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Towards non-contact pollution monitoring in
sewers with hyperspectral imaging†

P. Lechevallier, *a K. Villez, b C. Felsheimc and J. Rieckermann a

Monitoring water quality in sewers is challenging, particularly because state-of-the-art technologies require

contact with the raw wastewater. The presence of fat, oil, grease, and solids makes automated grab

sampling difficult and causes sensor fouling. To overcome these limitations, non-contact methods based

on light reflectance, such as hyperspectral imaging (HSI), are gaining attention. However, HSI has never

been tested for raw wastewater. To assess its accuracy for measuring pollution, we developed a laboratory

setup and performed targeted experiments with a combination of raw and diluted wastewater, as well as

synthetic turbidity stock solutions. We measured seven pollution variables: chemical oxygen demand,

turbidity, dissolved organic compounds, ammonium, total nitrogen, phosphate, and sulphates. We used

automated pixel selection and partial least squares regression to retrieve pollution information from the

hyperspectral images. Our results, based on 144 samples, suggest that HSI can estimate pollution levels

with a precision in the range of state-of-the-art absorbance spectrophotometric methods. Additionally, we

found that the combination of pixel and wavelength selection, enabled by the hyperspectral data structure,

significantly influences the performance of partial least square modelling. Overall, our findings indicate that

HSI is a promising technology for non-contact monitoring of water quality in raw wastewater.

1 Introduction

Emissions from urban drainage systems (UDS) cause
significant environmental pollution, including the release of
particles, microplastics, and nutrients.1 However, there is a
lack of knowledge about the occurrence and dynamics of
pollutants in UDS, partly because continuous monitoring of
raw wastewater is extremely challenging.2 Sensors and
sampling equipment that are in contact with wastewater are
difficult to manage and maintain due to exposure to grease,
fat, solids, etc.3 Non-contact water quality monitoring

techniques have the potential to address these challenges,
but research on this topic is still limited to seven peer-
reviewed publications.4–10

In a pioneering study, Russell et al., 2003 measured the
light reflection intensity of an 880 nm laser on 200
wastewater samples in the laboratory.5 They obtained
promising results for the estimation of oxygen demand
(COD) (R2 = 0.79) and suspended solids (R2 = 0.83), but the
subsequent field trials were unsatisfactory. We believe that
either the use of a laser as a light source was too restricting
for pollution measurement, or that external disturbances,
such as direct reflection from surface waves or ripples of the
moving water, were not adequately filtered out.

More than 10 years later, Agustsson et al., 2014 improved
upon the limitations of Russell's single-wavelength setup by
using a Xenon light source and a spectrophotometer (200–
1100 nm).7 They estimated COD (R2 = 0.85) and turbidity (R2

= 0.96) with slightly better accuracy using a partial least
squares (PLS) approach. However, they only used synthetic
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Water impact

Non-contact wastewater quality monitoring can revolutionize urban water management. It avoids sensor fouling and corrupted measurements by
eliminating physical contact with aggressive wastewater. Hyperspectral monitoring provides near-real-time water quality data with minimal maintenance,
enabling cost-effective analyses in sewers and remote areas. Though correlation-based, it empowers researchers, policymakers, and communities to protect
water resources, make informed decisions, and foster environmental sustainability.
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wastewater, which limits the generalizability of their results.
Additionally, the use of a spectrophotometer in real world
applications might be challenging due to its limited field of
view.11

Fortunately, these limitations can now be overcome with
the use of hyperspectral imaging (HSI) technologies. Unlike a
spectrophotometer, which measures a single absorbance
spectrum representing the total light intensity in the
ultraviolet (UV) to near infrared (NIR) range from a surface of
interest, a hyperspectral imaging (HSI) system can capture a
picture with a spectrum on each pixel. This enables the use
of advanced object classification, machine learning, and
image analysis techniques on the resulting 3D data-cube
structure.12 Recently, HSI has been used to monitor highly
polluted industrial wastewater, with promising results.10

To the best of our knowledge, the application of HSI for
monitoring the pollution of untreated municipal wastewater
has not been explored. In this proof-of-concept study, we aim
to assess its potential for high-frequent, precise, and non-
contact monitoring of raw urban sewerage. Therefore, we
developed a laboratory setup to acquire hyperspectral images
of mixtures of real wastewater samples and a synthetic
turbidity standard. Our results demonstrate that the use of
HSI for pollution monitoring is promising, even if the
method is correlation-based. This paper finally discusses the
potential for improvements and outstanding questions
regarding real-world applications.

