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complementary reaction conditions†

Sofia L. Sivilotti, ab David M. Friday a and Nicholas E. Jackson *ac

Chemical reaction conditions capable of producing high yields over diverse reactants are a desired

component of nearly all chemical and materials discovery campaigns. While much work has been done

to discover individual general reaction conditions, any single conditions are necessarily limited over

increasingly diverse chemical spaces. A potential solution to this problem is to identify small sets of

complementary reaction conditions that, when combined, cover a larger chemical space than any one

general reaction condition. In this work, we analyze experimentally derived datasets to assess the relative

performance of individual general reaction conditions vs. sets of complementary reaction conditions. We

then propose and benchmark active learning methods to efficiently discover these complimentary sets

of conditions. The results show the value of active learning in identifying complementary sets of reaction

conditions and provide an avenue for improving synthetic hit rates in high-throughput synthesis campaigns.
The rise in AI methods for chemical optimization has beneted
numerous sub-elds including catalysis,1,2 drug discovery,3,4

formulation development,5 material discovery,6–8

optoelectronics,9–16 and energy storage materials.17–22 AI
methods have recently been combined with high-throughput
synthesis campaigns to rapidly explore chemical space,
discovering molecules with improved physical properties,23

leading to more photostable,13,24 more uorescent,25 and more
soluble molecules.13 A common strategy for these campaigns is
to dene a synthetically accessible chemical space, use machine
learning (ML) to select molecules from the chemical space, and
leverage high-throughput synthesis and characterization to
make and test molecules, the results of which inform the ML
algorithm's next selection of molecules. In order to synthesize
the molecules selected by the ML algorithm, these campaigns
require reaction types and conditions, which may or may not be
known, that can cover the predetermined chemical space. The
continued desire to explore broader and more diverse chemical
spaces makes ensuring synthesizability challenging.

Two common solutions to this problem are (1) to predict
specic high-yield reaction conditions tailored to reactant
chemistries, and (2) to discover general reaction conditions
capable of producing adequate yields across a large reactant
space. The former approach has been attempted with some
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success – while predictions of reaction yields have been
unsuccessful due to literature bias and low quality data,26,27

more focused attempts have had some success28,29 with new
approaches still under consideration.30 The latter approach has
also been explored with varying outcomes.31–35 However, recent
works favoring chemical diversity revealed that using a general
reaction condition was successful for approximately 40% of the
reactants recommended by the ML algorithm,24,25 and when
combined with a second general reaction condition, increased
to 60%.24 These results highlight the synthetic challenge of
campaigns covering diverse chemistries.

A third potential solution to this problem is to develop
complementary sets of reaction conditions that together cover
larger portions of chemical space than any single reaction
condition. This approach could allow individual reaction
conditions to specialize in delivering high yields over specic
regions of chemical space, allowing the combined set to cover
a broader and more diverse chemical space. The task of
selecting a minimum set of such reaction conditions that cover
a chemical space, when every reaction outcome is known
(referred to as the set cover optimization problem in computer
science36), is an NP-hard problem with exponential time
complexity scaling, but is computationally feasible over limited
chemical spaces. For cases where reaction outcomes are
unknown, an efficient process for discovering these comple-
mentary sets of reaction conditions, to our knowledge, does not
exist. Recent publication of a few large-scale synthesis datasets
providing reaction yields for a variety of reactants and condi-
tions have made exploring this question possible.31,37–39

In this work we analyze existing experimental datasets
covering diverse reactants and reaction conditions to explore
the utility of using sets of complementary reaction conditions to
© 2025 The Author(s). Published by the Royal Society of Chemistry
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provide broader coverage of reactant space. We then develop
and test active learning (AL) strategies to rapidly identify these
sets, validated on experimental datasets.
1 Methods
1.1 Reactants–condition datasets

This work uses four experimentally derived datasets that
measure reaction yield for a set of reactants (reactant space,
made of 1–2 reactant types: ra, rb) using all possible combina-
tions of reaction conditions (condition space, made of 1–3
condition parameters: ca, cb, cc, e.g. catalyst, solvent, base)
described in Table 1. Three datasets are purely experimental
data,31,37,38 and the fourth dataset uses a ML model trained on
3300 reactions to predict yields for a space of 450 000 possible
reactions.39 Each of these datasets completely enumerate the
reaction yields for every combination of reactant(s) and condi-
tion(s) (reactant–condition space).

