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etwork-state predictive
information bottleneck (GNN-SPIB) approach for
learning molecular thermodynamics and kinetics†

Ziyue Zou,a Dedi Wangbc and Pratyush Tiwary *acd

Molecular dynamics simulations offer detailed insights into atomic motions but face timescale limitations.

Enhanced sampling methods have addressed these challenges but even with machine learning, they often

rely on pre-selected expert-based features. In this work, we present a Graph Neural Network-State

Predictive Information Bottleneck (GNN-SPIB) framework, which combines graph neural networks and

the state predictive information bottleneck to automatically learn low-dimensional representations

directly from atomic coordinates. Tested on three benchmark systems, our approach predicts essential

structural, thermodynamic and kinetic information for slow processes, demonstrating robustness across

diverse systems. The method shows promise for complex systems, enabling effective enhanced sampling

without requiring pre-defined reaction coordinates or input features.
1 Introduction

Molecular dynamics (MD) simulations are widely used in compu-
tational research, offering detailed spatial and temporal resolution
of atomic motions. However, standard MD faces a timescale
challenge, as processes of practical interest can take months or
years of computer time to simulate. To tackle this, enhanced
sampling methods have been developed, but most of these
approaches require collective variables (CVs) to effectively capture
key system information.1 These CVs are typically based on physical
insights or experimental data, yet constructing them becomes
challenging when transitions are unknown or difficult to sample.

In recent years, machine learning methods have been
introduced for this purpose, enabling an automated represen-
tation learning framework that can enable CV discovery and
enhanced sampling.1–15 However, many of these approaches still
require hand-craed expert-based features as input for the ML
model. To overcome this limitation, in this work, we build upon
the State Predictive Information Bottleneck (SPIB) method,16,17

enabling it to learn directly from atomic coordinates instead of
relying on hand-craed expert-based features. SPIB, a variant of
the reweighted autoencoded variational Bayes for enhanced
sampling (RAVE) method,18 is a machine learning technique for
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dimensionality reduction under a semi-supervised framework.
Its structure is based on a time-lagged variational autoencoder
where the encoder learns a low-dimensional representation by
approximating the posterior distribution of the latent variables
given the input features at time t. Unlike in a traditional
autoencoder where the decoder focuses on reconstructing the
input, the SPIB decoder is trained to predict the state labels in
the future t + Dt from the latent variables.

The performance of the original SPIB approach is signi-
cantly inuenced by two key factors. First is the quality of the
sampled trajectory, which ideally should include back-and-forth
transitions between target metastable states. This requirement
is difficult to meet in complex systems with transitions occur-
ring on long timescales, where alternative approaches like using
collections of short MD trajectories initiated at initial and nal
states can be considered.19–21

The second challenge, which we focus on in this manuscript,
is that the input variables for the SPIB model are typically
derived from prior knowledge of the system, such as expert-
based metrics like root mean square deviation (RMSD),22

radius of gyration (Rg), coordination number,23 and Steinhardt
order parameters.24 However, these hand-craed variables oen
lack transferability across systems, necessitating parameter
tuning to construct effective CVs.25

To address this challenge, efforts have been made to
construct ML-based CVs from elementary variables like pairwise
distances,26–30 yielding valuable insights. However, as noted in
ref. 28 and 29, the stability of these methods deteriorates when
the input dimension exceeds 100 when biasing, making them
less suitable for many-body systems or large biomolecules.
Additionally, this approach does not resolve symmetry issues
common, for instance, in materials science. Although pairwise
Digital Discovery, 2025, 4, 211–221 | 211
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distances are invariant to translation and rotation, the learned
latent variables in typical neural networks are not permutation-
invariant, meaning reordering input features can alter the CV
value for the same conguration. While symmetry functions can
be introduced to enforce invariance, this is oen time-
consuming.25,31,32 Moreover, ML methods with multilayer per-
ceptrons (MLPs) lack transferability to systems of different
sizes, whereas GNNs can accommodate systems of varying sizes.