2 Material and methods

In this study, hyperspectral images of 144 different mixtures
of untreated municipal wastewater with known pollution
concentrations were acquired. Data-driven models were
trained and validated to retrieve pollution estimations from
the hyperspectral data.

2.1 Experimental setup for hyperspectral data acquisition

Hyperspectral imaging system. The MV.X hyperspectral
imaging system from Headwall Photonics was used to
perform the measurements (MV.X, Headwall Photonics,
Bolton, U.S.). This is a push-broom camera using a line scan
to measure hyperspectral data-cubes. Unlike snap-shot
cameras, which capture a data-cube in a single snap, push-
broom cameras are designed to monitor moving material
with a high spectral resolution.13

The MV.X hyperspectral imaging system is water-resistant
(rated IP66 and IP67), therefore suitable to remotely measure
the reflectance of wastewater. It measures 300 spectral bands
with a 2 nm spectral resolution in the visible and near
infrared (VNIR) range between 400 nm and 1000 nm across a
line of 1020 spatial pixels. The temporal resolution ranges
from milliseconds to seconds, depending on the lighting
conditions and the reflection properties of the object being
measured. Additionally, the MV.X is equipped with an
embedded processor for fast data processing, allowing for
continuous spectral analysis in near-real time.

Image acquisition setup. The laboratory setup for the
hyperspectral acquisitions was inspired by previous works.7,10,14

A volume of 200 mL of each sample was placed in a 7.8 cm
diameter high-density polyethylene cup. A black cup was used to
minimize the reflection from the bottom and walls of the cup.
The measurements were performed in a dark room to eliminate
external light interferences. A 50 W Philipp's halogen light was
used to illuminate the sample since it covers the VNIR spectral
range. The exposure time of the MV.X was set to 200 ms to
collect enough light. The camera was placed above the sample at
a height of 35 cm, while the light was positioned at a height of
30 cm with an angle of 16°, to maximize the lighting of the area
of interest and minimize direct reflection from surface ripples.
In this configuration, the scanned line of the imager was
centered on the middle of the cup and covered approximately 10
cm. The wastewater was mixed with a magnetic stirrer so that,
firstly, the capture area in front of the scanning line of the
camera rotates, and secondly, to avoid the settling of suspended
solids. Details of the setup are presented in the ESI† (SI A).

Collection of black and white references for the optical
calibration of the camera. Before performing the sample HSI
measurement, it was necessary to collect a black and a white
optical reference. While the black reference accounts for the
camera noise, the white reference compensates for the setup-
specific lighting conditions. We used a Zenith Lite™/
Greyscale Coating Ultralight Target with 95% reflectance
because we found that it ensured better calibration than a
normally used white target due to its closer colour similarity
with the samples studied. For these experiments, the lighting
conditions were constant, so the white reference was only
measured once at the beginning.

2.2 Description of the hyperspectral data-cube structure

Each hyperspectral data-cube is composed of a series of 10
cm wide lines. Each line is measured as a series of 1020
pixels, and each pixel contains a reflectance spectrum
corresponding to 300 wavelength bands. The camera takes a
measurement of each line every 200 ms for a duration of 10
s, resulting in 51 lines for a single water sample.

A pseudo red-blue-green (RGB) visualization of a data-cube
is shown in Fig. 1, with different pixels represented by their
spectra. The area of interest, corresponding to the wastewater
surface, is represented by the dark pixels. The areas at the
border of the cup and in the middle of the cup (due to the
magnetic stirrer) have very different spectral signatures and
can be easily removed during pre-processing.

2.3 Wastewater sample collection, mixture preparation, and
image acquisition

For this first laboratory proof-of-concept experiment, we
acquired hyperspectral data-cubes of 144 samples obtained
from mixtures of real wastewater from a trunk sewer at Eawag
(Dübendorf, Switzerland), synthetic wastewater, and tap water.

For the purpose of conducting a first study on the use of
HSI for pollution measurement, we consider this dataset
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sufficient. The mixture generation protocol, despite imposing
limitations on the interpretability of the results (discussed in
3.5), made it possible to generate a wide variety of different
samples while limiting the amount of laboratory reference
measurement.

