Colloidal stabilization of hydrophobic InSe 2D nanosheets in a model environmental aqueous solution and their impact on *Shewanella oneidensis* MR-1†

Shreyasi Sengupta, Swapnil B. Ambade, Tana L. O’Keefe, Falak Tawakalna, Jenny K. Hedlund Orbeck, Robert J. Hamers, Christy L. Haynes and Zeev Rosenzweig

Semiconductor InSe 2D nanomaterials have emerged as potential photosensitive materials for broadly distributed photodetectors and wearable electronics technologies due to their high photoresponsivity and thermal stability. This paper addresses an environmental concern about the fate of InSe 2D nanosheets when disposed and released into the environment after use. Semiconducting materials are potentially reactive and often form environmentally damaging species, for example reactive oxygen and nitrogen species, when degraded. InSe nanosheets are prepared using a semi-bottom-up approach which involves a reaction between indium and selenium precursors at elevated temperature in an oxygen-free environment to prevent oxidation. InSe nanosheets are formed as a stable intermediate with micrometer-sized lateral dimensions and a few monolayer thickness. The InSe 2D nanosheets are obtained when the reaction is stopped after 30 minutes by cooling. Keeping the reaction at elevated temperature for a longer period, for example 60 minutes leads to the formation of InSe 3D nanoparticles of about 5 nm in diameter, a thermodynamically more stable form of InSe. The paper focuses on the colloidal stabilization of InSe nanosheets in an aqueous solution that contains epigallocatechin gallate (EGCG), a natural organic matter (NOM) simulant. We show that EGCG coats the surface of the hydrophobic, water-insoluble InSe nanosheets via physisorption. The formed EGCG-coated InSe nanosheets are colloidal stable in aqueous solution. While unmodified semiconducting InSe nanosheets could produce reactive oxygen species (ROS) when illuminated, our study shows low levels of ROS generation when the InSe nanosheets are coated with EGCG.

Environmental significance

Despite the rapid proliferation of their applications, there have been a limited number of studies to assess the impact of emerging 2D materials on the environment. The current study focuses on a seemingly non-hazardous 2D material composed of indium selenide (InSe). InSe 2D material has gained recent popularity due to its high photoresponsivity and suitability for use as a component of wearable and flexible electronics. InSe nanosheets are highly hydrophobic and do not disperse nor dissolve to ionic species in aqueous media. Even if the nanosheets were to dissolve, the expected ions of indium and selenium are not considered highly toxic. As a direct bandgap semiconducting material, reactive oxygen species (ROS) generation is a possibility, yet our results do not support significant levels of ROS generation from InSe nanosheets when exposed to ambient light. With no obvious degradation pathway and a high level of hydrophobicity, it would be reasonable to expect that InSe nanosheets would aggregate and settle in aqueous media and remain in the soil. And yet, this study reveals that the hydrophobic InSe nanosheets are colloidal stable in aqueous solutions that contain epigallocatechin gallate (EGCG), a natural organic matter (NOM) simulant. Coating the hydrophobic InSe nanosheets with EGCG renders them colloidal stable in water and enables their interactions with bacterial organisms in the solution. We found that the impact of the colloidal stable InSe-EGCG nanosheets on bacterial growth is driven by the EGCG molecules either when adsorbed to the surface of the nanosheets and/or desorbed from the surface. InSe-EGCG nanosheets show measurable but relatively low impact on bacterial growth compared to other semiconducting nanomaterials like CdSe quantum dots but the study raises a concern that similar colloidal stabilization processes of seemingly non-toxic hydrophobic materials with limited biodegradation rates could occur in aqueous media due to interactions of the hydrophobic materials with persisting amphiphilic ligands. The resulting colloidal stable materials could adversely impact microorganisms when dispersed in aqueous systems.
Introduction