The success of each reaction in a dataset is determined by
whether the yield is at or above a yield cutoff (described below).
Using this binary classication of reaction success, the coverage
of a reaction condition g{c} or set of conditions g{ci,cj,.} is
dened as the fraction of reactant space with a condition in the
set producing a yield greater than the yield cutoff. This binary
classication has the advantage of simplifying the denition of
success when analyzing datasets and employing AL methods,
and is also more amenable to an experimental campaign where
measuring precise yields might be costly or time consuming.
When comparing two sets with the same coverage, the smaller
set is ranked higher, as it requires fewer conditions to cover the
same amount of reactant space and can be combined with any
other condition not in the set to produce an equal or better
performing set.
1.2 Active learning

Discovering a set of complementary reaction conditions, when
reaction outcomes are not known, is a challenging task; there-
fore we have employed an AL strategy to guide the process. The
AL strategy involves (1) selecting an initial batch of reactions, (2)
experimentally determining the success of the batch of reac-
tions, (3) training a ML classier on all experimental data, (4)
predicting the expected probability of reaction success for all
reactant–condition space, (5) selecting the next batch of reac-
tions using an acquisition function, and returning to (2) and
iterating until ending the campaign. Central to this approach,
the ML classier predicts the probability of reaction success
(fr,c) for reactant(s) r and condition(s) c, where 0 is certain to
Table 1 Synthesis datasets used in this work and corresponding OHE ve

Reaction type (dataset abbreviation) Reactants

Deoxyuorination (DeoxyF)37 37ra
Palladium-catalysed C–H arylation31 (Pd-aryl) 8ra × 8rb
Ni-catalyzed aryl-halide borylation38 (Ni-boryl) 33ra
Buchwald–Hartwig39 (B–H) 50ra × 50rb

© 2025 The Author(s). Published by the Royal Society of Chemistry
fail, 1 is certain to succeed, and 0.5 is completely unknown.
Reaction sets are compared using fr,c rounded to 0 or 1 to
identify the best set of reaction conditions via combinatorial
enumeration of all possible sets up to a maximum set size. In
this work, a Gaussian Process Classier (GPC) and a Random
Forest Classier (RFC) were compared for predicting fr,c. GPC is
a standard method for classifying combinatorial spaces and
have been used for similar AL classier tasks40,41 with good
performance. RFC has recently been shown to have superior
performance in classication tasks in chemistry.42 Here, indi-
vidual reactions are described by concatenated One Hot Enco-
ded (OHE) vectors for each type of reactant and condition
parameter in the dataset (e.g. ra,., and ca,., see Table 1). This
encoding contains no physical or chemical information about
the reactions, making it the simplest and most naive reaction
representation.

To select batches of reactions that will maximally improve
the classier's ability to identify the best set of complementary
reaction conditions, a combination of explore and exploit
acquisition functions were proposed. For each acquisition
function, the selected reactions (r, c combinations) maximize
the function's value. The explore function (eqn (1)) computes
the uncertainty for a given reaction, with a probability of
success of 0.5 maximizing the function. Several exploitative
acquisition functions were tested (see ESI†), and the most
effective is presented here. This exploit function (eqn (2)) favors
reactions that use conditions (c) which complement other
conditions (ci) for high predicted coverage (g{c,ci}). Additionally,
it favors reactant(s) (r) where the other conditions are unlikely to
be successful (low fr,ci). For explanatory purposes, an example
exploit calculation and AL campaign on a toy dataset are
provided in the ESI.† All functions use the GPC or RFC model's
predicted probability of success fr,c.

Explorer,c = 1 − 2(jfr,c − 0.5j) (1)

Exploitr;c ¼
1

jCj

"
gfcg þ

X
ci˛C=fcg

gfc;cig
�
1� fr;ci

�#
(2)

To merge these strategies into a single function, the explore
and exploit functions were linearly combined using a weighting
value, a (eqn (3)).