Wastewater mixture preparation and image collection. We
collected 8 raw wastewater samples at different times over two
days (26/07/22 – 10:00, 11:30, 13:00, 14:30, 16:00, 17:30; 27/07/22
– 6:00, 7:30 CEST) to capture the daily changes in wastewater
composition. The sample volume was 1 L to have sufficient
water for mixture generation and reference measurements. To
generate more mixtures from those 8 samples, we combined
them together and with formazine, a turbidity calibration
standard of 4000 NTU (Sigma Aldrich), as done by Agustsson
et al., 2014.7 Formazine is an organic nitrogenous compound
(C17H13N503), and therefore not only increases turbidity, but
also COD, dissolved organic carbon (DOC) and total dissolved
nitrogen (TDN), making it possible to create more variability in
the sample composition, while remaining within in sewer-
typical pollution ranges.

The mixing procedure followed four steps, with
hyperspectral data being collected after each one (Fig. 2). The

first step consisted of mixing two 100 mL samples from the
eight raw wastewaters samples. The second and third step
consisted of adding 5 mL of formazine, increasing the turbidity
with steps of 96.6NTU and 95.2NTU. Finally, the third mixtures
were diluted twice with tap water. Starting with 8 raw
wastewater samples, a maximum of 36 combinations were
obtained after the first mixing step. Therefore, 144 (36 × 4)
different data-cubes could be captured following this procedure.

Reference water quality variables measurements. We
measured seven water quality variables for each of the eight raw
wastewater samples: COD, turbidity, DOC, TDN, phosphate (PO4–

P), sulphates (SO4–S) and ammonium (NH4–N). As 800 mL of raw
wastewater from the collected volume (1 L in total) was necessary
for mixture generation, the remaining 200 mL were used for
laboratory analysis. Except for turbidity measurements, Chromafil
GF/PET 0.45 μm filtration was used to condition the samples.
Table 1 summarizes the measurement method, instrumentation,
and accuracy for each water quality variable from the
manufacturer's data for the specific measurement range.

Collecting the 144 data-cubes lasted about 9 hours. In our
experience, the organic pollution of the wastewater used in this
study degrades at a rate of about 10% each day due to biological
activity. To account for this, reference pollution measurements
were performed before (08:00) and after (17:00) full data
acquisition, and the average of both measurements was used as
ground truth. Because of the known mixing proportions for the
144 mixtures, we were able to calculate their pollution. An
overview of the pollution characteristics of the mixtures is
presented in SI B.†

2.4 Chemometric modelling of wastewater pollution

To retrieve wastewater pollution from the hyperspectral data-
cubes, a two-step procedure was developed and applied (Fig. 3).

Fig. 1 Top: typical data-cubes (normalized) with pseudo-RGB colouring corresponding to 380 nm, 500 nm, and 900 nm. One line consists of
1020 pixels, which have a spatial resolution of about 0.1 mm. The image consists of 51 lines collected in 10 seconds. Each image's pixel contains a
spectrum ranging from 400 to 1000 nm. Bottom: the spectral dimension is visualized to show the differences between various image areas.

Fig. 2 Schematic overview of the 7 steps necessary for the generation
of 4 different mixtures and the capture of 4 data-cubes, starting with a
1 : 1 mixture of 2 wastewater samples (step 0).

Environmental Science: Water Research & TechnologyPaper
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2.4.1 Step 1: data-cubes pre-processing and spectra
extraction. In the first step, we extracted a single spectrum
from each data-cube to represent the wastewater surface.
This dimensionality reduction was necessary to apply PLS
modelling. The spectra extraction was done in five sub-steps,
inspired by previous work.15,16 All the mathematical
equations used for this section, as well as a visualization of
the data-cube transformation, are provided in SI C.†

Substep 1.1 – conversion to reflectance. The raw images
were converted by subtracting the camera noise (dark
reference) and dividing by the reflection of the calibration
target (white reference).

Substep 1.2 – data-cube re-framing. The data-cubes were
cropped (i) to remove border wavelengths showing high noise
(400–418 nm and 982–1000 nm), (ii) to remove some sample
lines (lines 46 and above) in order to ensure that all the data-
cubes have the same dimension, and (iii) to remove pixels
that do not represent the water surface (pixels 1 to 110 and
861 to 1020).

Substep 1.3. – pixel selection. A threshold method was used
to filter out the outlier pixels not corresponding to the
wastewater surface (as highlighted in Fig. 1). Specifically, we
created and applied a 2D mask that excludes the lowest and
highest 20% of the light reflection intensity values.