Two-dimensional (2D) materials are solid, layered nanostructures with strong in-plane chemical bonds but weak out-of-plane van der Waals interactions, with thickness ranging from 1 to 100 nm.1,2 Examples of 2D materials include layered (including monolayer) carbons, chalcogenides, and silicate minerals. 2D materials have been shown to possess unique thermal, electronic, electrical, optical, physicochemical, elastic, and mechanical properties, many of which are temperature, bandgap, atmosphere, and material dependent.1,3 These high aspect ratio sheet-like solids have high surface areas, and with their wide array of chemical compositions, crystal phases, physical forms, and electronic properties, they enable a host of future technologies in areas that include electronics, sensors, catalysis, coatings, barriers, energy storage and conversion, wearable electronics, and biomedicine.1,6,7 With the emergence of 2D nanomaterials in broadly distributed technologies, an effort has begun to understand their biological and environmental interactions and to assess their environmental and human health impact.1 A specific concern has been raised about the environmental impact of semiconductor 2D materials due to their tendency to generate reactive oxygen species (ROS) when illuminated with sunlight.8,9 For example, MoS\textsubscript{2} and Sb\textsubscript{2}Se\textsubscript{3} nanosheets were reported to exhibit antibacterial activity on \textit{E. coli} and \textit{S. aureus} bacteria, but the mechanism of their impact is not fully understood.10,11 Another study revealed that industrial grade MoS\textsubscript{2} nanosheets induce cellular uptake, cytotoxicity and inflammation.12

This study focuses on InSe, an emerging type of III-VI semiconductor 2D material. In a 2D geometry, InSe is a direct band gap semiconductor with a bandgap of 1.95 eV.13 The bandgap is highly tunable, enhancing the material’s electronic properties, they enable a host of future technologies in areas that include electronics, sensors, catalysis, coatings, barriers, energy storage and conversion, wearable electronics, and biomedicine.

potentially expose bacterial cells to sharp edges, and their high surface area and potential reactivity could lead to strong interactions and adverse impact on microorganisms in the environment. It is important to note that there has not been any studies on the impact of InSe nanosheets and similar direct gap semiconductor 2D materials on organisms in the environment.

As-synthesized, InSe nanosheets aggregate and settle in aqueous solution due to their high hydrophobicity. As a result, their ability to impact organisms in an aqueous environment is rather limited. However, colloidal stabilization of the hydrophobic InSe nanosheets by natural organic matter (NOM) when released to the environment is possible as was previously shown for graphene and graphene oxide 2D materials.20 In our experiments, we exposed the InSe nanosheets to epigallocatechin gallate (EGCG), an amphiphilic molecule, which was previously used as a NOM simulant.21 We exposed the InSe nanosheets to EGCG and measured the impact of EGCG-coated InSe nanosheets on the growth of \textit{Shewanella oneidensis} MR-1 bacterial cells. \textit{Shewanella oneidensis} MR-1 is an environmentally relevant Gram-negative bacterium. It is often used as a model organism for bioremediation research due to its metal-reducing capabilities.22 Thus, this study focuses on revealing the mechanism of interaction between EGCG-coated InSe nanosheets and bacterial cells.

Experimental methods

Materials and reagents

Indium chloride (InCl\textsubscript{3}), selenium powder (Se), oleylamine, ethanol, 95% pure epigallocatechin gallate (EGCG, a natural organic matter simulant), NaCl, HEPES and KNO\textsubscript{3} were purchased from Sigma Aldrich. Hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) and the fluorescent probes dichlorodihydrofluorescein diacetate (H\textsubscript{2}DCFDA) and Amplex Red were purchased from Thermo Fischer. \textit{Shewanella oneidensis} MR-1 BAA1096 and 106686 were purchased from ATCC. BDTM DifcoTM dehydrated Luria-Bertani (LB) broth and agar were purchased from BD Difco (Franklin Lakes, NJ). 1× Dulbecco’s phosphate-buffered saline without Ca and Mg was purchased from Corning (Aurora, CO). Millipore deionized water was used without further treatment. All reagents were used as received without further purification.
Synthesis of InSe nanosheets and nanoparticles

InSe nanosheets samples of about 200 mg were synthesized following a previously reported semi bottom-up approach.23 InCl\textsubscript{3} and Se powder were used as the respective precursors, and oleylamine (OLA) was used as the solvent, surfactant, and reducing agent. 0.395 g (5 mmol) of InCl\textsubscript{3} and 1.106 g (5 mmol) of Se powder were placed into a 50 ml three-neck flask. 10 mL of OLA was then added in as a solvent, surfactant, and reductant to reduce selenium. The mixture was heated rapidly to 200 °C under nitrogen atmosphere and vigorous magnetic stirring. During the heating process, the mixture, which appeared to be homogenous, changed its color from black to yellow and to dark brown when a temperature of 200 °C was attained. At this temperature, aliquots were collected at 30 minutes (InSe nanosheets) and 60 minutes (InSe nanoparticles) and then allowed to cool to room temperature. The samples were washed with ethanol via five repeated cycles of 10 minute-long centrifugation at 5000 rpm and resuspended in ethanol. The samples were then dried at room temperature for 12 h to obtain dark brown powders. The synthesis forms InSe nanomaterials of different size and morphology, which are isolated at different time intervals.

