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Nitrate ion-based chemical ionization mass spectrometry (NOz -CIMS) is widely used for detection of
highly oxygenated organic molecules (HOMs). HOMs are known to participate in molecular clustering
and new particle formation and growth, and hence understanding the formation pathways and amounts
of these compounds in the atmosphere is essential. However, the absence of analytical standards
prevents robust quantification of HOM concentrations. In addition, nitrate-based ionization is usually
very selective towards the most oxygenated molecules and blind to less oxygenated compounds
hindering the investigation of molecular formation pathways. Here, we explore varying concentrations of
nitric acid reagent gas in the sheath flow of a chemical ionization inlet as a method for detecting a wider
range of oxidation products in laboratory-simulated oxidation of benzene and naphthalene. When the
concentration of reagent nitric acid is reduced, we observe an increase in signals of many oxidation
products for both precursors suggesting that they are not detected at the collision limit. The sensitivity
of naphthalene oxidation products is enhanced to a larger extent than that of benzene products. This
enhancement in sensitivity has a negative relationship with molecular oxygen content, the oxygen-to-
carbon ratio, the oxidation state of carbon, and lowered volatility. In addition, the sensitivity
enhancement is lower for species that contain more exchangeable H-atoms, particularly for accretion
products. While more experimental investigations are needed for providing the relationship between
enhancement ratios and instrumental sensitivities, we suggest this method as a tool for routine check of
collision-limited sensitivities and enhanced detection of lower-oxygenated species.

Nitrate-ion chemical ionization mass spectrometry is extensively used in atmospheric science to detect highly oxygenated organic molecules (HOMs). Quan-
tifying HOMs in different environments is of utmost importance in understanding their role in aerosol particle formation. However, calibration standards are

lacking and often a single calibration factor is used for quantifying a large range of these compounds. Here, we experimentally show that this approach will
underestimate HOM yield from naphthalene oxidation at least by a factor of 4. In addition, by modifying conditions in the ionization region, we show that the
nitrate ionization method is also applicable to detecting less oxygenated compounds and peroxy radicals which enhances our ability to determine HOM

formation pathways.

1 Introduction

aerosol (SOA) formation in the atmosphere. They form in
oxidation of volatile organic compounds (VOCs) under atmo-

Highly oxygenated organic molecules (HOMs) are recognized as  spheric conditions through a chain reaction called autoxidation
central to closing gaps in our knowledge of secondary organic mediated by peroxy radicals and defined as compounds with 6
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or more oxygen atoms.® HOMs form rapidly in the gas phase
oxidation of biogenic VOCs, such as different monoterpenes,
but also other alkenes,*® and more recently were discovered to
form also from anthropogenic emissions, such as aromatics
and alkanes.®'® As autoxidation progresses, formed HOMSs
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HOMs are able to condense efficiently even on the smallest
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The detection of HOMs largely relies on nitrate chemical
ionization coupled to a time-of-flight mass spectrometer known
as NO; -CI-APi-TOF™ or NO; -CIMS.* This technique relies on
the production of (HNO;),,NO;~ reagent cluster ions in the
ionization region and subsequent formation of NO;~ adducts
with the sample molecules. In normal operation with nitric acid
excess, the adduct formation in the NO; ™ ionization scheme is
selective: based on quantum chemical calculations, an organic
molecule should have at least two strong hydrogen bonding
functionalities, such as hydroxy (-OH) or hydroperoxy (-OOH)
groups, to be detected with high sensitivity.*

Several configurations of NO;~ chemical ionization inlets
have been developed. One of the commonly used inlets is an
Eisele-type inlet where a sheath flow carrying NO; ™~ ions is co-
axially introduced around the sample flow." This results in
a near wall-less system. Reagent ions are then directed towards
the sample using an electrical field, where they are allowed to
react. In commercially available Eisele-type NO; ™~ inlets (based
on Jokinen et al.*®), the reaction time is in the order of 110-160
milliseconds.'®'” Another possible set-up is a cross-flow ioni-
zation inlet (cluster CIMS) where ions are introduced perpen-
dicularly to the sample flow." Recently, also a third
configuration was introduced, a multi-scheme chemical ioni-
zation inlet (MION). In this set-up, reagent ions are injected
perpendicularly to the sample flow, while neutral nitric acid is
pulled away to the exhaust.'®" In this study, we investigate the
performance of the Eisele-type co-axial inlet as the most
commonly used nitrate-based inlet currently in our field and we
use NO; -CIMS notation throughout the text.

The benefit of utilizing CIMS is ultimately dependent on our
ability to quantify molecules of interest. However, no analytical
HOM calibration standard currently exists. When HOMs were
discovered, Ehn et al.®> calculated that HOM ion-molecule
collision rates with nitrate ion adducts were similar to that of
sulfuric acid. Therefore, sulfuric acid calibration®® has been
routinely used to determine the HOM sensitivities. As a result,
concentrations and yields of HOMs are regularly reported as
lower limit estimates,” especially since it became clear that they
may be detected at lower sensitivities if they lack strong
hydrogen bonding groups.'® Sometimes, correction factors are
applied to account for reduced sensitivity of species with higher
volatility."* Quantification of HOMs remains one of the largest
challenges in current studies that aim to elucidate the forma-
tion pathways of SOA.

The detection of organic sample molecules in NO; ™ ioniza-
tion through adduct formation proceeds in competition with
neutral nitric acid (HNO3). NO;~ forms very stable clusters with
HNO;, and that is why NO;~ ionization is selective towards
highly functionalized species that can bind more strongly to
NO;~ than to HNO;." As a result, the sensitivity of a given
species is a function of the concentration of neutral HNO; in the
ionization region.'® Neutral HNO; in the ionization region can
originate from the sample flow or alternatively is carried by the
reagent ions and released during the ligand exchange reaction
with sample molecules.** Based on recent flow simulations in
the Cl-inlet, a very minor fraction of neutral HNO; will diffuse
from sheath to sample flow."” As demonstrated by quantum

© 2024 The Author(s). Published by the Royal Society of Chemistry
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chemical computations, the sensitivity remains constant as
a function of nitric acid concentration (provided that the total
number of ions remains constant) if a molecule is detected at
the collision limit, i.e. maximum sensitivity.*®

Not all organic oxidation products that NO; -CIMS detects
can be classified as HOMs. For instance, NO; -CIMS can detect
four and five oxygen-containing products in aromatic oxidation
systems,® while in o-pinene ozonolysis, detected species
primarily have 6 or more oxygen atoms.>** NO; -CIMS can also
detect 4-nitrophenol, a compound containing only three O-
atoms, as the binding of the 4-nitrophenol-nitrate adduct is
comparable to that of the nitric acid-nitrate adduct.>* Even at
low sensitivities, however, the detection of less oxygenated
species in laboratory studies, which are generally present at
considerably higher concentrations than HOMs, would greatly
enhance the applicability of NO; -CIMS.

In our current study, we probe the ability of NO; -CIMS to
detect oxidation products of benzene and naphthalene,
including HOMs and less oxygenated products. We do so by
running laboratory experiments with excess and deficit of
neutral HNOj; in the sheath flow within the chemical ionization
inlet. We revisit the concepts introduced by Hyttinen et al.*®
from an experimental perspective and propose varying HNO;
concentrations in the sheath flow as a method for detecting less
oxygenated RO, radicals and closed-shell species as well as for
verifying the applicability of collision-limited sensitivities. Our
study demonstrates the extended usability of the nitrate ioni-
zation scheme to produce a more complete understanding of
HOM formation pathways in the laboratory and atmosphere.

2 Methods

We conducted oxidation experiments in a borosilicate flow
reactor with a residence time of 14.5 seconds. We used benzene
and naphthalene as precursor VOCs. Benzene (BEN, C¢Hg) was
fed from a prepared gas bottle while naphthalene (NPT, C;oHjg)
was introduced to the reactor by flowing cryogenic nitrogen (N,)
over a pure solid naphthalene sample. The oxidant hydroxyl
radical (OH) was produced in the dark oxidation of tetrame-
thylethylene (TME) by ozone. Table 1 lists the conditions for the
conducted experiments: three experiments with naphthalene
and one with benzene. With naphthalene, experiment (exp.) 1
was performed at the lowest OH production rate and is, there-
fore, referred to as the low-RO, radical experiment. Experiments
2 and 3, on the other hand, test the reproducibility of the
method at higher RO, radical production rates. Note that the
high RO, radical experiment refers to the higher production of
oxidation products and usually results in a lower detected RO,
concentration as bimolecular termination reactions dominate.
With benzene (exp. 4), the concentration of the OH radical was
adjusted only for the higher RO, production regime. The
concentrations were controlled at about 72 and 108 parts per
billion volume (ppbv) of TME and 41-382 ppbv of ozone,
resulting in 1.5, 9.8 and 14.3 ppbv of reacted VOCs in exp. 1, 2-3
and 4 respectively.