Combinedr,c = (a)explorer,c + (1 − a)exploitr,c (3)

Following each iteration of the AL algorithm, the perfor-
mance was measured by enumerating the predicted coverage of
all possible reaction condition sets up to a specied size,
ctor length

Conditions Total reactions OHE vector length

4ca × 5 cb 740 37 + 4 + 5
24ca 1536 8 + 8 + 24
23ca × 2 cb 1518 33 + 23 + 2
3ca × 3 cb × 20cc 450 000 (3300 exp.) 50 + 50 + 3 + 3 + 20

Digital Discovery, 2025, 4, 846–852 | 847
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selecting the highest-coverage set, and reporting the true
coverage of that set.

When selecting reactions to test, batched reaction recom-
mendations are useful for accelerating discovery with fewer
iterations by testing multiple reactions in parallel. Simulations
with batch sizes ranging from 1 to 160 were tested. For simu-
lations using the combined explore–exploit strategy, each
batch's alpha values were evenly spaced from 0 to 1 to select
a range of exploratory and exploitative reactions.43 The initial
batches of reactions were selected with Latin hypercube
sampling.
Fig. 2 Histogram of the coverage of reactant space by high-coverage
reaction condition sets in the DeoxyF dataset. The bars are colored by
the number of conditions in a set. A DeoxyF reaction is considered
successful if the reaction yield exceeds 50%, corresponding to
a maximum coverage of 75% of reactant space as described in the text.
Coverage is maximized at three conditions. See Fig. S1 and S2† for
histograms for the other datasets.
2 Results and discussion
2.1 Coverage of reactant space

Fig. 1a compares how the coverage of reactant space changes
with yield cutoff when using either all reaction conditions or
only the single best reaction condition for that yield cutoff. The
difference between the coverage of the best individual condition
and all conditions (D) is plotted in Fig. 1b, showing how it varies
with dataset and cutoff. This difference consistently shows an
additional coverage of 10% of the total reactant space for cutoffs
> 50%, and reaches as high as 40%. Using this data, a yield
cutoff corresponding to 75% coverage by all reactions was
chosen for all datasets as it maximized the coverage gap D and
was used in previous optimization work.31 This large difference
in coverage provides the most opportunistic case for testing
reaction condition set AL algorithms. Furthermore, the 25% of
reactant space not covered by any reaction will test the algo-
rithm's ability to explore challenging reactants efficiently.

In all four datasets, optimizing a set of reaction conditions
allows for broader coverage of reactant space than the single
most general reaction condition, as illustrated in Fig. 2. In this
dataset, an optimal set of three reaction conditions improves
the coverage of reactant space from 62% for the most general
single reaction condition, to 75% of the reactant space.
Fig. 1 (a) Comparison of reactiant space coverage by themost general
reaction condition (dashed line) vs. all conditions (solid line) for each
dataset. Themost general condition was selected for each yield cutoff.
The plot shows the potential increase in coverage (D) from using
reaction condition sets. (b) The increase in coverage as a percent of
the total reactant space. A yield cutoff corresponding to 75% coverage
was used to determine reaction success for all datasets.

848 | Digital Discovery, 2025, 4, 846–852
Furthermore, even if an optimal reaction condition set is not
found, suboptimal sets of reaction conditions regularly
outperform the single most general reaction condition. For the
smaller three datasets, the smallest reaction set with maximal
coverage contains 3–6 reaction conditions (Fig. S1†). The anal-
ysis of the B–H dataset was limited to sets of size 4 due to
computational cost, yielding a maximum coverage of 73%,
which is close to the true maximum possible coverage of 75%
(Fig. S2†).
2.2 Optimal reaction condition sets