Adsorption of EGCG onto InSe nanosheets and nanoparticles

5 mg InSe nanosheets and nanoparticles were separately added to 1 ml 5 mM EGCG in DI water solution in a 5 ml glass vial. The mixture was stirred at room temperature for 24 hours. The resultant dark solution formed in the process was transferred to another vial using a pipette to obtain a transparent solution of InSe-EGCG in water, leaving behind settled non-dispersible aggregates.

Characterization of unmodified and EGCG-coated InSe nanosheets

The UV-vis spectra of unmodified and surface-modified InSe nanosheets were measured using an Agilent Cary 3500 UV-vis multicell Peltier spectrophotometer. Background subtracted UV-vis spectra of unmodified InSe nanosheets suspended in ethanol, and surface-modified InSe nanosheets suspended in DI water were measured in a 1 cm quartz cuvette. Zeta potential measurements were carried out using a Malvern Nano Zetasizer ZEN3600 instrument. Unmodified and surface-modified samples of InSe nanosheets were placed in disposable folded capillary cells. Transmission electron microscopy (TEM) images were obtained using a 100 kV FEI Morgagni 268 TEM instrument with 0.1 nm resolution, equipped with a Gatan Orius CCD camera with 250k magnification. The samples were prepared by placing a drop of the suspended unmodified and surface-modified InSe nanosheets onto carbon-copper grids. The samples were then allowed to dry at room temperature overnight. X-ray photoelectron spectroscopy (XPS) measurements were conducted using a PHI VersaProbe III (Physical Electronics, Inc.) equipped with an Al Ko source (1486.6 eV).

Measurements were acquired with dual-beam charge neutralization which utilizes a low energy argon ion beam and electron flood gun. Spectra were calibrated to adventitious carbon at 284.8 eV. For inductively coupled plasma mass spectrometry (ICP-MS) measurements, an external calibration curve was created using the Multi-Element Calibration Standard 3 from PerkinElmer. For this, calibration points of 10, 25, 50, 100, 200, 300 ppb were made by serial dilution using DI water as the diluent. In-115 and Se-77 were analyzed using a PerkinElmer NexION 300D ICP mass spectrometer, equipped with a PerkinElmer S10 autosampler. Calibration standards were run prior to samples, with two blank runs of DI water between the standards and samples. The analysis method included 40 sweeps per reading with one reading per replicate. All sample analysis was conducted in triplicate and averaged.

Detection of reactive oxygen species (ROS) and H\textsubscript{2}O\textsubscript{2}

To probe ROS formation as a toxicity mechanism, we employed an amperometric method to detect the presence of hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}), the most stable form of ROS, in the EGCG-InSe suspension using 4 mm commercial DropSens Prussian blue/carbon screen-printed electrodes under conditions of ambient light. The electrochemical experiment was set up with the printed carbon auxiliary electrode and an external Ag/AgCl reference electrode. Amperometric measurements were set to monitor the current signals at −0.23 V vs. Ag/AgCl reference electrode in 0.1 M KNO\textsubscript{3} supporting electrolyte. Measurements were conducted in 20 ml glass vials. A 5 mM EGCG solution was used to monitor the background signal. A solution containing 15 μM H\textsubscript{2}O\textsubscript{2} and 5 mM EGCG was used as a positive control. A solution containing 500 mg L−1 InSe nanosheets and 5 mM EGCG was used to detect H\textsubscript{2}O\textsubscript{2} formation. To verify the impact of EGCG on H\textsubscript{2}O\textsubscript{2} formation near InSe nanosheets, experiments were also conducted by suspending unmodified InSe nanosheets in 0.1 M KNO\textsubscript{3}. However, due to the highly hydrophobic nature of the nanosheets, InSe nanosheets were unevenly distributed in the stirred electrochemical cell.