The oxidation products were sampled using an Eisele-type
NO;  inlet (Fig. S1f).**' The inlet was coupled to an
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Table 1 The experimental conditions for HNOz excess and deficit runs for naphthalene and benzene experiments. Experimental conditions for
exp. 2 and 3 are near identical. The reacted VOC was calculated using bimolecular reaction rate coefficients koy—_ner Of 2.17 x 107, kop_gen Of
1.28 x 107%, ko _tme Of 1.5 x 107", kop—1me Of 1 x 107° and kon—o, of 7.3 x 107 cm? 57!, accounting for the corresponding reactions and
flow reactor residence time of 14.5 s; secondary oxidation reactions were not considered. Q is flow and r is the sensitivity enhancement ratio

Quno, RO, Total ion 03, TME, VOC, VOC reacted, Total product RO, Dimer T'HoM

#  sccm VvOC regime count,cps ppbv  ppbv  ppmv  ppbv signal, cps fraction, %  fraction, %  O=¢

1 0 Ci0Hsg Low 20930 41 72 6.9 1.5 150 11 42 3.9
10 CioHg Low 21278 41 72 6.9 1.5 40 8.8 60

2 0 CioHsg High 19 895 288 72 6.9 9.8 2100 2.4 39 4.0
10 Ci10Hg High 20920 288 72 6.9 9.8 520 2.5 57

3 0 Ci0Hsg High 21088 288 72 6.9 9.8 2500 1.9 39 2.3
10 Ci10Hg High 21989 288 72 6.9 9.8 1040 2.2 54

4 0 CeHg High 22024 382 108 22 14.3 1800 1.3 7.4 1.3
10 CeHp High 23735 382 108 22 14.3 1000 1.5 9.9

atmospheric pressure interface time-of-flight mass spectrom-
eter, APi-TOF.** In excess HNO; experiments (normal opera-
tion), nitric acid was directed into the sheath flow by flowing 10
standard cubic centimeters per minute (sccm) cryogenic N, over
the liquid surface, which mixed into 20 standard liters per
minute (slpm) sheath flow. The experiments with a low nitric
acid concentration (deficit) were conducted by setting the N,
flow over nitric acid to 0 sccm. In that case, nitric acid entered
sheath flow through diffusion from the vial and the inlet walls.
The deficit of nitric acid was recorded when we observed the
change in the reagent ion concentration and distribution as
well as the appearance of the carbonic acid-nitrate ion adduct
(CH,03;NO; ") at a nominal 124 mass-to-charge ratio (m/z) (see
section 3.1). Flow reactor bath gas and sheath flow was supplied
via a clean air generator (AADCO-737-15). Ozone was produced
by photolyzing the clean air using a mercury lamp (UVP, Ana-
lytik Jena). The concentration of ozone was measured using an
ozone analyzer (2B Technologies model 205), while gas-bottle
mixing ratios of TME and benzene were determined by pres-
sure gauge measurement in the gas mixing set-up. NO; -CIMS

NPT+O,+TME ——O,+TME only
8
025/ 1[CyoHgOs 1 | C1oHeOs
v/ /
—6 \
%) | A
g 0238 239 319 20
(_g 4 CyoHgO: CyoH180
_9 / 107187 20" 1186
w
2
bl il
200 300 400 500
m/z

Fig. 1 Comparison of spectra for naphthalene oxidation (green) and
background experiments (black). The presented experiment is low RO,
run (exp. 1) with deficit of nitric acid. The pink shaded area indicates the
monomer region while the blue area shows the accretion product
region. NPT stands for naphthalene, while TME stands for tetrame-
thylethylene. The signal is reported directly in measured counts per
second (cps). The high background peaks in black are iodine-con-
taining contaminants in the flow reactor, which are used for mass axis
calibration.
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data were processed using the tofTools v6.12 package for
MATLAB. Peaks were identified by high resolution peak fitting
expanding upon previous studies”® (see Tables S1-S3+). Ions of
interest were determined by comparing oxidation and back-
ground experiments (as shown in Fig. 1) in the presence and
absence of VOCs, respectively. The analysis solely focuses on
compounds that were detected as adducts with NO; ™, which is
omitted from all oxidation product formulae within the text and
figures. In addition, only compounds that lost no more than one
carbon atom are studied (C=5 for benzene and C=q for naph-
thalene). Smaller fragmentation products, which are minor
fractions of detected products, are not considered.

Our analysis takes place in absolute units of the detected
signal, counts per second (cps), and normalization to the
reagent ion concentration is omitted as deficit of nitric acid
introduces non-linear effects on ionization efficiency of sample
molecules. However, the total ion count (TIC) remains near
constant at 2.0-2.4 x 10 cps as shown in Table 1. It is also
important to note that some individual ions of interest had as
low concentrations as 0.1-1 cps, below 0.005% of TIC (Fig. 1)
depending on experimental conditions. The sensitivity
enhancement is calculated as a ratio between the signal for an
individual ion in HNO; deficit and HNO; excess experiments
and is referred to as the sensitivity enhancement ratio (7).

In order to verify the amount of available H-bond donor
groups, we also conducted experiments where heavy water
(D,0) was added. The D,O (Eurisotop, 99.96%) was only added
to HNO; deficit experiments where few droplets of heavy water
were evaporated from a glass bubbler into the flow reactor. As
the system was dry otherwise, a near-complete conversion of all
exchangeable H-atoms was expected and confirmed via moni-
toring HNO;NO; ™ fully converting to DNO;NO;~ (Fig. S4t).
Table 2 presents the conditions for D,0-addition experiments,
with some small differences to the experiments presented in
Table 1. The addition of D,O also introduced new contaminants
to the system, so the signal is corrected for background (VOC is
turned off).

The saturation concentration (proportional to volatility) of
each oxidation product at 300 K is calculated using 2D volatility
basis set 2D-VBS* as follows:

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 D,O addition experiments. D,O addition is indicated with 1 (added) or 0 (not added)

# Quno,, sccm VOC D,0 addition Total ion count, cps O3, ppbv TME, ppbv VOC, ppmv VOC reacted, ppbv
5 0 CioHg 0 23070 40 18 1.7 0.36

0 CyoHy 1 22328 40 18 1.7 0.36
6 0 CeHe 0 21879 382 18 5.4 2.7

0 CeHe 1 21389 382 18 5.4 2.7

log;y Cyo x = (25 —nc) x 0.48 — bono)

where n¢ is the number of carbon atoms, ng is the number of
oxygen atoms, and bo is the coefficient describing the average
effect of each added oxygen atom on log;, C*. A b of 1.72 and
1.55 was used for naphthalene and benzene respectively
following empirical determination by Wang et al*® This
approach was confirmed to work the best for estimating vola-
tilities of aromatic oxidation products.”® The oxidation state of
carbon in Fig. 6b was calculated following a simple approxi-
mation by Kroll et al.,”” as OSc = 2no:nc — nu/ng, where no, nc
and ny are numbers of oxygen, carbon and hydrogen atoms
respectively.

The following method was used to calculate the binding
enthalpies of the oxidation products of benzene and naphtha-
lene with NO;~. Conformer search to generate the possible
input geometries was carried out using the Merck Molecular
Force Field (MMFF) method using the Spartan '20 program.® All
initial geometries were first optimized at the B3LYP/6-31+G*
level of theory, followed by optimizations and frequency calcu-
lations at the wB97X-D/aug-cc-pVIZ level of theory on
conformers with relative electronic energies within 2 kcal mol "
of the global minimum. These geometry optimizations were
performed using the Gaussian 16 program.> The domain-based
local pair natural orbital coupled cluster method (DLPNO-
CCSD(T)) with the aug-cc-pVIZ basis set was used to compute

the single-point electronic energy corrections on the global
minima geometries. These were carried out using the ORCA
program (version 4.2.1).>°

3 Results and discussion

3.1. Monitoring the change in the HNO; concentration

An adduct of carbonic acid CH,0O; and NO;  located at 124
nominal mass-to-charge (/z) can be used as an indicator for
insufficient nitric acid in the chemical ionization inlet. At
normal operation (excess of HNOj3), carbonic acid is not detec-
ted and a sudden appearance of m/z 124 usually points at a fault
in the HNO; feeding line. In routine operation, a peak at m/z 124
is avoided while here we use it as a proxy for the HNO;
concentration under deficit conditions. Fig. 2a illustrates the
absolute abundance of nitrate reagent ions (monomer NO; ™,
dimer HNO3;NO;™, and trimer (HNO;),NO;") as well as
CH,0;3NO;~ and CH,0;HNO;NO;~ adducts for the naphtha-
lene experiment 2 (see Table 1). When the HNO; flow (Quno,)
was shut off, the total ion count remained nearly constant (1.99
x 10* compared to 2.09 x 10* cps) while the distribution of
reagent ions changed. Absolute concentrations of the nitric acid
monomer, dimer (m/z 125) and trimer decreased, while the
concentration of carbonic acid-nitrate adducts increased. The
increase in the signal of other ions demonstrates that more of
the sample molecules became ionized. Fig. 2b shows that all