Graph neural networks (GNNs) have recently gained atten-
tion because of their effectiveness in constructing representa-
tions across various applications, particularly in materials
science, due to their inherent permutation invariance.7,17,33–44 In
this work, we extend the SPIB framework by incorporating
a GNN head with different graph convolutional layers. This
specically addresses the limitations of the original SPIB algo-
rithm which needed physical-inspired hand-craed input vari-
ables, while here a meaningful representation is learned on the
y with invariant pairwise distance variables. This enables us to
apply the same framework with similar architectures across
diverse systems without relying on system-specic expert
knowledge, making it more broadly applicable. We tested our
enhanced method on three representative model systems using
our machine-learned CVs, which we call GNN-SPIB CVs. The
systems are the Lennard-Jones 7 cluster, where permutation
symmetry is crucial, and alanine dipeptide and tetrapeptide,
where high-order representations such as torsion angles are
typically required. With straightforward graph construction and
basic features, our approach successfully learns meaningful
and useful representations across all systems, using three
representative graph layers to show the exibility of our
proposed framework. Additionally, the latent variables derived
from our method provided thermodynamic and kinetic esti-
mates comparable to those obtained using metadynamics-
based methods that bias physically inspired expert-based CVs.
This demonstrates the robustness and adaptability of our
approach in overcoming previous challenges.
2 Methods

In this section, we provide an overview of the different tech-
niques we use to learn latent geometric representations and
assess their quality through enhanced sampling. Details of the
enhanced sampling methods,45–47 model system setups, neural
network training protocols, and denition of the expert-based
collective variables are provided in the ESI.†
2.1 State predictive information bottleneck

The state predictive information bottleneck (SPIB) developed by
Wang and Tiwary16 is a variant of the Reweighted Autoencoded
Variational Bayes for Enhanced sampling (RAVE) method.48

RAVE allows one to learn a meaningful representation with
a variational autoencoder (VAE) framework from biased or
unbiased data in the form of a time-series Ytn, comprising
generally of several expert-selected features as a function of
time. Building on this theme, SPIB was introduced as a more
interpretable and robust model within the RAVE family,
212 | Digital Discovery, 2025, 4, 211–221
designed to learn a meaningful low-dimensional representation
that accounts for the metastable states of most molecular
systems, where the system spends extended periods undergoing
uctuations. Instead of predicting the details of these uctua-
tions Y within the states, it is then more crucial to predict which
metastable state S the system will be in aer a time delay Dt. To
reect this, the objective function, L in SPIB, aims to predict
future state labels Stn+Dt:

L ¼ Iðz;StnþDtÞ � bIðYtn; zÞ; (1)

where Iðx; yÞ ¼ Ð
pðx; yÞlog pðx; yÞ

pðxÞpðyÞdxdy is the mutual infor-

mation between variables x and y; z is the low-dimensional
latent representation; and Stn+Dt is the state label aer a time
delay Dt. b is a tunable hyperparameter which controls regula-
rization versus prediction, while tuning the time delay Dt
controls the extent of temporal coarse-graining of the dynamics
as learned by SPIB. Aer an initial trial assignment of states
which can be very approximate, SPIB learns both the number of
metastable states and their locations in the high-dimensional
feature space Y. The number of metastable states generally
reduces as a function of the time delay Dt. Introducing this
metastability based prediction task makes SPIB latent space
physically meaningful as now they correspond to the slow
degrees of freedom, making the learned representation more
interpretable. This approach has been successfully applied to
enhancing sampling of transitions in complex systems28,49 and
to approximating the 50% committor surface between meta-
stable states.21,50
2.2 Graph and graph neural network

Graph data, denoted as G(V, E), consist of a set of nodes V and
edges E, each carrying specic geometric information. Typi-
cally, three key components dene this graph structure, which
we summarize here for the sake of completeness:

(1) Node features (Xi): each node i ˛ V is associated with
a feature vector Xi, which encapsulates the intrinsic properties
or characteristics of the node.

(2) Edge indices (i, j): the relationships between nodes are
represented by edge indices (i, j) in an adjacency matrix aij ˛ {0,
1}, dening the neighborhood structure and indicating direct
connections between nodes.

(3) Edge features (Lij): these describe the nature of the
connection between nodes i and j, capturing attributes like
weight, distance, or type.