Bacterial growth-based viability assay

The growth-based viability (GBV) assay procedure and data processing have been described in detail elsewhere.23 Briefly, Shewanella oneidensis MR-1 BAA1096 was stored at −80 °C until ready for use. The bacterial stock was plated on a sterilized Luria-Bertani (LB) agar plate and incubated at 30 °C overnight. The resulting bacterial colonies were inoculated in 10 mL of LB media and incubated in an orbital shaker at 30 °C for 4–6 hours or until the mid-log phase (OD\textsubscript{600} ~ 0.5). Next, the culture was centrifuged at 750 × g for 10 minutes, resuspended with 1× Dulbecco’s phosphate-buffered saline (DPBS), and centrifuged again at 750 × g for 10 minutes. The pellet was resuspended in HEPEs buffer (2 mM HEPEs, 25 mM NaCl, pH = 7.4) to obtain an optical density of 0.1 at 600
InSelenium concentrations of 0, 1.95, 7.81, and 62.5 mg L\(^{-1}\) Shewanella oneidensis MR-1 was exposed to EGCG-coated membrane damage by EGCG InSe 2D nanomaterials. (ThermoFisher Scientific) was used to assess bacterial viability by the Live/Dead BacLight Bacterial Viability kit. Live/dead assay Herein, Shewanella oneidensis strains of EGCG nanosheets at varying concentrations were performed on Shewanella oneidensis MR-1 106686. The bacterial growth conditions were similar to the ones described above. The optical density of bacterial solutions at 600 nm was measured as a function of time using a Molecular Devices Versamax Absorbance Microplate Reader. We assume that the two strains of Shewanella oneidensis MR-1 respond similarly to the presence of InSe-EGCG nanosheets under similar conditions.

Live/dead assay

The Live/Dead BacLight Bacterial Viability kit (ThermoFisher Scientific) was used to assess bacterial membrane damage by EGCG InSe 2D nanomaterials. Shewanella oneidensis MR-1 was exposed to EGCG-coated InSe concentrations of 0, 1.95, 7.81, and 62.5 mg L\(^{-1}\) for 1 h. Then, samples were distributed to a 96-well plate and were exposed to a stain containing a mixture of green-fluorescent SYTO 9 and red-fluorescent propidium iodide (PI) dyes for 15 min, following the manufacturer’s recommendations. Fluorescence measurements were obtained using a Tecan Spark plate reader with an excitation wavelength of 485 nm and emission at 528 nm for SYTO 9 and propidium iodide, respectively. The fluorescence intensity ratio of SYTO 9 to PI was determined for each exposure concentration and normalized to that of a negative control bacterial sample not exposed to EGCG-coated InSe. Cell-permeant SYTO 9 stains all live cells, while the non-permeant PI stains nucleic acids only in the cells with damaged membranes.

Results and discussion

Synthesis and characterization of InSe nanosheets and nanoparticles

Previous studies have often utilized exfoliation methods to prepare 2D materials including InSe.\(^{2,6-28}\) Exfoliation methods involve forming nanosheets from a bulk layered material by breaking the van der Waals interactions between the layers.\(^ {2,6-28}\) While successful in forming high-quality 2D materials, it is challenging to form 2D materials of sufficient quantities for environmental exposure studies using exfoliation methods alone. To overcome this challenge, we adopted a semi bottom-up approach, recently reported by Moloto and co-workers to prepare InSe nanosheets to study the impact of InSe nanosheets on bacterial organisms.\(^ {23}\) The semi bottom-up approach is similar to the hot injection method used to form semiconductor quantum dots.\(^ {29}\) The synthesis of InSe nanosheets and their coating and colloidal stabilization in aqueous solution with EGCG, which are described in the following sections, are shown in Scheme 1.

The reaction starts with the dissolution of the precursors at elevated temperature of 200 °C. A rapid nucleation of oppositely charged ions and growth follows. These processes result in the formation of a heterogeneous sample of bulk InSe which then self-digestes to form InSe nanosheets and later mono-dispersed InSe nanoparticles, which are thermodynamically more stable. Under our experimental conditions, InSe nanosheets of various lateral dimensions but with consistently a few monolayers thickness are formed after 30 minutes. The formed nanosheets break down to nanoparticles due to high lateral strain. InSe nanoparticles are formed after 60 minutes. Our results are in agreement with previous studies that utilized detailed TEM measurements to follow the formation of InSe nanosheets and nanoparticles using this approach.\(^ {23}\) It must be noted however, that additional studies are needed to better understand the mechanism of the formation of InSe nanosheets and nanoparticles using this semi bottom-up approach. The semi bottom-up synthesis approach is highly versatile. Using this approach, InSe 2D materials can be formed in different crystalline phases (\(\alpha, \beta, \gamma\)), stoichiometries, and oxidation states depending on the precursors used and the reaction conditions.\(^ {13,30,31}\) InSe 2D nanosheets of different lattice constants show different band...
gap values. Structural modification and band-gap crossover in InSe nanosheets have also been previously reported.