Q =10 sccm Q =0sccm
. HNO, HNO,
3
(a) 15 =10 o — (b) 03
0.15 |
‘ o’ 0.25
0.1 Z:')
%) o 02
g— 10 0.05 ¢ ‘ %
@ 5 zm 0.1
I 0.05
l_ Ore ° [ o
0% (0% (0% (O O 1 2 3 4
WO? 0 1O

<
0\3\1 Q\\A

Experiment number

Fig.2 Distribution of ions in excess (Quno, = 10 sccm, black) and deficit (Quno, = 0 sccm, green) of nitric acid. Panel (a) shows the ion signals in
counts per second (cps) for naphthalene experiment 2, and panel (b) shows the ratio between the carbonic acid—nitrate adduct (CH,O3zNOs3 ",
m/z 124) and nitric acid dimer (HNOsNO3~, m/z 125) for all four experiments (see Table 1). The exact distribution and ratio will be specific to the
instrument, settings and absolute concentration of neutral nitric and carbonic acids.
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four experiments had a very similar m/z 124-to-m/z 125 ratio
during HNO; deficit runs (green squares), with values between
0.18 and 0.24. Provided the stable carbonic acid concentration
in the sheath flow, the m/z 124-to-m/z 125 ratio should be
inversely proportional to the total concentration of HNO; in the
ionization region.

3.2. Enhanced detection of lower oxygenated species and
RO, radicals

Experiments conducted at HNO; deficit allowed for enhanced
detection of less oxygenated closed-shell products and RO,
radicals. This effect is observed due to the reduced competition
of sample molecules with nitric acid itself for the formation of
an adduct with the nitrate ion, NO,; . Fig. 3 presents a mass
spectrum of selected oxidation products in the benzene exper-
iment. The enhancement in sensitivity is visible as the differ-
ence between signals for deficit and excess of HNO; shown as
green and gray shaded areas respectively. Compounds with the
fewest oxygen atoms, C¢HgO, and C¢H¢Os, observe the highest
enhancement in the signal, factors of 4.3 and 3.7 respectively
(Fig. 3a and b). The enhancement is lower for CsHgOg (1.9) and
CeH3O5 (1.5) (Fig. 3¢ and d) switching to equal signals detected
in both runs for higher oxygenated products C¢HgOg_;1 (Fig. 3e-
h). This suggested that among these products, only C¢HgOg 14
are detected at the collision limit, as their detected signals
remain constant. However, it is clear that we are able to enhance
sensitivity and the signal-to-noise ratio of other compounds.
This effect of enhanced sensitivity is even more pronounced
in the naphthalene experiment with low VOC turnover and
consequently lower oxidation product signals. Fig. 4 shows

View Article Online
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closed-shell product C;oH;,0; and seven RO, radicals with 4-10
oxygen atoms for exp. 1 (see Table 1). C;oH;003 and C;oHO,
become detectable under HNO; deficit conditions, while
C;0HoOg and C;,HoOy radicals become easier to separate from
overlapping peaks. As shown in Fig. 4, most of the overlapping
peaks are constrained isotope signals from —1 m/z. For
instance, in Fig. 4b, a peak indicated in grey is a *C isotope of
C;0HgO,4. The sensitivity enhancement of the most abundant
radical C;,H,Og was almost 10-fold, while for C;,H¢O, and
C10H9O;0 an enhancement factor of 2.7 and 2.4 was observed,
respectively, which is further discussed in sections 3.3 and 3.5.
Fig. 3 and 4 demonstrate the enhanced ability of NO; -CIMS to
detect less oxygenated closed-shell products and RO, radicals.

The main reason for the increased sensitivity in the HNO;
deficit experiment is the relative increase of the NO;~ mono-
mer." In the ion source, lower neutral HNO; causes a shift in
the reagent ion cluster distribution towards more abundant free
NO;". With the increase in free NO;~, more sample molecules
(M) are ionized via simple anion (NO; ™) attachment, as opposed
to ligand switching (with HNO;-NO;™) in normal operation.
The probability of ligand switching depends exponentially on
the binding energies of the M-NO;~ and HNO3-NO; ™ clusters.
Therefore, the enhancement in sensitivity is expected for all
species, the binding energy of which with NO; ™~ is lower than
the binding energy for the HNO;-NO;™ cluster, as shown by
Hyttinen et al.’® Our experiments were especially suitable to
observe this sensitivity increase as we used HNO;-free sample
flow. High HNOj; concentrations in the sample flow relative to
the reagent ion and sample concentration would inhibit this
effect due to the sufficient number of HNO; molecules for

! lon of interest Q =10 sccm | measured spectra

HNO,

! Other ions

fit for individual peak
sum of fitted peaks

measured spectra
fit for individual peak
sum of fitted peaks

(a) | CeHgO4 (b) 'CeHsos 6(d) \ CeHsO;
30 40 | \
~ 10 ) x
20
20 5
10 2

Signal [cps]

(e) | CeHgOg (f)
10 ‘ / 4

| CeHqO,

0 0 0 0
205.8 206 206.2 221.8 222 2222 237.8 238 238.2 253.8 254 254.2

(9) CeHgO10 CeHgO1q

1

0.5
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269.8 270 270.2 2858 286 286.2 301.8 302 3022 317.8 318 318.2
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Fig. 3 Mass spectra of oxidation products formed during benzene oxidation by OH (exp. 4). 10-minute averaged mass spectra in excess and
deficit of HNOs are depicted in black and green respectively. The difference between green and gray shaded areas represents the enhancement
of the sensitivity due to the lowered HNO3z concentration. Dashed magenta curves show individual peak fits for the HNO3z deficit experiment
(Quno, = 0 sccm) and black dashed curves — are for the HNO3 excess experiment (Quno, = 10 sccm). Vertical magenta lines indicate the position
of the ion which is identified with a chemical formula (NOs~ is omitted) while other peaks are shown with gray vertical lines. The sum of all fitted
peaks to the corresponding nominal mass is shown in solid magenta and solid black lines. All species shown in panels (a—h) are closed-shell

molecules.
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Fig.4 Mass spectra of oxidation products formed during naphthalene oxidation by OH in the low RO, regime (exp. 1). The colors are the same as
in Fig. 3. Panel (a) shows a closed-shell molecule while panels (b—h) show RO, radicals that have 9 H-atom:s.

substituting the sample molecules in M-NO; ™ clusters forming
HNO;-NO; ."* Therefore, the applicability of this method is
limited to low HNO; environments.

Our ability to enhance the sensitivity of NO; -CIMS is
especially important for studying the first steps of VOC autoxi-
dation. In order to avoid excessive bimolecular reactions that
can occur specifically in laboratory simulations,* it is impera-
tive to maintain low RO, radical concentrations and shorten the
reaction times. This approach often pushes the concentration
of compounds of interest to levels below the detection limit of
CIMS. This is confirmed when we compare exp. 2 and 3 with
higher VOC turnover (and hence a higher initial RO, concen-
tration) to exp. 1 with lower VOC turnover. Exp. 1 has a lower
total concentration of oxidation products (150 cps vs. 2100-2500
cps) and a higher fraction of RO, radicals due to longer radical
lifetime (11.1% compared to 2.4% and 1.9% in exp. 2 and 3,
respectively). Moreover, some of the species shown in Fig. 4
were only detected in deficit of HNO;. As a result, running the
instrument with lower HNO; could be used as an approach for
enhancing the sensitivity of NO; -CIMS to less oxygenated
species and even helping to discover new intermediates, simi-
larly as recently achieved by Berndt.*

3.3. Relative sensitivity enhancement in benzene and
naphthalene systems

When projected to the whole array of observed oxidation
products, the sensitivity enhancement introduced in the
previous section is greater in the naphthalene oxidation system
than in benzene. Fig. 5 compares the signals for each studied
oxidation product at the deficit and excess of HNO; in the
sheath flow of the CI-inlet. Naphthalene high RO, (exp. 2) and
benzene high RO, (exp. 4) experiments are chosen as they have
the most similar experimental conditions (Fig. 2b). In Fig. 5,
both monomers and dimeric accretion products are examined.

© 2024 The Author(s). Published by the Royal Society of Chemistry

While there is a correlation of the enhancement ratio with the
number of oxygen atoms for the naphthalene oxidation prod-
ucts (Fig. 5a), none of the detected molecules appeared at the 1:
1 line, which would correspond to no enhancement. In contrast,
in the benzene system, roughly half of the products had no
enhancement in sensitivity and the dependency on oxygen atom
content is more pronounced (Fig. 5b and S37). As a result, we
conclude that a larger fraction of benzene than naphthalene
oxidation products is detected at the collision limit.