In order to make meaningful predictions with inputs in
graph objects, a special type of neural network, known as
a graph neural network (GNN), is needed. Given the complexity
of typical graph data, layers in the GNN are designed and
trained with care. Within each graph layer, message-passing
can break into three sequential steps:

(1) At layer l, message m between node i and each neighbor
j˛N i, dened by the adjacency matrix, is computed via
a message function (eqn (2)). The embedding h0 = X at layer l =
0 will be updated via each message passing operation.

mij
l = msg{hi

l, hj
l, Lij} (2)
© 2025 The Author(s). Published by the Royal Society of Chemistry
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(2) This information from neighbors is then combined via an
aggregate function (eqn (3)), which can be as simple as
summation and averaging.

mi
l = agg{mij

l} (3)

(3) Lastly, the collected information from step 2 is integrated
into the node features through an update function (eqn (4)):51

hi
l+1 = upd{hi

l, mi
l} (4)

Note that preserving the permutation-invariant property in
GNNs requires careful design of the above operations. In this
work, we ensured that our models maintain this property by
including invariant input features and allowing invariant
operation during message passing in graph layers.
2.3 Graph-based SPIB

As introduced above, low-dimensional representations learned
by an SPIB model are capable of learning the number of
metastable states and their locations and capturing the slow
processes that govern transitions between them. These joint
capabilities differentiate SPIB from other dimensionality
reduction schemes. However, SPIB still needs a dictionary of
features Y which can collectively, in high dimensions, demar-
cate different metastable states. Dening these variables can be
challenging when studying complex systems, as they oen rely
on prior system knowledge. Using poorly distinguishable input
variables may degrade the performance of enhanced sampling
Fig. 1 Schematic of the workflow proposed in this work. Trajectories from
The batched large graph is fed into graph neural networks. The GNN-SPIB
timeDt as introduced in the original SPIB pipeline (box in black). The biasin
(box in red).

© 2025 The Author(s). Published by the Royal Society of Chemistry
methods that use SPIB-trained variables. To fully automate the
representation learning in SPIB and eliminate the need for
expert-dened input variables, we integrate a graph neural
network head into the existing SPIB model.

Integrated together, the architecture is summarized in Fig. 1,
and we refer to it as GNN-SPIB. While it is overall akin to the
original SPIB framework,16 the input trajectory is now a graph
comprising geometric representations of the simulation cell at
each time frame, whereas in SPIB, the input comprised expert-
based features. Following the same notation, we denote the
input graph as Gtn at time frame tn, and therefore the loss
function in eqn (1) is rewritten as:

L ¼ Iðz;StnþDtÞ � bIðGtn; zÞ (5)

Additionally, the high-dimensional nature of graph data
provides a better description of the simulation cell than expert-
based features. In this work, SPIB and graph models were
developed with Pytorch52 and Pytorch geometric53 packages,
respectively. Given the diversity of graph layers, we do not want
to limit ourselves to certain graph layers or GNN architecture,
and therefore, we selected three representative graph message
passing layers when studying the three model systems to
present the general applicability of our proposed framework.
We believe that the selection of graph message passing layers
can be rather exible given the fact that the basic principle,
message-passing operation is permutational-invariance, is
enforced in most of these graph layers. The only design
parameter here that requires care is that informative graph
unbiased/biased simulation are converted into timeseries graph data.
model is then trained to predict the state labels of the time frame in lag
g variables (i.e., z1 and z2) are then used in enhanced samplingmethods

Digital Discovery, 2025, 4, 211–221 | 213
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layers are always at a higher computational cost which may
largely slow down enhancing sampling methods.

Workarounds similar to ours have been used in other repre-
sentation learning methods. The closest related method is the
variational approach for Markov processes (VAMP) net,
a machine learning architecture that constructs a Markov state
model (MSM) and optimizes the VAMP-2 score derived from the
single value decomposition of the corresponding Koopman
operator.54 In VAMPnet, MD conguration coordinates are used
as input to the machine learning model. To address symmetry
issues, alignment of congurations is necessary, which is
common in computational studies of biological systems but less
applicable to materials science. As an alternative, a graph repre-
sentation was introduced into the standard VAMPnet architec-
ture.44,55,56 All GNN layers chosen in this work are E(3)-invariant
GNNs, while a more data-efficient equivariant GNN representa-
tion learning scheme was introduced recently in ref. 44.
3 Results and discussion