Fig. 1 summarizes the characterization of InSe nanosheets synthesized using the method described in Scheme 1. Fig. 1a shows a representative photo of a 20 mg sample of InSe nanosheets powder. Fig. 1b shows the normalized UV-vis absorbance spectra of the as-synthesized InSe nanosheets (30 minutes, blue) and nanoparticles (60 minutes, red) in toluene. The UV spectral features and especially the observed red shift as the InSe nanosheets form are in agreement with previous studies. The micrometric lateral dimensions and lower thickness of the InSe nanosheets are easily observed in Fig. 1c. The presence of 3–5 nm InSe nanoparticles in Fig. 1d confirms the ability to kinetically control the size and morphology of the InSe nanosheets or nanoparticles using this semi-bottom-up method.

Fig. 2 shows representative XPS data collected on the InSe nanosheets. The high-resolution elemental regions for In(3d) and Se(3d) were evaluated. The maxima observed at binding energy values of 452.0 and 444.5 eV are indicative of the In 3d3/2 and 3d5/2 peaks respectively and confirm the presence of In3+ mainly in the form of In2Se3 with some oxidation to In2O3. The binding energy value of 54.7 eV contains overlapping Se 3d5/2 and 3d3/2 peaks that are not resolved given the small difference in the energy splitting of these peaks. Nevertheless, the location of this peak is indicative of Se2− in the form of In2Se3 and the smaller peak at 59.1 eV indicates the presence of minor oxidation to SeO2. Overall, the XPS results confirm the elemental composition and oxidation states of InSe in these materials with no significant contaminants.

Synthesis and characterization of EGCG-coated InSe nanosheets

As previously mentioned, InSe 2D nanosheets are hydrophobic and not soluble in aqueous media. The hydrophobic InSe surface enables strong physisorption of amphiphilic molecules like the NOM simulant epigallocatechin gallate (EGCG), which shows some antimicrobial properties as well. Fig. 3a shows the chemical structure of EGCG, and Fig. 3b shows a transparent aggregation-free solution of InSe nanosheets in water. These measurements confirm the presence of the EGCG coating on the surface of the InSe nanosheets which renders them colloidally stable.
coating with EGCG in DI water. In contrast, Fig. 3c shows a photo of a DI water solution following the addition of 3 mg unmodified InSe nanosheet powder. The solution is colorless, and dark-colored InSe nanosheets are seen floating at the top of the solution. It is clear that the InSe nanosheets are insoluble in water in the absence of the EGCG coating. Fig. 3d shows the normalized UV-vis spectra of EGCG-coated InSe nanosheets at increasing concentrations in DI water. The absorbance at around 400 nm is indicative of EGCG-coated InSe nanosheets. Fig. 3e shows a representative TEM image of EGCG-coated InSe nanosheets with lateral dimensions of 200–250 nm. The additional black features in the image compared to the TEM image in Fig. 1c are attributed to the presence of EGCG. Importantly, the TEM and UV-vis results described in Fig. 3d and e show that the InSe nanosheets are colloidally stable in aqueous solution due to the formation of EGCG coating on the nanosheets’ surface but remain intact.

Interestingly, the EGCG-coated InSe nanosheets in phosphate buffer solution show a negative zeta potential of −12 mV while it is near 0 in DI water. This low negative surface charge is most likely due to the adsorption of phosphate ions, which are in excess in a phosphate buffer solution on the surface. EGCG itself has multiple hydroxyl groups but no net surface charge. The colloidal stabilization of the InSe-EGCG nanosheets might be attributed to the formation of hydrogen bonds between the hydroxyl groups of EGCG and water molecules. It should also be noted that zeta potential measurements which are carried out on DLS instruments with zeta potential measurement capabilities provide accurate zeta potential values of nanospheres but not of nanosheets. While these measurements provide accurate information about the net surface charge, positive or negative, the measured absolute zeta potential values may not be accurate. Fig. S1 and S2† show the dynamic light scattering (DLS) size measurements and scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX) spectra respectively, of unmodified InSe nanosheets and EGCG-coated InSe nanosheets. Previous studies have shown that unmodified InSe nanosheets are prone to surface oxidation. UV-vis spectra of EGCG-coated InSe nanosheets over several days show no significant change. This suggests that surface modification with molecules like EGCG increases the chemical stability of InSe nanosheets towards oxidation.