As shown in Fig. 3, the highest coverage set of reaction condi-
tions is typically not a simple combination of the most general
reaction conditions. While the most general conditions are
frequently included in the best sets, specic less general
complimentary conditions covering difficult reactants not
commonly covered by the general reaction conditions are oen
necessary. For producing high coverage sets in the DeoxyF
dataset (Fig. 3), the 4th and 5th ranked conditions (out of 20) are
important complementary reaction conditions for the 1st or
2nd ranked conditions. In contrast, the 3rd ranked condition is
nearly absent in high coverage sets, and the 1st and 2nd ranked
conditions are never combined in high coverage sets despite
their broader individual coverages. Similar trends were
observed in the Pd-aryl dataset, where the 2nd and 4th ranked
conditions formed a complementary pair, and in the B–H
dataset, where 11th ranked condition is present in 39/45 top
sets of size 3 (see Fig. S3†). Lastly, the Ni-boryl dataset
(Fig. S3b†) showed that the 8th ranked condition was necessary
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Grid showing the specific reaction conditions (ranked by
coverage) within the highest coverage sets of reaction conditions for
the DeoxyF dataset, with the coverage of each set on the right. The
color of each grid point corresponds to the coverage of the individual
reaction condition. For sets of two conditions, each black dot repre-
sents a third condition that could be added to the set without changing
the coverage, highlighting the value of those pairs of reactants. Black
lines divide sets of reaction conditions with different performance:
either different coverage or different numbers of conditions required.
Equivalent results for the other datasets are provided in Fig. S3.†
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for the highest coverage set of conditions, and present in half of
the sets with the next highest coverage. In all cases, the presence
of important non-general reaction conditions motivates us to
nd ways to rapidly identify these complementary sets of reac-
tion conditions.
Fig. 4 Coverage of the highest predicted set of three (or four for Ni-
boryl) reaction conditions using AL guided by several acquisition
functions across all four datasets using a RFC. Each line is the average
of 100 runs, and the shaded region shows the 95% confidence interval
of the mean. Dashed horizontal lines mark the coverage of the most
general individual condition. Black solid lines mark the maximum
possible coverage of the entire dataset while gray solid lines indicate
the maximum coverage of a set of three (or four for Ni-boryl) condi-
tions. The B–H dataset run was terminated at 1% of the space as this
corresponded to 4500 reactions.
2.3 Discovering high-coverage sets

While the prior analyses of optimal sets of reaction conditions
required full knowledge of all reaction outcomes, the most
efficient process for selecting high-coverage sets of reaction
conditions, when reaction outcomes are unknown, is unclear.
Therefore, we approached this task using the AL strategy
described previously. In general, the exploit acquisition func-
tion in eqn (2) performed better than other proposed exploit-
ative acquisition functions (Fig. S4†). The RFC outperformed
the GPC, possibly due to the RFC's ability to respond to sharp
changes in success when varying reactants or condition
parameters (Fig. S5†). Batch sizes of up to 40 reactions showed
© 2025 The Author(s). Published by the Royal Society of Chemistry
minimal performance degradation (see Fig. S6†), making the
algorithms robust to parallelization and accelerating the opti-
mization in real time. The following results used a batch size of
20 for the three smaller datasets (DeoxyF, Pd-aryl, Ni-boryl), and
40 for the B–H dataset. Fig. 4 shows true coverage of the clas-
sier's predicted best set of conditions aer gathering succes-
sive batches of reaction results as recommended by the
acquisition functions.

These results show that the exploit strategy is generally
effective for the three smaller datasets, with the explore strategy
typically showing reduced performance, and the combined
explore–exploit strategy's performance being intermediate
between the two strategies. For the sake of comparison,
previous experimental work using ML to discover a general
reaction condition (dashed lines in Fig. 4) required exploring
57% of space (300 reactions).32 The exploit acquisition func-
tion's superior performance in these three datasets is attributed
to it prioritizing challenging reactants in potentially comple-
mentary sets. This strategy either conrms that challenging
reactants are covered or quickly corrects overly optimistic
predictions, allowing it to rene its sets quickly. This approach
was especially successful for the DeoxyF and Ni-boryl datasets,
which both contained a 1-dimensional reactant space (see
Table 1). This observation indicates that reaction yields may not
correlate well with individual reactants in bi-molecular
Digital Discovery, 2025, 4, 846–852 | 849
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reactions, motivating exploration of more informative reactant
representations.

