

At the heart of open access for the global chemistry community

Editor-in-chief

Russell J Cox

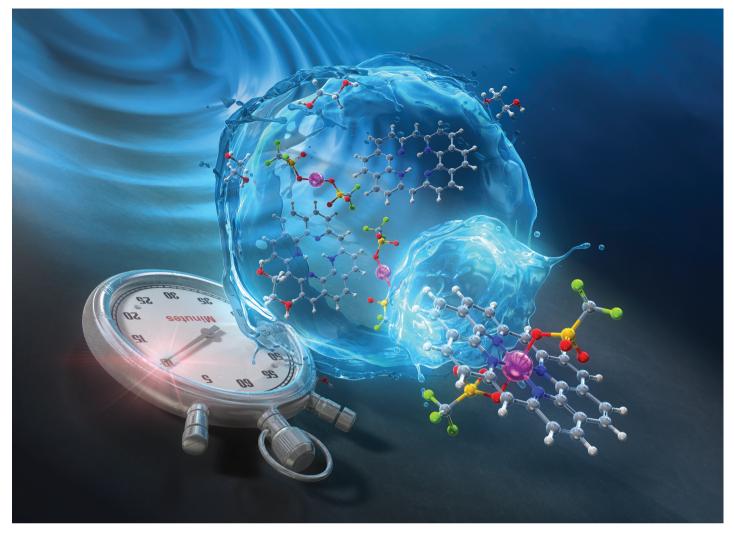
Leibniz Universität Hannover, Germany

We stand for:

Breadth We publish work in all areas of chemistry and reach a global readership

Quality Research to advance the chemical sciences undergoes rigorous peer review for a trusted, society-run journal

Affordability Low APCs, discounts and waivers make publishing open access achievable and sustainable



Community Led by active researchers, we publish quality work from scientists at every career stage, and all countries

Submit your work now

rsc.li/rsc-advances

@RSC_Adv

Showcasing research in collaboration of four groups: Makoto Moriya (Shizuoka University), Yuta Nabae (Tokyo Institute of Technology), Junya Ohyama (Kumamoto University), and Ryoichi Kojima (Asahi Kasei Corporation).

One-pot gram-scale rapid synthesis of MN₄ complexes with 14-membered ring macrocyclic ligand as a precursor for carbon-based ORR and CO₂RR catalysts

CoN $_4$, CuN $_4$, and NiN $_4$ complexes with a 14-membered ring hexaazamacrocycle ligand H $_2$ HAM were synthesised as precursors for ORR and CO $_2$ RR catalysts via a one-pot, gram-scale synthesis procedure, which involved microwave heating for only 10 min, in high purity and yield. Detailed structures of the obtained 14MR-MN $_4$ complex were revealed by single-crystal X-ray diffraction. This result showed the obtained 14MR-MN $_4$ complexes possess strong M-N bonds compared to previously reported phthalocyanine-based MN $_4$ complexes with a 16-membered ring structure.