Colloidal stabilization of InSe nanosheets in aqueous solution with EGCG

To find out the ratio between EGCG and InSe nanosheet concentrations that maximizes the colloidal stabilization of InSe nanosheets in aqueous solution, a fixed concentration of InSe nanosheets (1 mg ml⁻¹) was coated with EGCG in aqueous solutions of varying EGCG concentrations (0–3 mM). The absorption intensity at 375 nm (a characteristic peak of InSe nanosheets) was used to quantify the colloidal stabilization efficiency of the InSe-EGCG nanosheets. ICP-MS measurements were also used to quantify the level of indium (In-115) and selenium (Se-77) in the InSe-EGCG nanosheets that were formed in the EGCG solutions at all EGCG concentrations. Given the high sensitivity of ICP-MS measurements, the InSe-EGCG solutions were diluted 100-fold in DI water to obtain the ICP-MS data. Fig. 4a shows the InSe nanosheets (1 mg ml⁻¹) absorbance at 375 nm at varying EGCG concentrations and Fig. 4b shows the ICP-MS signals of indium and selenium in the InSe-EGCG nanosheets (1 mg ml⁻¹) formed at varying EGCG concentrations. Both the InSe UV-vis absorbance and ICP-MS measurements confirm that the colloidal stabilization of InSe nanosheets in water is near 0 in the absence of EGCG. This condition serves as a negative control. The UV-vis and ICP-MS measurements also show that the colloidal stabilization efficiency of 1 mg ml⁻¹ InSe-EGCG nanosheets reaches a plateau at EGCG concentrations greater than 0.75 mM. Varying the pH of the solutions did not significantly change the concentration of EGCG-InSe nanosheets in the solution (data not shown). This suggests that the colloidal stabilization of InSe nanosheets by EGCG is driven by hydrophobic interactions between the EGCG backbone and the hydrophobic InSe surface, and that the strength of these interactions depends mostly on the ratio between the concentrations of EGCG and InSe nanosheets and not on the solution pH.

![Fig. 4](image-url) (a) UV-vis absorbance at 375 nm and (b) ICP-MS results of In-115 and Se-77 ions concentrations from InSe nanosheets (1 mg ml⁻¹) at varying EGCG concentrations at pH 7.0. All the data were obtained in triplicate samples and averaged.
 Reactive oxygen species (ROS) generation

We conducted experiments to determine whether reactive oxygen species (ROS) are generated by EGCG-coated InSe nanosheets when exposed to ambient light. We utilized an amperometric method to detect H$_2$O$_2$, the most stable form of ROS. We note that, due to optical interference and quenching reactions between EGCG and fluorescence probes (both DCFDA and Amplex Red), detection of H$_2$O$_2$ using fluorescence dye-based methods were proven unsuccessful. Amperometric measurements of H$_2$O$_2$ were conducted with a screen-printed Prussian blue/carbon electrode. The limit of detection for hydrogen peroxide of this amperometric method was found to be 4.1 μM. While generally less sensitive than fluorescence techniques, this amperometric method was used successfully to detect micromolar levels of H$_2$O$_2$ formed due to the REDOX transformations of lithium cobalt oxide (LCO) battery materials.38,39 In our experiments, adding H$_2$O$_2$ to a final concentration of 15 μM in 5 mM EGCG solution increased the current compared to the background current signal when the electrode was immersed in a 5 mM EGCG solution by about 50%. This signal increase indicated that the amperometric detection method was sensitive to the presence of H$_2$O$_2$ in the solution. However, we did not observe a current change when the electrode was immersed in a solution containing InSe-EGCG nanosheets when compared to the EGCG background current. These results suggest that InSe-EGCG nanosheets, even at high levels of 250 mg L$^{-1}$ do not form H$_2$O$_2$ levels above the 4.1 μM limit of detection of our amperometric method. This contrasts with the 10–15 μM levels of H$_2$O$_2$ formed when LCO at 10-fold lower concentrations undergo redox transformations in aqueous solution.38,39 This surprising low level of ROS generation by a semiconducting material with bandgap of 1.95 eV might be attributed to reduced interactions between the ROS active semiconducting surface and water or oxygen molecules in the solution by the EGCG coating, and/or because the EGCG coating quenches any formed ROS. The amperometric measurements with unmodified InSe nanosheets (without EGCG in solution) also did not suggest the presence of significant H$_2$O$_2$ when suspended in a 0.1 M KNO$_3$ solution, possibly due to the nanosheets’ aggregation.