We evaluate the ability of the GNN-SPIB low-dimensional latent
representations to enhance sampling for three model systems.
For all three systems, we perform well-tempered metadynamics
(WTmetadD) (see the ESI† for a detailed introduction to this
method) to quantify the quality of calculated free energy and
infrequent metadynamics (imetaD) (see the ESI† for details
about this method) to calculate kinetics. The three systems are
Fig. 2 Summary of WTmetaD simulation results biasing along machine l
(a) A schematic of how the 2-d reaction coordinates, z1 and z2, the ou
features {Le} where4 denotes the concatenate operation. (b) State label
collected at kBT = 0.2˛. The highest contour line is at 10˛ and each o
WTmetaD using {z1, z2} at kBT = 0.1˛ projected onto expert-based CV sp
free energy differences from (c) between sampled metastable states com
(e) Characteristic transition times of c0 / c3 at kBT = 0.1˛ estimated
Benchmark is drawn from standard MD simulation in cyan. The shaded re
markers indicate the p-value from the K–S test, where a p-value less th

214 | Digital Discovery, 2025, 4, 211–221
Lennard-Jones 7 (LJ7, in Sec. 3.1), alanine dipeptide (Sec. 3.2)
and alanine tetrapeptide (Sec. 3.3). As a general pipeline for the
three systems, we rst train the models with data collected from
short MD simulations at higher temperatures in which all tar-
geted metastable states are visited but their sampling is
incorrect/unconverged especially for the lower temperature of
interest. We then perform WTmetaD simulations biasing along
the GNN-SPIB latent variables, compute the free energy differ-
ence between states, and compare with results from much
longer unbiased MD simulations and WTmetaD simulations
biasing conventional expert-based CVs. Aer thermodynamic
measurements with WTmetaD, we also collect kinetic infor-
mation with imetaD simulations.
3.1 Lennard-Jones 7

As suggested by its name, Lennard-Jones 7 (LJ7) consists of
a cluster of 7 Lennard-Jones particles in 2-d. It is considered one
of the simplest model systems for colloidal rearrangements,
where translational-, rotational-, and permutational-symmetry
problems are encountered, with metastable states. The free
energy landscape and state-to-state dynamics of LJ7 are well-
studied, making it an excellent model system for bench-
marking enhanced sampling methods of rare events.57

Fig. 2 summarizes the results when biasing along the 2-
dimensional GNN-SPIB latent variables, z1 and z2. The input
graphs come from snapshots of a trajectory of 1 × 107 steps at
a temperature of kBT = 0.2˛. These are composed of identical
earned reaction coordinates, z1 and z2, in the Lennard-Jones 7 system.
tput of the encoder, are computed with node features {Vn} and edge
s predicted by the model in RC space projected along the training data
f the lines is separated by 2˛. (c) Reweighted free energy surface of
ace, m2

2 and m3
3, with state definitions in colored boxes. (d) Box plots of

paring conventional long MD and WTmetaD biasing expert-based CVs.
by imetaD simulations using expert-based and machine learned RCs.
gion and error bar correspond to the 95% confidence interval. Colors in
an 0.05 suggests that the result is unreliable.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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node attributes {Xn} = {1, 1/1} and pair distance edge features
{Le}. The graph convolution layers, which are considered as one
of the simplest graph layers, are directly adopted from ref. 58
and graph embeddings are pooled with mean and max opera-
tors (see Fig. 2a in blue). The hidden embedding of graph layers
is then fed into the SPIB model (Fig. 2a in green; we have
provided detailed information about the training process in the
ESI†) for extrapolating dynamic information. Fig. 2b shows the
SPIB converged state labels as colored regions where we observe
four distinct, local minima corresponding to the four well
known structures for the LJ-7 system. In particular, these 4
congurations are c0 (hexagon), c1 (capped parallelogram 1), c2
(capped parallelogram 2), and c3 (trapezoid) (see schematics
next to Fig. 2b and the colorbar). Given the fact that the pre-
dicted state labels are correctly assigned to 4 distinct energy
minima in GNN-SPIB latent space, we believe that the trained
model is able to classify the conguration of the LJ7 cluster
when providing the corresponding geometric representation in
nodes and edges, and therefore, the encoded latent represen-
tation from GNN-SPIB can be used as a biasing variable in
metadynamics simulations.