While it appears that almost no products in naphthalene
systems are detected at the collision limit, many of the species
have an enhancement ratio below 2 (Fig. S21). The lowest
enhancement ratios are observed for the following products:
CoHgO; (1.5), C1oHgOg (1.6), C1oHgOs (1.4), C1oHoOyo (1.8),
C10H10010 (1.7), CaoH150; (1.8), CaoH15015 (1.7), and CyoH4045
(1.3). Beside C,oH;50,, all these products can be classified as
HOMSs based on their oxygen content.” While the general trend
in the increased sensitivity is reproducible between the three
naphthalene experiments, one of the high RO, experiments
(exp. 3) exhibits smaller enhancements for individual ions
(Fig. S21). This could be explained by a lower m/z 124-to-m/z 125
ratio (Fig. 2b) indicating that the HNO; concentration in the
sheath flow under deficit conditions of this experiment was
higher than that in the other experiments. Fig. S21 also shows
distinct enhancement ratio profiles as a function of the specific
elemental composition. This information could provide an
insight into the type and number of functional groups or
a specific formation pathway for a given oxidation product,
though it is outside the scope of this work and only touched
briefly upon in section 3.4.

In contrast to naphthalene, most of the products in benzene
oxidation with 7 or more O-atoms were detected at the apparent
collision limit (Fig. 5b). The sensitivity of all ions but one
(C¢HgO,) increased by a factor of 5 or less, in comparison to
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many ions with an enhancement ratio of above 5 for naphtha-
lene (Fig. 5a). Fig. S31 shows a detailed pattern for all benzene
oxidation products detected. Interestingly, some of the less
oxygenated species (e.g., CsHgO, (1.3), CsHeO3 (1.0) and CcHgO3
(1.5)) had a lower sensitivity enhancement than their interme-
diately oxygenated counterparts (e.g. CsHe 04, r = 4). This is
similar to some of the naphthalene oxidation products
(Fig. S2t) and could be possibly explained by multiple oxidation
steps that add 2 or more hydroxy (-OH) groups allowing the
formation of stable adducts with the nitrate ion while the
oxygen content remains low. The strong dependence of the
binding strength on the exact geometry of the target compound
was also investigated computationally and is presented below. It
was not possible to elucidate the number of exchangeable H-
atoms (section 3.4) for less oxygenated compounds in the
benzene system due to interference from overlapping ions, and,
therefore, they are not discussed further.

The dependence of the enhancement ratio (r) on different
molecular characteristics is presented in Fig. 6. A statistically
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significant negative relationship of r is observed with the
oxygen-to-carbon ratio (O:C), the oxidation state of carbon
(OSc), lowered volatility (positive relationship with the satura-
tion concentration C*) and the number of oxygen atoms. O:C
and OSc account for differences in the amount of both carbon
and oxygen atoms though they explain r in the naphthalene
experiment the least (R*> = 0.1 and 0.12, Fig. 6a and b). In the
naphthalene system, r is best explained by log;,(C*) and the
number of oxygen atoms (R* = 0.37 and 0.36, Fig. 6¢ and d), in
line with the finding by Hyttinen et al. (2018)** that binding
enthalpies correlate well with the number of O-atoms. For the
benzene experiment, all parameters perform similarly, with the
number of O-atoms being the best predictor of r (R* = 0.48,
Fig. 6d). The slopes of the linear models in Fig. 6 are similar
between the two VOC systems, and higher r in the naphthalene
experiment is further evident. Strikingly, even compounds
classified as ultra-low volatility organic compounds (ULVOC) in
naphthalene experiments are not detected at the collision limit,
which suggests that the detection of naphthalene oxidation
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Fig. 6 Sensitivity enhancement ratio as a function of (a) O: C, (b) OSc, (c) base 10 logarithm of saturation concentration in pg m~—>, and (d)
number of oxygen atoms. In this figure, experiments 2 and 4 are compared (Table 1). Regression coefficients are listed in Table S4.7 In panel (c),

the following notations are used: VOC for volatile organic compounds, |-

for intermediate volatility, S- for semi low volatility, L- for low volatility,

EL- for extremely low volatility, and ULVOC for ultra-low volatility organic compounds (VOC, IVOC, SVOC, LVOC, ELVOC, and ULVOC,

respectively).
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Table 3 Binding enthalpies of model benzene and naphthalene-derived dihydroxy compounds with the nitrate ion

System

Binding enthalpy (AH kcal mol ') with NO; ™~

Benzene-derived

OH

©/OH

OH

i "OH
OH
OH
OH
Croy™

OH

OH

1,2-Dihydroxybenzene

1,3-Dihydroxybenzene

1,4-Dihydroxybenzene

Naphthalene-derived

1,2-Dihydroxynaphthalene

§

1,4-Dihydroxynaphthalene

2,6-Dihydroxynaphthalene

products is hindered in NO; -CIMS to a larger extent than
previously understood. Some of the reasons could be that
benzene has a larger fraction of open-ring products eliminating
steric constraints in adduct formation or more functional
groups available for creating strong H-bonds.

Another plausible reason explaining why benzene oxidation
products bind more strongly to NO,;~ than naphthalene prod-
ucts is the differences in the molecular size. It is reasonable to
assume that large compounds, such as C;oH;¢Og or CoH16010,
among others, would have at least two hydroxy or hydroperoxy
functional groups needed for forming H-bonds with the
nitrate ion. However, if these groups are located on the opposite
sides of the molecule, the probability of forming H-bonds with
a small NO;™ ion is reduced. This is confirmed by our quantum
chemical calculations for a series of model dihydroxy-benzenes
and naphthalenes (Table 3). Catechol, having ortho substituted
hydroxy groups on a benzene ring, has the highest binding
enthalpy with the nitrate ion, 26.2 kcal mol~". The binding
enthalpy decreases as the OH-groups are further apart:
23.1 kecal mol™" for meta and 21.7 kcal mol ' for para

© 2024 The Author(s). Published by the Royal Society of Chemistry

oo
HO

26.2

23.1

30.6

23.9

substitutions. The same pattern is observed for dihydrox-
ynaphthalene: 1,2-dihydroxynaphthalene (ortho) has a binding
enthalpy with nitrate of 30.6 kcal mol " which decreases to 23.8
kcal mol™" for 1,4-dihydroxynaphthalene (para). It is worth
noting that the binding enthalpy with nitrate is further reduced
if the OH groups are substituted onto different aromatic rings,
though the decrease is smaller than the ortho to para decrease.
While the computational results confirm that the exact posi-
tions of the H-bond-donor groups on the molecules matter for
the binding enthalpy and, hence, sensitivity, dihydroxynaph-
thalenes bind more strongly to nitrate than dihydroxybenzenes.
This is in contrast to what we see in our experiments (Fig. 5) and
suggests that the real oxidation products are very different from
these model compounds causing better detection of benzene
oxidation products compared to naphthalene. In addition to the
size of the oxidation products and the relative position of the
functional groups, the number of functional groups available
for H-bonding may also play a role and is investigated in the
following section.
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3.4. Relating enhancement ratio to the number of
exchangeable H

As mentioned above, it is known that at least two strong H-bond
donor groups are needed to detect a compound with high
sensitivity as an adduct with NO3;~ in NO; -CIMS. One way to
estimate the number of such H-bond donor groups is to
determine the number of exchangeable hydrogens in the
molecule. Fig. 7 and 8 show D,0 addition experiments in which
exchangeable H-atoms get replaced with deuterium, D, for the
naphthalene and benzene systems, respectively. As a result, by
monitoring the shift in the ion's mass, we can estimate the
number of functional groups that can form hydrogen bonds
with the nitrate ion.

When analyzing D,O experiments, some potential biases
should be kept in mind. For instance, neighboring peaks that
can also exchange H-atoms to D-atoms may overlap with the
compound of interest. As a result, the products that are shown
in Fig. 7 and 8 are selected based on the minimal interference
from other compounds found at smaller m/z. If the ion's signal
during D,O addition is split between two or more D-containing
ions at different m/z, it is most plausible to conclude that several
structural isomers are formed in the dry system. The following
analysis compares the sensitivity enhancement ratios in both
VOC systems with the number of exchangeable hydrogens.