Antibacterial effect of InSe nanosheets on *Shewanella oneidensis* MR1

Despite the fact that InSe nanosheets do not dissolve to produce toxic ions and do not generate measurable levels of ROS when coated with EGCG, our experiments revealed that they affect bacterial growth. We carried out growth-based viability (GBV) studies and membrane viability studies to better understand the impact of InSe-EGCG nanosheets on *Shewanella oneidensis* MR-1. We first conducted GBV experiments by exposing the bacterial cells to increasing concentrations of InSe-EGCG nanosheets and nanoparticles in 5 mM EGCG solutions. In these experiments, the bacterial cells were exposed to the same EGCG level, and the only difference was the ratio between adsorbed and free EGCG molecules in the solution. Fig. 5a shows the normalized growth-based viability (GBV) assay results of *Shewanella oneidensis* MR-1 when exposed to InSe-EGCG nanosheets or nanoparticles (0–1000 mg L$^{-1}$) while keeping the EGCG concentration constant at 5 mM. Both the InSe nanosheets and nanoparticles are seen to have minimal or no added toxicity on *Shewanella oneidensis* MR-1 at all concentrations beyond the toxicity of free EGCG. Free EGCG at 5 mM reduces the viability of *Shewanella oneidensis* MR-1 to 20% compared to a negative control when the bacterial cells are grown in an EGCG-free and InSe-EGCG-free LB growth media. Adding InSe nanosheets to the solution does not affect this level of toxicity regardless of InSe shape or concentration. Fluorescence-based live/dead assays were performed to quantify membrane damage and understand potential impacts of membrane association.25 This fluorescence-based method uses two fluorescent dyes that bind to nucleic acids: green-fluorescent SYTO 9 and red-fluorescent propidium iodide (PI). The cell-permeant SYTO 9 stains all live cells while the non-permeant PI stains nucleic acids only in cells

![Fig. 5](image-url) (a) Normalized growth-based viability (GBV) assays results of InSe-EGCG nanosheets and nanoparticles (0–1000 mg L$^{-1}$), and (b) normalized live/dead cells ratio values of InSe-EGCG nanosheets and nanoparticles (0–62.5 mg L$^{-1}$) on *Shewanella oneidensis* MR-1. All dilutions of InSe-EGCG were done with 5 mM EGCG-water. All the data were obtained in triplicate samples and averaged.

![Fig. 6](image-url) Growth curves of *Shewanella oneidensis* MR-1 bacterial cells at varying concentrations of thoroughly washed InSe-EGCG nanosheets. The optical density at 600 nm (OD 600) decreases with decreased bacterial growth.
with damaged membranes. Following incubation with the cells, the SYTO 9 and PI probes are excited at 485 nm and emit at 528 nm and 638 nm respectively. The live/dead cells ratio values are derived from the ratio between the background-subtracted red and green fluorescence intensities. Fig. 5b shows the normalized live/dead cells ratio values of Shewanella oneidensis MR-1 when exposed to InSe-EGCG nanosheets and nanoparticles at concentrations ranging from 0 to 62.5 mg L\(^{-1}\). Similar to GBV assays, all dilutions were done with 5 mM EGCG-water to keep the level of EGCG constant. The live/dead assays results are in agreement with the GBV assays and show no evidence of membrane disruption due to association of InSe-EGCG nanosheets or nanoparticles with bacterial cells. However, a control with free EGCG-water reduces the live/dead cells ratio which indicates bacterial death. The results of these assays confirm that the impact of InSe nanosheets on bacterial growth is low and that it is driven by free EGCG molecules and not by the InSe nanosheets.

To confirm this conclusion and to understand the impact of adsorbed EGCG molecules on the InSe nanosheet on bacterial growth, we conducted time dependent bacterial growth assays of Shewanella oneidensis MR-1 cells when exposed to thoroughly washed InSe-EGCG nanosheets. While these conditions do not represent a realistic environmental scenario, they still provide an important insight about the impact of the EGCG adsorbates on bacterial cells’ growth. Fig. 6 shows the optical density of the bacterial cultures at 600 nm (OD 600) as a function of time for bacterial cells that were exposed to washed InSe-EGCG nanosheets at increasing concentrations.