Substep 1.4. – extraction of the mean reflectance spectra. The
remaining 60% of the pixels were used to calculate the mean
and standard deviation of the wastewater reflectance for
every wavelength. For all samples and all wavelengths, the
obtained standard deviation was below 10% of the mean
value, which was a satisfactory criteria to consider this
method as reliable. The mean values obtained at every
wavelength for a single sample were considered as a
spectrum representative of the wastewater surface.

Substep 1.5. – spectra pre-processing. Each spectrum was
further processed by applying (i) a Savitzky–Golay filter with a
window size of 17 and a polynomial order of 2,17 and (ii) a
logarithmic transformation. This pre-processing was found to
be leading to optimal PLS model performance in step 2.

2.4.2 Step 2: partial least squares parameter optimization
and model evaluation. In a preliminary series of tests, we
tried regression approaches such as linear regression,
support vector regression, PLS, and random forest regression.
We concluded that PLS is the most promising, being a simple
and well-established approach for dealing with high
dimensional data in the field of wastewater
spectrophotometry.18 In this work, we optimized two types of
PLS model parameters for each of the seven pollution
variables. First, the number of latent variables – the number
of components to which the input features are decomposed –

was investigated between 1 and 20. Second, the number of
wavelengths used as model input was optimized to assure
linearity of the response variable to the variable of interest,19

and to avoid overfitting, which is frequent with spectra
containing hundreds of highly correlated frequencies.20 We
used the iterative stepwise elimination (ISE-PLS) method
described by Wang et al., 2017,21 which is based on the one-
by-one removal of the wavelength with the lowest regression
coefficient weight. We applied cross validation to estimate
the predictive performance. The mathematical formulas are
presented in SI D.†

Substep 2.1 – classification of the wavelengths. To perform
the ISE-PLS, it was first necessary to classify the wavelengths,
i.e., the model features, by absolute regression coefficient.
For each number of latent variables and each pollution
variable, a PLS model was fitted with all the wavelengths to
retrieve the wavelength classification. This approach was
applicable without input normalization, as the features were
already normalized in step 1.1.

Table 1 Information on the laboratory measurement methods used to determine the reference concentrations of wastewater pollution in the 144
mixtures

Water quality
variable Measurement method Instrument Accuracy

COD Cuvette test Hach LCK-314 3 mg L−1

PO4–P, SO4–S Ion-chromatography: DIN EN ISO 10304-1, 2009 Metrohm 930 Compact IC Flex <0.1 mg L−1

NH4–N Flow injection analysis: standard method 4500-NH3,
EPA 600/4-79-020, 1983

Lachat QC8500 0.2 mg L−1

Turbidity Turbidimeter: DIN EN ISO 7027-1, 2016 Hach TL2300 2%
DOC TOC analyzer: DIN EN ISO 20236, 2023 Shimadzu TOC-L CSH 0.5 mg L−1

TDN TOC analyzer: DIN EN ISO 20236, 2023 Shimadzu TOC-L CSH 0.4 mg L−1

Fig. 3 Overview of the processing steps to retrieve wastewater
pollution from the data-cubes.
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Substep 2.2 – optimization of the PLS. The optimization was
performed by calculating the performance of each PLS model
based on a combination of latent variable number and of
discarded wavelength number from the wavelength
classification obtained in the previous step. The PLS model
performance was measured with the root mean squared error
(RMSE) between the reference pollution values and the
predictions obtained with leave-one-out cross-validation
(LOOCV).

Substep 2.3 – detailed optimal model evaluation. Once the
optimal combination was found, we calculated not only the
RMSE of the model but additionally the determination
coefficient R2 and the relative RMSE to better compare
different model performance indicators. The relative RMSE is
useful to compare the performance of each model. Table 2
shows previously defined scale rate model performances in
the field of wastewater UV-vis spectrophotometry.22

2.5 Numerical experiment to quantify the impact of pixel and
wavelength selection on the partial least squares model
quality

Due to the multi-dimensionality of the hyperspectral data-
cubes, the modelling methods described above rely on (i) a
pixel selection for the extraction of a wastewater
representative spectrum from the hyperspectral acquisition
(Substep 1.3) and (ii) a wavelength selection to select
wavelengths that carry relevant information for a given
pollution variable (Substeps 2.1 and 2.2). To quantify their
respective impacts, we conducted three additional numerical
experiments:

1. A PLS model was optimized without pixel selection and
without wavelength selection.

2. A PLS model was optimized without pixel selection but
with wavelength selection.

3. A PLS model was optimized with pixel selection but
without wavelength selection.

A comparison between these three models' performances
and the result of the previous section was conducted in terms
of RMSE for each pollution variable.