The naphthalene experiment (Fig. 7) shows a somewhat
inconsistent trend in the monomer region between the
enhancement ratio (marked here as r) and the number of
exchangeable hydrogens. Most of the products that reliably
stood out exchanged 2 H-atoms with r ranging from 16.1 to 1.8
and no relationship to the number of O-atoms. C;,HgO5 mostly
exchanged only one H and its sensitivity enhanced as a result of
HNO; reduction by a factor of 9. This shows that NO; -CIMS

[T1Dry experiment 1D, 0 addition
r=8.9 C10H805 0.2

SE.JLM »hjl\ n 0';

268 270 272 274 276

r=16.1

View Article Online

Paper

can also be suitable to detect species with only one OH/OOH
group, though with much reduced sensitivity, and thus the
modified HNO; deficit set-up is especially useful. This is in
contrast to the widely accepted two groups minimum require-
ment under normal Cl-inlet operation (as understood from
Hyttinen et al.**). Many of the HOM dimeric accretion products,
Cz0H1507, Cy0H1509, CoH1g019, Cz0H15011, and CyoHig013,
exchanged more than 2 hydrogens, on average from 2.5 to 3.5,
which was consistent with the increase in the number of
O-atoms (7 to 13) and decrease in the enhancement ratio (3.3 to
1.5). Notably, even though these dimers would have 3 or 4
groups with available H-atoms to bind with NO; ™, they are not
detected at the collision limit suggesting that the large size of
these C,, molecules with H-bond donating groups being further
apart may hinder the clustering probability. Alternatively, C,o
could lose the clustering ability with NO;~ due to strong
internal hydrogen bonding, which would decrease their detec-
tion sensitivity.

The oxidation products in the benzene system (Fig. 8), as in
naphthalene, exchanged one to four hydrogen atoms. However,
the sensitivity enhancement was much lower. For instance,
CeHO, exchanged 1 H and its r was 4.3, while C;,HgO5 also
exchanged 1 H in the naphthalene experiment (Fig. 7) but its r
was 8.9. Monomer CgHgOg exchanged 2 and 3 H-atoms while
CeHgO4 exchanged 1 to 4 H-atoms, while both had a sensitivity
enhancement of near 1. A more consistent trend could be seen
for benzene dimer products, similarly to the naphthalene
system. The dimer exchanged 2, 3 or 4 H-atoms with r consis-
tently decreasing as the number of exchangeable hydrogen
atoms increased. Specifically, C1,H140g, C1,H1409, C12H14011,
and C;,H;,0,, mostly moved 2 ion mass units and had r equal
to 1.1-1.5. On the other hand, dimers C;,H;4,019, C1,H14015,

0.4 =3, C20H1806

N L\kk/ﬂf\ "

C10H1004

el

254 256 258 260 262

414 416 418 420 422

r=9.4 C10HgOs r=18 C20H1804 0156 C20H1808
> 0.2 .
— 05 0.05 >
g | Wil
O, 0 1 A 0 0 JL ™ 1.1'44 sl flh. b .h“
T‘v:s 316 318 320 322 324 382 384 386 388 390 446 448 450 452 454
.(%7 r=2.8 CooH1g05 0.1 =32 C20H1807 0.1 =33 C20H1809

0.05 .

0
398 400 402 404 406
C10H9010

0.5 =22 r=2.0

0.05

>

0
348 350 352 354 356

0.05 E
>
0

430 432 434 436 438

494 496 498 500 502

0.05

0

462 464 466 468 470
=15 C20H18013

0.02
0.01 Vel
0

526 528 530 532 534

C20H18011

>

m/z

Fig.7 D,O addition experiment in the naphthalene oxidation system. The spectrum for the dry experiment is shown in black while the spectrum
for D,O addition is shown in red. The arrows indicate the shift in the peak position as a response to H-atoms being substituted by heavy
hydrogen, D-atoms. The origin of the first arrow shows the product of interest, the composition of which is marked on each subplot, while the
number of arrows indicates the observed number of exchangeable hydrogens. Grey arrows indicate that the ion signal got split into several ions
with different D-atoms. Near complete H — D conversion was achieved in this experiment, which was verified by the shift of the HNOsNOz~

reagent ion into DNO3zNOs3 ™. Reported r values are from exp. 1.
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Fig. 8 D,O addition experiment in the benzene oxidation system. The colors and notations are as in Fig. 7. The ions C152H1409, C12H14010, and
C15H14043 have overlapping peaks with negative mass defects at the corresponding m/z 364, 380, and 428. Reported r is from exp. 4.

and C,,H,,0,3 exchanged more than 2 H-atoms and their » was
1.0-1.1. Overall, the comparison of the two VOC systems with
addition of heavy water showed that the enhancement ratio is
not a good predictor for the absolute number of OH/OOH
groups (hydroxy, hydroperoxy, peroxy acid or carboxylic acid
groups) in the oxidation products. The higher number of oxygen
atoms makes molecules more polar and hence strengthens the
H-bonds with the reagent ion.”* This is why the r would rather
correlate with the number of oxygen atoms than the number of
exchangeable hydrogens (Fig. 6d). However, it is clear that
neither the oxygen number nor the number of exchangeable
H-atoms is a perfect predictor of the sensitivity enhancement
ratio and hence likely also of absolute sensitivity. The potential
relationship between r and instrumental sensitivity is further
discussed in section 3.6.

3.5. Implications for detecting high molecular weight
compounds

The sections above focused on exploring the change in detec-
tion sensitivities of monomers and dimeric accretion oxidation
products as a response to change in the HNO; concentration in
the inlet. In addition, in exp. 2 and 3, we also detected adducts
corresponding to accretion products of three or four oxidation
product units. In these experiments, trimers and tetramers were
also detected with higher signals when the HNO; concentration
was lowered (Fig. 9). Trimers and tetramers with corresponding
formulae C30Hj6-2805-15 and C4oH36040-15 are either covalently
bonded products or molecular clusters. Out of all our experi-
ments, they only appeared in high RO, naphthalene runs (exp. 2
and 3) and due to the lack of variability in the elemental
composition, it is plausible to assume that they are clusters. For
instance, in exp. 2, C5oH;304 is the most abundant dimer and
C4oH360;, is the most abundant tetramer, which is a direct sum
of two of the dimers. This is also supported by the lack of
detected C,o RO, radicals needed for formation of covalently

© 2024 The Author(s). Published by the Royal Society of Chemistry

bonded accretion products. Further investigation of the origin
of these products is a subject of future studies and they are
referred to as clusters in the context of this study.

The trimers and tetramers in exp. 2 experienced a mean
sensitivity enhancement of 5.6 and 3.2 respectively compared to
9.0 and 3.1 for monomers and dimers. Based on this result, it is
clear that also very large organic clusters are not detected at
a maximum sensitivity. Therefore, it is likely that their
concentration could be underestimated. While it is possible
that the composition of these particular clusters is not repre-
sentative of real atmospheric clusters, it is very likely that by
decreasing the HNOj; concentration in the CI-inlet we could
increase the sensitivity of NO; -CIMS to different large clusters
that can form for instance during initial steps of new particle
formation. The clusters in the real atmosphere are present in
very small concentrations and are prone to fragmentation
inside the CIMS.** Increasing the sensitivity henceforth may
allow for better detection, identification and characterization of
ambient-relevant clusters. This hypothesis would need further
exploration in the laboratory and in the field.

3.6. Implications for quantification

As shown above, many of the oxidation products were not
detected at the collision limit in NO; -CIMS under normal
operation as their signal increased with the decreased nitric
acid concentration. Even for the most oxidized naphthalene
products, the measured concentrations can apparently be
underestimated if the calibration factor obtained for sulfuric
acid is applied. HOMs formed in naphthalene oxidation may be
underestimated by at least a factor of 4, while in benzene - by
a factor of 1.3 (see Table 1). Moreover, some of the molecules in
naphthalene oxidation that can be determined as extremely low-
or ultra-low volatility organic compounds (ELVOC or
ULVOC)**?¢ are still not detected at the collision limit. This is in
contrast to the assumption used in the literature for correcting
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Fig. 9 Trimers (a) and tetramers (b) observed in the high RO, naphthalene experiment (exp. 2). Note that sensitivity enhancement is greater for

trimers than for tetramers.

the sensitivities towards less oxygenated products when calcu-
lating the particle growth rates (e.g. Trostl et al''). While
generally the volatility-based approach is physically justified,
determining the relationships with absolute instrumental
sensitivities may be more complicated.

We observed some relationship between the number of O-
atoms, the number of exchangeable H-atoms and the
enhancement of the sensitivity as a response to the lowered
HNO; concentration. This relationship is clearer for more
oxygenated products (Fig. S1 and S27). It is plausible to
hypothesize that the exact enhancement ratio may provide
information about the relative binding enthalpies between the
sample molecules and NO; . If the concentration of nitrate
reagent ions, (HNO3),,NO;3 ™, is much higher than that of the
detected oxidation product, then the enhancement ratio should
only depend on the ability of the organic oxidation product to
steal the nitrate ion from the nitric acid-nitrate cluster, which in
turn is dependent on the cluster formation energy. This rela-
tionship also follows computations conducted for this CIMS set-
up by Hyttinen et al.*® Iyer et al. developed the idea further and
showed the relationship between cluster binding enthalpy and
absolute sensitivity for iodide-based CIMS.** If the relationship
between the sensitivity enhancement ratio and instrumental
sensitivity is established, it will greatly aid in quantification of
both HOMs and other oxidation products detected by NO; -
CIMS.