The optical density of bacterial growth solutions (OD 600) is proportional to the density of bacterial cells in the solution. Following a typical lag time of four hours, the bacterial cells enter an exponential growth phase, leading to an increase in optical density. A clear InSe-EGCG concentration dependent decrease in bacterial growth and viability is observed. As mentioned previously, this growth inhibition is attributed to the impact of EGCG, either when adsorbed to the nanosheet surface or when desorbed from the nanosheets when the bacterial cell membrane interact with the cells. While the impact on cell growth is clear, it should be noted that the impact of InSe-EGCG on Shewanella oneidensis MR-1 is low compared to other nanomaterials studied in the past. For example, a similar impact on Shewanella oneidensis MR-1 cell growth was observed when exposed to a 500-fold lower concentration of CdSe quantum dots.\(^{22}\)

Summary and conclusions

2D materials have become a major focus in materials chemistry research due to their unique morphology and properties. InSe nanosheets are emerging 2D nanomaterials with significant applicability in flexible and wearable electronic devices. A semi bottom-up synthesis method enables producing scalable mg quantities of hydrophobic InSe nanosheets or 2D materials, which are not soluble in aqueous media. Our studies show that the hydrophobic InSe nanosheets can be colloidally stabilized in aqueous media by coating their surface with an amphiphilic natural organic matter (NOM) simulant molecule, epigallocatechin gallate (EGCG) via physisorption, with the best colloidal stabilization efficiency of 1 mg ml\(^{-1}\) InSe nanosheets at EGCG concentrations greater than 0.75 mM. Bacterial exposure studies with the water-soluble EGCG surface-modified InSe (InSe-EGCG) nanosheets and nanoparticles, which were conducted using Shewanella oneidensis MR-1, show that the toxicity of InSe-EGCG nanosheets and nanoparticles is driven by the EGCG ligands and not by InSe. No measurable ROS levels are observed when the nanosheets are illuminated with ambient room light. This suggests that the EGCG coating may inhibit the formation of ROS from the InSe semiconducting material. Our results show that the impact of InSe-EGCG nanosheets on bacterial growth of Shewanella oneidensis MR-1 is driven by the EGCG ligand molecules either when they are conjugated to the nanosheet surface or when they desorb from the nanosheets and interact with the bacterial cells. While there have been some reports on the adverse impact of EGCG on bacterial cells, more systematic studies are needed to understand the mechanism of interaction between EGCG and bacterial cells at the molecular level. It is possible that association of EGCG molecules, through their multiple hydroxyl groups with the bacterial cell membrane, or permeation of EGCG molecules into the cells, induce oxidative stress, which adversely impact cell growth. In this scenario, the InSe nanosheets act as a delivery vector by adsorbing EGCG molecules onto their surface and interacting with the cells. The EGCG-coated InSe nanosheets likely amplify the impact of EGCG on bacterial cell growth due to an increased local concentration of EGCG at the vicinity of the cells. It should be noted however, that the overall impact of InSe-EGCG nanosheets on the growth and viability of Shewanella oneidensis MR-1 cells is low compared to the impact of other synthetic nanoparticles like CdSe quantum dots which we previously studied. The study highlights a significant environmental concern due to the broad distribution of chemically stable, hydrophobic nanosheets in electronic devices and their release to the environment when discarded post use. While 2D materials like InSe are minimally toxic, they are expected to aggregate and settle in the soil due to their hydrophobicity and the lack of an obvious biodegradation pathway. It is therefore possible, even likely, that the nanosheets will be solubilized by natural organic matter (NOM) or other contaminants. The surface transformation of the nanosheets will bring them into aqueous systems where they would interact with living organisms and impact them. The impact would be low or high depending on the ligand that colloidally stabilizes the nanosheets. While the ligand we chose for this study, EGCG, appears to induce low but measurable toxicity of InSe-EGCG nanosheets, other surfactants, for example dodecyltrimethylammonium bromide (DTAB) could lead to...
higher toxicity. The attention of the materials chemistry community should be devoted to develop effective recycling strategies and/or effective degradation pathways for 2D materials like InSe to mitigate the risk their use poses to the environment.

Conflicts of interest

The authors have no conflicts of interest to declare.

Acknowledgements

This work was supported by the National Science Foundation (NSF) under Grant No. CHE-2001611, the NSF Center for Sustainable Nanotechnology (CSN). The CSN is part of the NSF Center for Chemical Innovation (CCI) Program. Sengupta’s Doctoral research is partially supported by the National Institutes of Health (NIH)-funded Chemistry-Biology Interface (CBI) training grant NIH/NIGMS T32 GM066706. The authors thank Alessandra G. Gavin of the Department of Chemistry at the University of Minnesota for her support with bacterial live/dead assays. The authors thank Joel Pedersen on the selection and use of natural organic matter simulants in this project.

References

