismatch of the economics between the industrial urea
synthesis and the electrochemical route.'®” The rise of artificial
intelligence and machine learning in the materials genome
initiative can accelerate the material discovery and prediction
of target materials.>**?*°

The few reports that electrochemically generate DMC from
CO, and methanol are already capable of achieving high FEs up
to 80% with some advanced catalysts.>****' However, further
research can be performed to increase the FE of the system
even more. Alternatives for the halide-assisted metal reoxida-
tion can be investigated, even towards direct metal reoxidation
at the anode.?**>*® Furthermore, a lot of electrochemical
protocols for DMC synthesis starting from CO as carbon source
have been published.*”® Additionally, the electrochemical

© 2024 The Author(s). Published by the Royal Society of Chemistry
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transformation of CO, to CO is also well established, with
electrocatalysts analogously deposited on the cathode. Combin-
ing the literature regarding these two synthetic strategies can
open new possibilities towards DMC starting from CO,. This
has the potential to reduce the usage of the toxic CO while
simultaneously increasing the utilization of CO,.

In summary, this review demonstrates the versatility and
potential of electrochemical processes in transforming CO,
into valuable compounds, contributing to both environmental
remediation and the development of economically viable
chemical pathways. Through the sustainable valorization of
CO,, electrochemistry offers a promising avenue for reducing
greenhouse gas emissions and promoting a circular carbon
economy. It is essential to address challenges such as scalabil-
ity, cost-effectiveness, practicality, sustainability and the
identification of optimal catalysts for specific reactions. As
research in this field progresses, technological innovation
and interdisciplinary collaborative efforts are imperative to
unlock the full potential of electrochemical CO, valorization
in shaping the future of sustainable chemical manufacturing.
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