To address similar issues for iodide ion-based CIMS cali-
bration, Lopez-Hilfiker et al.*® relied on the voltage scanning
method. By increasing the voltage difference between the
skimmer of the first quadrupole and the entrance to the second
quadrupole, dV; in the collision-dissociation chamber (CDC) of
the CIMS, they were able to measure Vs, for each ion, a voltage
value that causes the loss of 50% of the ion signal. Using
modelled enthalpies for molecule-ion adducts, a calibration
curve is developed for relating Vs, to sensitivity. Potentially, our
method with varying HNO; concentrations could be equivalent
in predicting the binding enthalpies of different organic
oxidation products with NO;~ with the important advantage of
enhanced signals, as opposite to the reduced signal. Further

1378 | Environ. Sci.: Atmos., 2024, 4, 1368-1381

tests comparing these two potentially complementary methods
are necessary.

Directly relating the observed enhancement ratio to the
instrumental sensitivity may be challenging due to the specific
limitations of the CIMS instrument. The largest challenge is
that the enhancement in the signal will depend on the HNO;
concentration in the ionization region. In other words, the ratio
will vary between different inlets or experiments conducted far
apart in time. This issue could be overcome with further inlet
development. For instance, an inlet with lowered wall memory
effects in which HNO; can be added at varying concentrations
in a controlled manner could help make comparison in time
and between instruments more robust. In addition, knowing
the absolute HNO; concentration will help in modeling the
corresponding charging efficiency in such CIMS set-ups.

Another challenge in determining the sensitivities for prod-
ucts of organic oxidation is posed by the presence of isomers.
This follows also from Fig. 7 and 8, in which some of the
molecules with the same chemical formula exchanged different
numbers of hydrogens with D,0. As a result, the sensitivity
enhancement ratio for a given ion composition is a weighted
sum of enhancement ratios of all of its isomers. The presence of
isomers will complicate the comparison of the modeled and
measured results, as well as relationships between the r and
oxygen content, the O: C ratio and other parameters. However,
this method may be helpful in estimating bulk HOM
concentrations.

While Berndt et al.*® showed that nitrate ion-based CIMS is
not sensitive to o- and B-pinene OH oxidation products when
compared to acetate ion-based CIMS, it seems to be different in
aromatic systems. Ultimately, the sensitivity is dictated by the
stereochemical structure of the multifunctional product of
a chain reaction, emphasizing the importance of detailing the
exact oxidation mechanisms. Many of the benzene oxidation
products are detected at the collision limit in excess of HNOj3,
while almost none of the naphthalene products are. However,
the exact formation pathways of these compounds matter. If the
amount of multigeneration oxidation is modified, the sensi-
tivity may also be affected. It is possible that very few organic

© 2024 The Author(s). Published by the Royal Society of Chemistry
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oxidation products have collision-limited sensitivity in NO; -
CIMS, and the current method can be used to gauge this effect.

4 Conclusions

We conducted benzene and naphthalene oxidation experiments
in which we detected the oxidation products using nitrate-based
CIMS at two different reagent HNO; concentrations. By running
chemical ionization at HNO; deficit, we could detect a wider
range of less oxygenated products, including early generation
peroxy radicals. This can especially assist in detection of species
in experiments with lower reactant concentrations. Addition-
ally, some of the ions were only detected at a deficit of nitric acid
vapor and were not detected under normal operating
conditions.

With less neutral HNO; in the ionization region to compete
with the adduct formation with NO; ™, we observed enhanced
sensitivity for most of the organic species. This enhancement
was larger for naphthalene than benzene oxidation products
suggesting that sensitivity is lower for naphthalene products.
One of the possible reasons is that the larger naphthalene
oxidation products have H-bond donor groups that are further
apart causing lower binding energies with NO; . This general
trend was confirmed by quantum chemical computations: the
compounds with OH groups further apart had lower binding
energies with NO; ™. Additionally, for products with the same
number of exchangeable H-atoms, naphthalene oxidation
products had higher enhancement than benzene products.
Other plausible reasons for lower sensitivity enhancement in
the benzene system include the higher relative abundance of
ring-opened products eliminating steric effects when forming
adducts with NO; ™ as well as the higher relative strength of the
H-bond donor functional groups.

The observed enhancement (especially for naphthalene-
derived compounds) has an implication on how we determine
the sensitivity of NO; -CIMS and the uncertainty of the esti-
mated yields. For instance, HOM yields for naphthalene could
be underestimated at least by a factor of 4. It is clear that some
of the products that are approximated to belong to ultra-low and
extremely low volatility classes are also not detected at the
collision limit. No enhancement was observed for many
benzene oxidation products with 7 or more oxygen atoms but
only for a few most-oxygenated accretion products in the
naphthalene system, meaning that these were detected at the
collision limit in normal inlet operation (excess HNOj3). This has
implications on our ability to determine the composition and
concentration of low-volatility products in systems with high
aerosol-forming potential in the atmosphere, such as naph-
thalene and a-pinene. We suggest that reduction of HNOj; in the
inlet could be used as a method for inferring similar informa-
tion on sensitivity in other experiments and systems.

Our results show that not all accretion products are detected
at the collision limit. For example, the sensitivity of trimer and
tetramer species was enhanced by the decreased HNO;
concentration. This suggests that the concentrations of accre-
tion products in the atmosphere are likely underestimated by
NO; -CIMS measurements. In addition, it is possible that by

© 2024 The Author(s). Published by the Royal Society of Chemistry
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decreasing the nitric acid vapor concentration in the inlet, we
can detect molecular clusters in the real atmosphere that are
not observed under normal instrument operation. However,
more experiments are needed to confirm this.

By checking the number of exchangeable hydrogens through
introducing heavy water to the flow reactor, we show that the
oxidation products that display no enhancement in the signal
had exchanged 2 or more hydrogens. However, the signal of
naphthalene oxidation products that exchanged even 3 or 4
hydrogens had still an enhancement of a factor of 1.5-2.2. On
the other hand, some compounds with only 1 available H-bond
donor were also detected, contradicting the common assump-
tion that 2 H-bond donor groups are needed. The enhancement
ratio also had a negative relationship with O: C, OSc, oxygen
content and lowered volatility, though challenges exist in how to
interpret the relationship between the enhancement ratio and
the instrumental sensitivity.

We would like to emphasize that the ambient concentration
of HNO; will affect the sensitivity of the instrument for species
not detected at the collision limit and should be considered
when making ambient measurements as well as when applying
the varying HNO; method introduced in this work. Future
studies can focus on developing a well-controlled nitrate inlet
and testing the effect of HNO; deficit in biogenic VOC oxidation
systems.

Data availability

The data supporting this article have been included as part of
the ESLt

Author contributions

OG: conceptualization, formal analysis, investigation, method-
ology, visualization, writing — original draft; AK: investigation,
methodology, writing - review & editing; SJ: investigation,
writing - review & editing; SB: methodology, writing - review &
editing; NH: writing - review & editing; SI: writing - review &
editing; MR: conceptualization, formal analysis, funding
acquisition, methodology, resources, supervision, writing -
review & editing.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This study was funded by the ERC Consolidator grant ADAPT
(Autoxidation of Anthropogenic Volatile Organic Compounds
(AVOC) as a Source of Urban Air Pollution), Grant no.
101002728, Research Council of Finland CoE VILMA, Grant no.
346373, and Research Council of Finland Grant no. 355966. We
thank Bo Markussen, Data Science Lab, University of Copen-
hagen, for useful discussion on regression analysis. We thank
the tofTools team for providing tools for mass spectrometry
data analysis.

Environ. Sci.. Atmos., 2024, 4, 1368-1381 | 1379


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ea00087k

Open Access Article. Published on 15 October 2024. Downloaded on 1/9/2026 1:29:48 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Environmental Science: Atmospheres

References

1 F. Bianchi, T. Kurtén, M. Riva, C. Mohr, M. P. Rissanen,
P. Roldin, T. Berndt, J. D. Crounse, P. O. Wennberg,
T. F. Mentel, J. Wildt, H. Junninen, T. Jokinen,
M. Kulmala, D. R. Worsnop, J. A. Thornton, N. Donahue,
H. G. Kjaergaard and M. Ehn, Highly Oxygenated Organic
Molecules (HOM) from Gas-Phase Autoxidation Involving
Peroxy Radicals: A Key Contributor to Atmospheric Aerosol,
Chem. Rev., 2019, 119, 3472-3509.

