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Correction: Predicting small molecules solubility
Table 2 Metrics for the best models
(lower section). Values were taken
columns stand for the solubility chal
the original paper (see ref. 1). The b

Model

S

R

RF 1
DNN 1
DNNAug 1
kde4LSTMAug 1
kde8LSTMAug 1
kde10LSTMAug 1

Linear regression2

UG-RNN3 0
RF w/CDF descriptors4 0
RF w/Morgan ngerprints5

Consensus6 0
GNN7 ∼
SolvBert8 0
SolTranNeta,9

SMILES-BERTb,10

MolBERTb,11

RTb,12

MolFormerb,13

a Has overlap between training and
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Correction for ‘Predicting small molecules solubility on endpoint devices using deep ensemble neural

networks’ by Mayk Caldas Ramos and Andrew D. White, Digital Discovery, 2024, 3, 786–795, https://

doi.org/10.1039/D3DD00217A.
The header row in Table 2 is incorrect. The correct version of Table 2 is displayed below. Please note that the references are
reproduced here as ref. 1–13.
found in the current study (upper section) and for other state-of-the-art models available in the literature
from the cited references. Missing values stand for entries that the cited authors did not study. SolChal
lenges. 2_1 represents the tight dataset (set-1), while 2_2 represents the loose dataset (set-2) as described in
est-performing metrics value are displayed in bold

olChal1 SolChal2_1 SolChal2_2 ESOL

MSE MAE RMSE MAE RMSE MAE RMSE MAE

.121 0.914 0.950 0.727 1.205 1.002

.540 1.214 1.315 1.035 1.879 1.381

.261 1.007 1.371 1.085 2.189 1.710

.273 0.984 1.137 0.932 1.511 1.128 1.397 1.131

.247 0.984 1.044 0.846 1.418 1.118 1.676 1.339

.095 0.843 0.983 0.793 1.263 1.051 1.316 1.089

0.75
.90 0.74
.93

0.64
.91
1.10 0.91 1.17
.925

1.004 1.295 2.99
0.47
0.531
0.73
0.278

test sets. b Pre-trained model was ne-tuned on ESOL.
The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.
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