



## At the heart of open access for the global chemistry community

## **Editor-in-chief**

Russell J Cox

Leibniz Universität Hannover, Germany

## We stand for:



**Breadth** We publish work in all areas of chemistry and reach a global readership



**Quality** Research to advance the chemical sciences undergoes rigorous peer review for a trusted, society-run journal



Affordability Low APCs, discounts and waivers make publishing open access achievable and sustainable



**Community** Led by active researchers, we publish quality work from scientists at every career stage, and all countries

## **Submit your work now**

rsc.li/rsc-advances

@RSC\_Adv



Showcasing biomimicking research from Professor Nabanita Sadhukhan's laboratory, Department of Speciality Chemicals Technology, Institute of Chemical Technology, Mumbai, India.

Molybdenum-maltolate as a molybdopterin mimic for bioinspired oxidation reaction

A novel *cis*-dioxomolybdenum(vi)-maltolate [MoO<sub>2</sub>(Mal)<sub>2</sub>] was synthesized as a biomimetic model for molybdopterin cofactor. [MoO<sub>2</sub>(Mal)<sub>2</sub>] successfully catalyzes hypoxanthine to xanthine at room temperature in acetonitrile-water mixture. [MoO<sub>2</sub>(Mal)<sub>2</sub>] showed significant potential to catalyse other commercially valuable organic transformation reactions, namely controlled oxidation of toluene to benzaldehyde, and styrene to styrene oxide. Moreover, [MoO<sub>2</sub>(Mal)<sub>2</sub>] is a nontoxic compound exhibiting a prospect for application as a molybdenum supplement.



