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The header row in Table 2 is incorrect. The correct version of Table 2 is displayed below. Please note that the references are
reproduced here as ref. 1-13.

Table 2 Metrics for the best models found in the current study (upper section) and for other state-of-the-art models available in the literature
(lower section). Values were taken from the cited references. Missing values stand for entries that the cited authors did not study. SolChal
columns stand for the solubility challenges. 2_1 represents the tight dataset (set-1), while 2_2 represents the loose dataset (set-2) as described in
the original paper (see ref. 1). The best-performing metrics value are displayed in bold

SolChal1 SolChal2_1 SolChal2_2 ESOL
Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE
RF 1.121 0.914 0.950 0.727 1.205 1.002
DNN 1.540 1.214 1.315 1.035 1.879 1.381
DNN g 1.261 1.007 1.371 1.085 2.189 1.710
kded5e™ 1.273 0.984 1.137 0.932 1.511 1.128 1.397 1.131
kde8og" 1.247 0.984 1.044 0.846 1.418 1.118 1.676 1.339
kde10x3g"" 1.095 0.843 0.983 0.793 1.263 1.051 1.316 1.089
Linear regression® 0.75
UG-RNN? 0.90 0.74
RF w/CDF descriptors® 0.93
RF w/Morgan fingerprints® 0.64
Consensus® 0.91
GNN’ ~1.10 0.91 117
SolvBert® 0.925
SolTranNet®® 1.004 1.295 2.99
SMILES-BERT?° 0.47
MolBERT?!! 0.531
RT>!2 0.73
MolFormer”'? 0.278

“ Has overlap between training and test sets. ? Pre-trained model was fine-tuned on ESOL.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.
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