3 Results and discussion
3.1 Exploratory analysis of raw reflectance spectra and the
effect of turbidity

Fig. 4 (left) shows the 144 raw reflectance spectra extracted
from the data-cubes. All spectra have a similar shape, with
moderate peaks or bumps at specific wavelengths, such as

around 470 nm, 770 nm, and 820 nm. Each of the four
mixture types, as defined in Fig. 2, has a distinct spectral
signature, which indicates that the use of formazine
influences the spectral shape by increasing the light
reflection more for shorter wavelengths.

Turbidity is linearly (R2 = 0.96, see SI E†) related to the
mean reflection intensity of each spectrum, as highlighted in
Fig. 4 (right). This linear relationship is only true for
turbidity, which is expected because the number of
suspended particles determines how much light is reflected.
Interestingly, the variance of the reflection intensity also
increases with turbidity concentration, indicating that
specific methods such as weighted regression models might
even provide better estimation than the linear model.23 We
will discuss the practical implications of this relationship
between turbidity and light reflection in section 3.3.1.

3.2 Overview of the model's performance and parameters for
water quality prediction

The water quality predictions of the PLS model are
presented in Fig. 5. For all water quality variables except
SO4–S, the prediction and laboratory values match each
other well (R2 > 0.9).

The model's performances and parameters are
summarized in Table 3. The optimal number of latent
variables is between 12 and 20 (the maximum tested values).
This is consistent with the experimental design, as at least 10
latent variables were needed to explain the variability of the
mixtures (see 2.3). Sample degradation may also have
contributed to increased sample variability. In addition, by
using wavelength selection (Steps 2.1 and 2.2), the 280 initial
wavelengths could be reduced to 21–44%. Nevertheless, 82%
of wavelengths are still used in at least one of the models. An
overview of the selected wavelengths for each variable is
shown in Fig. 6. The wavelength in the visible range (400–750
nm) plays a predominant role for every variable except COD,
where wavelengths above 650 nm are more important.

The overall good performance of the modelling approach is
reflected in the low RMSE. All the pollution variables are

Table 2 Performance rating depending on the relative RMSE, as defined
by Brito et al., 2014 (ref. 22)

RMSErelative Performance rating

<5% Very good
5–10% Good
10–20% Satisfactory
>20% Unsatisfactory

Fig. 4 Left: overview of the 144 raw wastewater reflectance spectra
extracted from the hyperspectral data-cubes (after step 1.4, see Fig. 3).
Right: linear relationship between turbidity and mean reflectance
intensity.
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estimated with a relative RMSE of about 10%, which is
considered good to satisfactory in wastewater
spectrophotometry (Table 2). A similar study with a UV-vis

probe in sewers obtained similar results for COD, ammonium,
sulphate and phosphate.24 Even if turbidity, DOC, and TDN
were not included in this other study, our results suggest that
HSI performance in this specific monitoring setup is
comparable to that of immersed spectrophotometric probes to
measure pollutant concentrations.

3.3 Discussion of the results for each pollution variable

3.3.1 Turbidity is the most promising variable due to its
direct link with light reflection intensity. Turbidity is linearly
associated with light reflection intensity, as seen in Fig. 4b.
Based on this linear relationship, turbidity may be estimated
with an RMSE of 12.6 NTU (see SI E†), which is comparable
to the best PLS model (11.0 NTU). This explains why the PLS
model is not significantly improved by wavelength selection
(13.9%) or pixel selection (5.4%).

Analysis of the selected wavelengths shows that wavelengths
between 400 and 600 nm are the most important. This supports
the results of other studies that found that the visible range is
significant for turbidity measurement.25,26 Interestingly,
accurate turbidity measurements were obtained from laboratory
experiments using a standard RGB camera.27,28 Similarly, when
we only use the three RGB wavelengths as input into a PLS
model, we obtain good predictions for turbidity prediction
(RMSE: 12.2 NTU; see SI E†). We plan to investigate this in
future work since our results indicate that turbidity might be
quantified well using a low-cost camera.