2 M. Ehn, J. A. Thornton, E. Kleist, M. Sipild, H. Junninen,
I. Pullinen, M. Springer, F. Rubach, R. Tillmann, B. Lee,
F. Lopez-Hilfiker, S. Andres, I.-H. Acir, M. Rissanen,
T. Jokinen, S. Schobesberger, J. Kangasluoma,
J. Kontkanen, T. Nieminen, T. Kurtén, L. B. Nielsen,
S. Jergensen, H. G. Kjaergaard, M. Canagaratna,
M. D. Maso, T. Berndt, T. Petdjid, A. Wahner,
V.-M. Kerminen, M. Kulmala, D. R. Worsnop, J. Wildt and
T. F. Mentel, A large source of low-volatility secondary
organic aerosol, Nature, 2014, 506, 476-479.

3 M. P. Rissanen, T. Kurtén, M. Sipild, J. A. Thornton,
J. Kangasluoma, N. Sarnela, H. Junninen, S. Jergensen,
S. Schallhart, M. K. Kajos, R. Taipale, M. Springer,
T. F. Mentel, T. Ruuskanen, T. Petdjd, D. R. Worsnop,
H. G. Kjaergaard and M. Ehn, The Formation of Highly
Oxidized Multifunctional Products in the Ozonolysis of
Cyclohexene, J. Am. Chem. Soc., 2014, 136, 15596-15606.

4 M. P. Rissanen, T. Kurtén, M. Sipild, J. A. Thornton,
O. Kausiala, O. Garmash, H. G. Kjaergaard, T. Petija,
D. R. Worsnop, M. Ehn and M. Kulmala, Effects of
Chemical Complexity on the Autoxidation Mechanisms of
Endocyclic ~ Alkene  Ozonolysis Products: From
Methylcyclohexenes toward Understanding o-Pinene, J.
Phys. Chem. A, 2015, 119, 4633-4650.

5 S. Iyer, M. P. Rissanen, R. Valiev, S. Barua, J. E. Krechmer,
J. Thornton, M. Ehn and T. Kurtén, Molecular mechanism
for rapid autoxidation in o-pinene ozonolysis, Nat.
Commun., 2021, 12, 878.

6 S. Wang, R. Wu, T. Berndt, M. Ehn and L. Wang, Formation
of Highly Oxidized Radicals and Multifunctional Products
from the Atmospheric Oxidation of Alkylbenzenes, Environ.
Sci. Technol., 2017, 51, 8442-8449.

7 U. Molteni, F. Bianchi, F. Klein, I. El Haddad, C. Frege,
M. J. Rossi, J. Dommen and U. Baltensperger, Formation of
highly oxygenated organic molecules from aromatic
compounds, Atmos. Chem. Phys., 2018, 18, 1909-1921.

8 O. Garmash, M. P. Rissanen, I. Pullinen, S. Schmitt,
O. Kausiala, R. Tillmann, D. Zhao, C. Percival,
T. J. Bannan, M. Priestley, A. M. Hallquist, E. Kleist,
A. Kiendler-Scharr, M. Hallquist, T. Berndt, G. McFiggans,
J. wildt, T. F. Mentel and M. Ehn, Multi-generation OH
oxidation as a source for highly oxygenated organic
molecules from aromatics, Atmos. Chem. Phys., 2020, 20,
515-537.

9 Z. Wang, M. Ehn, M. P. Rissanen, O. Garmash, L. Quéléver,
L. Xing, M. Monge-Palacios, P. Rantala, N. M. Donahue,

1380 | Environ. Sci.. Atmos., 2024, 4, 1368-1381

View Article Online

Paper

T. Berndt and S. M. Sarathy, Efficient alkane oxidation
under combustion engine and atmospheric conditions,
Commun. Chem., 2021, 4, 1-8.

10 S. Iyer, A. Kumar, A. Savolainen, S. Barua, C. Daub,
L. Pichelstorfer, P. Roldin, O. Garmash, P. Seal, T. Kurtén
and M. Rissanen, Molecular rearrangement of bicyclic
peroxy radicals is a key route to aerosol from aromatics,
Nat. Commun., 2023, 14, 4984.

11 J. Trostl, W. K. Chuang, H. Gordon, M. Heinritzi, C. Yan,
U. Molteni, L. Ahlm, C. Frege, F. Bianchi, R. Wagner,
M. Simon, K. Lehtipalo, C. Williamson, J. S. Craven,
J. Duplissy, A. Adamov, J. Almeida, A.-K. Bernhammer,
M. Breitenlechner, S. Brilke, A. Dias, S. Ehrhart,
R. C. Flagan, A. Franchin, C. Fuchs, R. Guida, M. Gysel,
A. Hansel, C. R. Hoyle, T. Jokinen, H. Junninen,
J. Kangasluoma, H. Keskinen, J. Kim, M. Krapf, A. Kiirten,
A. Laaksonen, M. Lawler, M. Leiminger, S. Mathot,

O. Mohler, T. Nieminen, A. Onnela, T. Petéjd, F. M. Piel,

P. Miettinen, M. P. Rissanen, L. Rondo, N. Sarnela,

S. Schobesberger, K. Sengupta, M. Sipild, J. N. Smith,

G. Steiner, A. Tome, A. Virtanen, A. C. Wagner,

E. Weingartner, D. Wimmer, P. M. Winkler, P. Ye,
K. S. Carslaw, ]J. Curtius, J. Dommen, ]. Kirkby,
M. Kulmala, I. Riipinen, D. R. Worsnop, N. M. Donahue
and U. Baltensperger, The role of low-volatility organic
compounds in initial particle growth in the atmosphere,
Nature, 2016, 533, 527-531.

12 C. Mohr, J. A. Thornton, A. Heitto, F. D. Lopez-Hilfiker,
A. Lutz, 1. Riipinen, J. Hong, N. M. Donahue, M. Hallquist,
T. Petdjd, M. Kulmala and T. Yli-Juuti, Molecular
identification of organic vapors driving atmospheric
nanoparticle growth, Nat. Commun., 2019, 10, 4442.

13 T. Jokinen, M. Sipild, H. Junninen, M. Ehn, G. Lonn,
J. Hakala, T. Petdjd, R. L. I. Mauldin, M. Kulmala and
D. R. Worsnop, Atmospheric sulphuric acid and neutral
cluster measurements using CI-APi-TOF, Atmos. Chem.
Phys., 2012, 12, 4117-4125.

14 F. L. Eisele and D. J. Tanner, Measurement of the gas phase
concentration of H,SO, and methane sulfonic acid and
estimates of H,SO, production and loss in the atmosphere,
J. Geophys. Res.: Atmos., 1993, 98, 9001-9010.

15 N. Hyttinen, O. Kupiainen-Maittd, M. P. Rissanen,
M. Muuronen, M. Ehn and T. Kurtén, Modeling the
Charging of Highly Oxidized Cyclohexene Ozonolysis
Products Using Nitrate-Based Chemical Ionization, J. Phys.
Chem. A, 2015, 119, 6339-6345.

16 X.-C. He, J. Shen, S. Iyer, P. Juuti, J. Zhang, M. Koirala,
M. M. Kytokari, D. R. Worsnop, M. Rissanen, M. Kulmala,
N. M. Maier, J. Mikkild, M. Sipild and J. Kangasluoma,
Characterisation of gaseous iodine species detection using
the multi-scheme chemical ionisation inlet 2 with bromide
and nitrate chemical ionisation methods, Atmos. Meas.
Tech., 2023, 16, 4461-4487.

17 H. Finkenzeller, J. Mikkila, C. Righi, P. Juuti, M. Sipila,
M. Rissanen, D. Worsnop, A. Shcherbinin, N. Sarnela and
J. Kangasluoma, Multiphysical description of atmospheric

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ea00087k

Open Access Article. Published on 15 October 2024. Downloaded on 1/9/2026 1:29:48 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

pressure interface chemical ionisation in MION2 and Eisele
type inlets, Atmos. Meas. Tech., 2024, 17, 5989-6001.

18 ]J. Zhao, F. L. Eisele, M. Titcombe, C. Kuang and
P. H. McMurry, Chemical ionization mass spectrometric
measurements of atmospheric neutral clusters using the
cluster-CIMS, J. Geophys. Res.: Atmos., 2010, 115, D08205.

19 M. P. Rissanen, J. Mikkil4, S. Iyer and J. Hakala, Multi-
scheme chemical ionization inlet (MION) for fast switching
of reagent ion chemistry in atmospheric pressure chemical
ionization mass spectrometry (CIMS) applications, Atmos.
Meas. Tech., 2019, 12, 6635-6646.

20 A. Kiirten, L. Rondo, S. Ehrhart and J. Curtius, Calibration of
a Chemical Ionization Mass Spectrometer for the
Measurement of Gaseous Sulfuric Acid, J. Phys. Chem. A,
2012, 116, 6375-6386.