The performance of the exploit strategy on the B–H dataset
was notably diminished, with the explore strategy and even
random selection signicantly out-performing it. To better
understand the performance of the different acquisition func-
tions on the B–H dataset, we conducted additional AL
campaigns (Fig. S9†) as a function of variations in data size,
reactant space, and condition parameters. Over the large,
multidimensional spaces, explore is initially more effective than
exploit because it prioritizes reducing RFC model uncertainty,
helping it rapidly identify global trends across the reactant–
condition space. However, explore does not favor under-
standing high coverage reaction conditions, regularly
converging to a reasonably good set, and only optimizing slowly
with additional data. In contrast, the exploit algorithm only
focuses on the highest coverage conditions that have been
identied. This yields poor performance when the space is large
and highest coverage conditions are unknown, but provides
more tailored recommendations as the campaign continues.
The combined algorithm benets from the advantages of
explore and exploit, allowing for exploration at earlier times and
more focused exploration at later times, evidenced by the
combined algorithm frequently surpassing explore by the time
10% of the reaction-condition space has been tested.

An important consideration for the effectiveness of
complementary reaction conditions involves the selection of
descriptors used to characterize the reactant and catalyst spaces
in the AL campaigns. The primary results of this work utilize
OHE due to the dissimilar nature of the chemical spaces in the
four studied datasets. However, an obvious avenue for
improvement of the method would be to use more informative
molecular featurizations, such as molecular ngerprints, that
could help further navigate a broad chemical space. To explore
this direction, we repeated our AL campaigns using Daylight
molecular ngerprinting (Fig. S10 and S11†) to see if this added
chemical information within the descriptors would improve the
discovery of complementary reaction sets. Across all reaction
datasets, we did not see any signicant benet in the use of
molecular ngerprints over OHE. Subsequent dataset analysis
(Fig. S12†) showed that this was likely due to the dilution of the
ngerprint by molecular features far from the reactive site.
However, these results do not suggest that OHE is the best
featurization strategy. Previous work has shown that molecular
ngerprints, DFT calculated properties (i.e. bond orders, charge
distributions), and geometrical descriptors (i.e. steric effects,
atomic arrangements) have improved prediction of reaction
yields, and could enhance the AL strategy's ability to predict
reaction success.28,29,39 However, such metrics would likely be
unique to each dataset.

One caveat for the present study involves the combinatorial
nature of the data in the optimization campaigns. Real chem-
ical data is not necessarily combinatorial, and when consid-
ering all chemical entities that could undergo a given reaction,
the different hypothetical reactions could be non-uniform and
not possess a combinatorial structure. An interesting future
direction for the present work pertains to examining AL across
850 | Digital Discovery, 2025, 4, 846–852
larger, unstructured datasets such as USPTO or ORD; for such
a study, using a featurization other than OHE would be
essential.

3 Conclusions

By analyzing experimentally derived chemical reaction datasets
covering a variety of reactants and conditions, we have shown
that sets of complementary reaction conditions consistently
outperform the most general single reaction conditions. For all
datasets, it was found that the highest-coverage sets of reaction
conditions frequently contained certain lower-coverage condi-
tions capable of complementing the more general conditions.
Furthermore, AL algorithms were tested, demonstrating accel-
erated discovery of high-coverage sets of complementary
conditions at comparable cost to discovering single general
reaction conditions.

The most effective AL strategy for discovering high coverage
sets of reaction conditions was the exploit acquisition function.
The exploit function prioritized testing reactions of highly
complementary conditions on reactant(s) where other condi-
tions are not expected to be successful. More efficient searches
for sets of conditions could be realized by describing the reac-
tants or conditions with features relevant to the synthesis (e.g.
sterics, bond strengths, electrostatic potentials, stability of
intermediates, or solubilities).44,45

These results present an opportunity for synthetic chemists
to approach the challenge of high throughput synthesis more
systematically with improved coverage of reaction space by
exploring new reaction conditions that can cover more chal-
lenging reactants. We hope that these high coverage sets of
reaction conditions will accelerate high-throughput synthesis
campaigns by providing the highest probability of successful
synthesis with the fewest required attempted reactions. More
broadly, this AL method for set optimization can be applied to
any situation where it would be advantageous to have a small set
of ‘default’ options that are likely to produce at least one
successful hit over a wide variety of scenarios. Specically, we
believe that material processing conditions, drug and agricul-
ture formulation compositions,46 assay optimization, and
ensemble model hyper-parameter optimization could benet
from having sets of complementary conditions.
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