3.3.2 Total nitrogen and ammonium appear to have a
specific influence on the reflectance. The high sensitivity of
TDN and NH4–N to the selected wavelengths and pixels (45.6–
48%, respectively) suggests that their estimation relies heavily
on the specific extraction of information from the reflectance
spectra. TDN is mainly composed of ammonium, but also
includes other forms of nitrogen, such as nitrite, nitrate, and
organically-bound nitrogen. Ammonium cannot be directly
measured with UV-vis spectrophotometry,25 and nitrite and
nitrate were not detected in the wastewater samples
(concentration below the detection limit of 0.4 mg L−1). This
may indicate that organically bound nitrogen has a strong
influence on the reflectance spectra, and that the good
estimation of NH4–N is at least partly due to its correlation with
TDN (ρ = 0.84). This is also reinforced by the fact that similar
wavelengths are selected for both ammonium and TDN.

The addition of formazine (C17H13N503) has an impact on
the concentration of organically bound nitrogen, and
therefore the mixtures with formazine have a different
ammonium–TDN ration than typical wastewaters. This did
not prevent the PLS model from estimating them accurately,
which reinforces the possibility that specific and different
features of the reflectance spectra are informative for the
estimation of ammonium and TDN. When training a model
with the 36 mixtures containing only raw wastewater (analysis
presented in SI F†), both ammonium and total dissolved
nitrogen are estimated with a precision below 3% (R2 = 0.97),
which implies that the use of formazine might even worsen

Fig. 5 Overview of the PLS regression LOOCV results for each
pollution variable. A high R2 value (close to 1) and a low RMSE,
arguably, describe a good predictive performance of the PLS model.
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the accuracy of nitrogen compound estimation. Nevertheless,
further analysis with more samples is necessary to investigate
this.

3.3.3 Organic pollution, phosphate, sulphate, and
discussion about the role of UV light. Organic compounds
are known to absorb UV light but not VNIR light.26 However,
similar to other studies using VNIR reflectance spectra, the
model could still estimate COD and DOC with satisfactory
precision, likely resulting partly from their strong correlation
with suspended solids (ρ = 0.58 and 0.7).8,10 Carreres-Prieto
et al. (2020) brought supplementary evidence to this, showing
that independently of the region of the visible spectra used
for COD estimation, genetic algorithm models are
performing well.29 Similarly, we observe in Fig. 6 that COD
and DOC model optimization selected very different
wavelengths, which might indicate that the estimation of
organic carbon is not based on specific areas of the spectra.

Despite a low RMSE, Fig. 5 shows that, contrary to the
other variables, SO4–S estimations are not reliable. Finally,

PO4–P is estimated with a similar precision as NH4–N and
TDN. Phosphate and ammonium were initially very well
correlated (ρ = 0.95). The selected wavelengths are also
similar. However, a big difference is that the optimal PO4–P
model uses fewer latent variables12 and wavelengths (60).
We could not find any satisfactory explanation for those
observations yet.

3.4 Result of the numerical experiment to quantify the
benefit of hyperspectral imaging and discussion of further
advantages

HSI makes non-contact measurement of a wide range of
pollutants possible. The unique HSI data-structure allows for
the selection of informative pixels within the field of view,
combined with wavelength selection. The results of the
numerical experiment to quantify their impact are presented
in Table 4.

Table 3 Performance of the PLS model trained with the full dataset. The high R2, low RMSE, and comparably low MAPE suggest a good performance
of non-contact wastewater quality monitoring

Water quality
variable Unit Min Max

Optimal number
of latent variables

Optimal number
of wave-lengths R2 RMSE

RMSE
(relative)

COD mg L−1 91.2 379.0 19 77 0.88 23.7 10.5%
Turbidity NTU 21.6 267.3 18 82 0.97 11.1 7.6%
DOC mg L−1 45.1 302.9 13 96 0.85 16.0 14.9%
TDN mg L−1 13.5 44.6 17 123 0.94 1.9 6.6%
PO4–P mg L−1 0.8 5.0 12 60 0.91 0.2 9.8%
SO4–S mg L−1 27.8 74.7 18 122 0.84 5.5 10.4%
NH4–N mg L−1 5.4 26.6 20 94 0.93 1.4 7.9%

Fig. 6 Number of selected wavelengths (left, in brackets), PLS weights (dots), and selected wavelengths (grey vertical lines) for each pollution
variable. Some patterns are recognizable, but their interpretability is limited (see 3.6).
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The improvements after wavelength selection (8.9–17.4%)
are lower than those achieved by pixel selection (5.4–38.9%).
As expected, combining both results in the largest
improvement (13.1–48.0%, 32% on average). So, this
numerical experiment highlights the advantage of HSI for
pollution measurement over other measurement techniques
with lower spectral and spatial resolution. We believe this to
be crucial for UDS application as surface perturbations,
including foam, ripples, or floating objects, are ubiquitous in
sewer infrastructures and will cause a large number of
anomalies.