21 N. Hyttinen, R. V. Otkjer, S. Iyer, H. G. Kjaergaard,
M. P. Rissanen, P. O. Wennberg and T. Kurtén,
Computational Comparison of Different Reagent Ions in
the Chemical Ionization of Oxidized Multifunctional
Compounds, J. Phys. Chem. A, 2018, 122, 269-279.

22 M. Ehn, E. Kleist, H. Junninen, T. Petdjd, G. Lonn,
S. Schobesberger, M. Dal Maso, A. Trimborn, M. Kulmala,
D. R. Worsnop, A. Wahner, J. Wildt and T. F. Mentel, Gas
phase formation of extremely oxidized pinene reaction
products in chamber and ambient air, A¢tmos. Chem. Phys.,
2012, 12, 5113-5127.

23 J. A. Manion, R. E. Huie, R. D. Levin, D. R. Burgess Jr,
V. L. Orkin, W. Tsang, W. S. McGivern, J. W. Hudgens,
V. D. Knyazev, D. B. Atkinson, E. Chai, A. M. Tereza,
C.-Y. Lin, T. C. Allison, W. G. Mallard, F. Westley,
J. T. Herron, R. F. Hampson and D. H. Frizzell, NIST
Chemical Kinetics Database, NIST Standard Reference
Database 17, version 7.0 (web version), release 1.6.8, data
version 2015.09, National Institute of Standards and
Technology, MD, 2015.

24 H. Junninen, M. Ehn, T. Petdjd, L. Luosujdrvi, T. Kotiaho,
R. Kostiainen, U. Rohner, M. Gonin, K. Fuhrer,
M. Kulmala and D. R. Worsnop, A high-resolution mass
spectrometer to measure atmospheric ion composition,
Atmos. Meas. Tech., 2010, 3, 1039-1053.

25 N. M. Donahue, S. A. Epstein, S. N. Pandis and
A. L. Robinson, A two-dimensional volatility basis set: 1.
organic-aerosol mixing thermodynamics, Atmos. Chem.
Phys., 2011, 11, 3303-3318

26 M. Wang, D. Chen, M. Xiao, Q. Ye, D. Stolzenburg,
V. Hofbauer, P. Ye, A. L. Vogel, R. L. I. Mauldin,
A. Amorim, A. Baccarini, B. Baumgartner, S. Brilke,
L. Dada, A. Dias, J. Duplissy, H. Finkenzeller, O. Garmash,
X.-C. He, C. R. Hoyle, C. Kim, A. Kvashnin, K. Lehtipalo,
L. Fischer, U. Molteni, T. Petdjd, V. Pospisilova,
L. L. J. Quéléver, M. Rissanen, M. Simon, C. Tauber,
A. Tomé, A. C. Wagner, L. Weitz, R. Volkamer,
P. M. Winkler, J. Kirkby, D. R. Worsnop, M. Kulmala,
U. Baltensperger, J. Dommen, I. El-Haddad and
N. M. Donahue, Photo-oxidation of Aromatic
Hydrocarbons Produces Low-Volatility Organic
Compounds, Environ. Sci. Technol., 2020, 54, 7911-7921.

© 2024 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Environmental Science: Atmospheres

27 J. H. Kroll, N. M. Donahue, ]J. L. Jimenez, S. H. Kessler,
M. R. Canagaratna, K. R. Wilson, K. E. Altieri,
L. R. Mazzoleni, A. S. Wozniak, H. Bluhm, E. R. Mysak,
J. D. Smith, C. E. Kolb and D. R. Worsnop, Carbon
oxidation state as a metric for describing the chemistry of
atmospheric organic aerosol, Nat. Chem., 2011, 3, 133-139.

28 Spartan'20, Wavefunction Inc., Irvine, CA, 2020.

29 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato,
A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts,
B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov,
J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini,
F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson,
D. Ranasinghe, V. G. Zakrzewski, ]J. Gao, N. Rega,
G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, T. Vreven, K. Throssell,
J. A. Montgomery Jr, ]J. E. Peralta, F. Ogliaro,
M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin,
V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar,
J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo,
R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma,
O. Farkas, J. B. Foresman and D. ]J. Fox, Gaussian 16,
Revision C.02, Gaussian Inc., Wallingford, CT, 2016.

30 F. Neese, F. Wennmohs, U. Becker and C. Riplinger, The
ORCA quantum chemistry program package, J. Chem.
Phys., 2020, 152, 224108.

31 M. Schervish and N. M. Donahue, Peroxy radical kinetics and
new particle formation, Environ. Sci.: Atmos., 2021, 1, 79-92.

32 T. Berndt, Peroxy Radical and Product Formation in the Gas-
Phase Ozonolysis of o-Pinene under Near-Atmospheric
Conditions: Occurrence of an Additional Series of Peroxy
Radicals 0,0-C;,H;50(0,),0, with y = 1-3, J. Phys. Chem.
A, 2022, 126, 6526-6537.

33 M. Passananti, E. Zapadinsky, T. Zanca, J. Kangasluoma,
N. Myllys, M. P. Rissanen, T. Kurtén, M. Ehn, M. Attoui
and H. Vehkamiki, How well can we predict cluster
fragmentation inside a mass spectrometer?, Chem.
Commun., 2019, 55, 5946-5949,

34 S. Iyer, F. Lopez-Hilfiker, B. H. Lee, J. A. Thornton and
T. Kurtén, Modeling the Detection of Organic and
Inorganic Compounds Using Iodide-Based Chemical
Ionization, J. Phys. Chem. A, 2016, 120, 576-587.

35 F. D. Lopez-Hilfiker, S. Iyer, C. Mohr, B. H. Lee,
E. L. D'Ambro, T. Kurtén and J. A. Thornton, Constraining
the sensitivity of iodide adduct chemical ionization mass
spectrometry to multifunctional organic molecules using
the collision limit and thermodynamic stability of iodide
ion adducts, Atmos. Meas. Tech., 2016, 9, 1505-1512.

36 T. Berndt, S. Richters, T. Jokinen, N. Hyttinen, T. Kurtén,
R. V. Otkjer, H. G. Kjaergaard, F. Stratmann,
H. Herrmann, M. Sipild, M. Kulmala and M. Ehn, Hydroxyl
radical-induced formation of highly oxidized organic
compounds, Nat. Commun., 2016, 7, 13677.

Environ. Sci.. Atmos., 2024, 4, 1368-1381 | 1381


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ea00087k

	Enhanced detection of aromatic oxidation products using NO3tnqh_x2212 chemical ionization mass spectrometry with limited nitric acidElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ea00087k
	Enhanced detection of aromatic oxidation products using NO3tnqh_x2212 chemical ionization mass spectrometry with limited nitric acidElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ea00087k
	Enhanced detection of aromatic oxidation products using NO3tnqh_x2212 chemical ionization mass spectrometry with limited nitric acidElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ea00087k
	Enhanced detection of aromatic oxidation products using NO3tnqh_x2212 chemical ionization mass spectrometry with limited nitric acidElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ea00087k
	Enhanced detection of aromatic oxidation products using NO3tnqh_x2212 chemical ionization mass spectrometry with limited nitric acidElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ea00087k
	Enhanced detection of aromatic oxidation products using NO3tnqh_x2212 chemical ionization mass spectrometry with limited nitric acidElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ea00087k
	Enhanced detection of aromatic oxidation products using NO3tnqh_x2212 chemical ionization mass spectrometry with limited nitric acidElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ea00087k
	Enhanced detection of aromatic oxidation products using NO3tnqh_x2212 chemical ionization mass spectrometry with limited nitric acidElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ea00087k
	Enhanced detection of aromatic oxidation products using NO3tnqh_x2212 chemical ionization mass spectrometry with limited nitric acidElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ea00087k
	Enhanced detection of aromatic oxidation products using NO3tnqh_x2212 chemical ionization mass spectrometry with limited nitric acidElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ea00087k

	Enhanced detection of aromatic oxidation products using NO3tnqh_x2212 chemical ionization mass spectrometry with limited nitric acidElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ea00087k
	Enhanced detection of aromatic oxidation products using NO3tnqh_x2212 chemical ionization mass spectrometry with limited nitric acidElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ea00087k
	Enhanced detection of aromatic oxidation products using NO3tnqh_x2212 chemical ionization mass spectrometry with limited nitric acidElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ea00087k
	Enhanced detection of aromatic oxidation products using NO3tnqh_x2212 chemical ionization mass spectrometry with limited nitric acidElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ea00087k
	Enhanced detection of aromatic oxidation products using NO3tnqh_x2212 chemical ionization mass spectrometry with limited nitric acidElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ea00087k