In addition to the benefits of enabling contactless
pollution measurement, HSI has a sampling dimension of
several decimetrers, which is on the same spatial scale as the
grab samples collected as ground truth. Compared to state-
of-the-art submerged spectrophotometers, which operate with
an optical window of a few millimeters, we expect that the
estimation of pollution is less sensitive to disturbances from
wastewater variability and sampling artefacts, such as the
position of the sensor in the sewer cross section.

Finally, another advantage of HSI is the potential to
extract hydrodynamic information from the hyperspectral
data-cubes. Current imaging technology can detect the water
level in sewer videos,30,31 measure the water flow32 and detect
fat layer accumulation.33 To what extent hyperspectral
information could improve this, e.g., by better distinguishing
pipe material from water surfaces or by facilitating superior
particle-image-velocimetry, should be investigated in future
studies.

3.5 Limitations of the experimental design to generalize the
results

We identified two major limitations. First, despite collecting
HSI data from 144 different mixtures, the pollution variability
is low compared to real-world sewage because the mixtures
are prepared with a smaller number of initial samples (i.e.,
8). This was motivated by the desire to create a simple
experimental design to serve as a proof-of-concept for the use
of HSI for pollution measurement. Another drawback of this

protocol is that the data collection lasted nine hours. During
this time, organic compounds in the samples were slightly
degraded, which probably changed the wastewater matrix.
For future work, continuous cooling of the samples could
help stabilize the wastewaters since the organic degradation
rate increases with temperature.

Second, as highlighted in 3.1 and 3.3.2, the use of
formazine has a significant impact on both the spectral
reflectance and on the correlation between water quality
variables. This limits the generalization of the PLS results
and of the wavelength analysis for the real wastewater matrix.
To draw conclusions on data without synthetic stock
solutions, we tested the modelling approach with 36 of the
144 mixtures without formazine (see SI D†), and obtained
similar results as with the 144 mixtures. This is encouraging,
but the number of samples is too small to draw reliable
conclusions.36

Ultimately, investigating more samples of real wastewater,
without synthetic mixtures, will produce more reliable
results. We are now planning to collect data over an open
channel for several months to critically evaluate the HSI
performance in real-world conditions.

3.6 Potential improvement of the chemometric pollution
modelling

We deliberately used standard approaches to retrieve
pollution from observed spectra because we believe that the
regression results are more influenced by the raw data quality
than by the methodological approach to data-driven
modelling. Nevertheless, for future studies, we identified two
potential areas for improvement.

First, alternative approaches for wavelength selection can
improve the interpretability of the results. Because PLS is
based on a reduction of the spectral dimension in the
direction of minimal covariance with the targeted pollution
variables, PLS weights are not easy to interpret physically.34

In the future, LASSO regression35 seems particularly
promising to analyse the more representative wavelengths
since this model is designed to discard features of low

Table 4 Quantification of the improvement in the RMSE of the PLS model by applying pixel and wavelength selection. Using both methods substantially
improves the accuracy, with up to a 46.4% decrease in the RMSE

Pixel
selection

Wavelength
selection

COD
[mg L−1]

Turbidity
[NTU]

DOC
[mg L−1]

TDN
[mg L−1]

PO4–P
[mg L−1]

SO4–S
[mg L−1]

NH4–N
[mg L−1]

No No RMSE 29.8 12.8 22.5 3.6 0.4 8.3 2.7

No Yes RMSE 27.1 11.0 19.9 3.1 0.4 7.2 2.3
% of improvementa 8.9 13.9 11.4 14.8 10.8 12.7 17.4

Yes No RMSE 26.1 12.1 17.0 2.3 0.3 6.3 1.7
% of improvementa 12.3 5.4 24.5 37.4 26.0 23.6 38.9

Yes Yes RMSE 23.8 11.1 16.0 2.0 0.3 5.6 1.4
% of improvementa 20.2 13.1 29.0 45.6 34.9 32.9 48.0

a Compared to the RMSE without optimization.
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importance. Other potential methods, such as principal
component analysis and the random frog algorithm for
variable selection, might also be explored.26

Second, a nested cross-validation procedure suited to the
specific data-structure may improve the interpretability of the
results. We used LOOCV to minimize the bias from the splitting
of the data into a training and a testing set in the model
performance estimation.36 However, because each model is
trained with all the spectra but one, this procedure can
overestimate performance due to data leakage, i.e., the transfer
of information about the testing set into the training set. This is
particularly relevant when considering that the 144 mixtures are
not independent but obtained after mixing a smaller number of
raw samples (see 2.3). A nested cross-validation based on the
exclusion of all the mixtures containing a specific raw
wastewater from the testing set can solve this concern.37

3.7 Knowledge gaps to consider for future sewer application

It was not within the scope of this proof-of-concept study to
quantify the influence of light position and light intensity.
Stronger lighting could enable positioning the light at a lower
angle, which could maximize the amount of diffuse light
reflection containing spectral information about the sample
composition. This could also reduce the acquisition time for
the camera, allowing for a more precise pixel selection by
increasing the line acquisition frequency.

In UDS, HSI calibration will require more consideration
because measurement conditions are not as stable as in
controlled laboratory environments. Nonetheless, HSI
systems are already widely used for more challenging
monitoring tasks, such as the mapping of vegetation in
daylight. Therefore, such UDS-specific conditions can be
compensated for by selecting specifically stable monitoring
sites or by including other sensors, such as a light detector,
to control the environment.

On a more general level, it is important to understand the
influence of light and camera position relative to the
wastewater surface in the HSI measurement because water
level and flow vary in sewers. In the future, it may be valuable
to develop process-based models that can quantify light
reflection in very turbid and variable media, such as
wastewater, to account for those UDS variations. Possible
approaches could include adapting well-established models
such as a sea reflection model,38 the Kubelka–Munk theory,39

or using Monte Carlo simulation.40

Finally, other experimental challenges must be addressed
before installing hyperspectral cameras and halogen light
sources for routine measurements in UDS. For instance,
humidity, aerosols, and a changing sewer atmosphere could
cause systematic errors through altered light propagation
properties. One possible solution to this problem is on-line
calibration with multiple light sources or varying light
intensities. Additionally, condensation or splashing water
could cause fouling of the camera, so a cleaning system may
be necessary.

4 Conclusions

In this study, we investigated a non-contact hyperspectral
imager as a novel system to measure wastewater pollution.
Based on the satisfactory experimental results and on
theoretical as well as practical considerations, we draw the
following conclusions:

• By combining pixel and wavelength selection with PLS
regression, one can accurately estimate pollutant
concentrations (relative RMSE below 10%) for four of seven
water quality indicators of interest: turbidity, TDN, NH4–N,
and PO4–P. Aggregate organic constituents (COD, DOC) were
also predicted with a relative RMSE below 15%, which is
considered satisfactory.

• The reported accuracies are best for turbidity (7.6%) and
TDN (6.6%). We showed that turbidity is directly linked to
light reflection intensity, independently of the wavelength.
For TDN, we hypothesize that the measurement is made
possible by the detection of organically bound nitrogen, but
additional research is needed to confirm this.

• Using a hyperspectral imager has several advantages
over other imaging techniques with lower spatial or spectral
resolution. The water quality predictions were, on average,
32% more precise when using a pixel and a wavelength
selection. Furthermore, the benefits of pixel selection might
be even greater in real-world applications where many
disturbances must be filtered out.

• Our results support historical findings that proposed
non-contact imaging technologies based on reflectance
spectrophotometry for raw wastewater monitoring in sewers.
The hyperspectral imaging system (HSI) deployed in this
work brings this promise closer to reality due to being able to
circumvent the negative effects of disturbances in the water
surface, such as foam, ripples, etc.

List of abbreviations

COD Chemical oxygen demand
DOC Dissolved organic carbon
HSI Hyperspectral imaging
ISE-PLS Iterative stepwise elimination – partial least squares
LOOCV Leave-one-out cross validation
MAPE Mean absolute percentage error
NH4-N Ammonium
NIR Near infrared
NTU Nephelometric turbidity unit
PLS Partial least squares
PO4–P Phosphate
RMSE Root mean square error
RGB Red blue green
SI Supplementary information
SO4–S Sulfate
TDN Total dissolved nitrogen
UDS Urban drainage system
UV Ultraviolet
VNIR Visible near infrared
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Custom Python scripts were developed for this research paper
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