To verify this, WTmetaD simulations were performed at kBT
= 0.1˛ biasing the 2-d reaction coordinates, z1 and z2, and the
resulting free energy surfaces are shown in (Fig. 2c). For better
evaluation of the sampling quality, we projected the free energy
surface onto the more meaningful space comprising the second
and third moments of the coordination numbers, introduced
previously in ref. 59. These expert-based CVs have been used
previously to study this system60 and thus provide a good way to
test the quality of samples generated from biasing along the
GNN-SPIB, which is physically less meaningful. Four distinct
local minima were sampled, which is a strong indicator of good
sampling quality for this system. To further evaluate the quality
of the sampling, we tabulated the free energy differences
between the sampled congurations and the initial state, c0. As
a benchmark, we performed an additional 10 independent,
unbiased long MD simulations, 10 WTmetaD simulations
biasing the conventional CV set {m2

2, m3
3}, and 10 WTmetaD

simulations biasing the machine-learned 2D CV {z1, z2}. TheMD
simulations lasted for 1 × 109 steps, and the WTmetaD simu-
lations lasted for 1× 108 steps. Inspection of Fig. 2d reveals that
WTmetaD simulations using GNN-SPIB CV produce results
comparable to those using the expert-craed moments of
coordination number CVs (refer to the ESI† for numerical
values). Notably, no information about the coordination was
directly provided as input to the model and only the pairwise
distances of neighboring nodes were used. We further evaluate
the GNN-SPIB against conventional CVs by computing their
correlation coefficients. The results (see the ESI†) show that
both z1 and z2 have a stronger correlation to m3

3 than to m2
2.

As an even more demanding test, we ascertained the quality
of the GNN-SPIB CV in obtaining accurate kinetics through
imetaD calculations. In this task, we performed kinetic
measurements by estimating the transition time of the slowest
transition from initial state c0 to c3 using the imetaD method at
kBT = 0.1˛. We performed these 1-d imetaD simulations sepa-
rately biasing the GNN-SPIB z1 and z2. We benchmarked on
© 2025 The Author(s). Published by the Royal Society of Chemistry
characteristic transition time from reference unbiased MD
simulations (dashed line with shaded errors in Fig. 3e). We also
provide results of 1-d imetaD simulations using expert-based
CVs m2

2 and m3
3. In particular, since the 1-d projection along

m3
3 suggests that the states c0 and c3 are well-separated, we

expect m3
3 to be a better expert-based CV for biasing relative to

m2
2 as it fails to distinguish c0 from c3. Using the imetaD

method, the characteristic transition time remained robust and
accurate under various bias addition frequencies when m3

3, z1,
and z2 variables were used. Specically, we obtained transition
times of 53 829 (95% condence interval (CI): [46 282,73 303])
and 64 504 (95% CI: [52 986,77 703])

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
˛=ðm� s2Þp

when biasing
along the GNN-SPIB z1 and z2, respectively, with bias added
every 1 × 104 steps. For reference, the transition time from long
unbiased MD for the c0 / c3 transition was estimated to be 60

630.31 (95% CI [46 945, 66 598])
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
˛=ðm� s2Þp

. The numerical
values of 95% CI and the p-values of all performed simulations
are provided in the ESI.†However, when m2

2 was used in imetaD
simulations, the characteristic transition time was off by at least
one order of magnitude compared to the benchmark value, with
a p-value less than 0.05 (markers in grey in Fig. 2e). In summary,
the thermodynamic and kinetic evidence suggests that either of
our GNN-SPIB CVs shows results comparable to conventional
expert-based CVs when used in enhanced sampling.
3.2 Alanine dipeptide

While the rearrangement of the LJ7 cluster is considered
a simple model of colloidal system dynamics, the alanine
dipeptide molecule serves as a popular toy model for biomo-
lecular conformational changes. Here, we focus on transitions
in a vacuum between three conformers: C5, C7eq, and C7ax. The
set of expert-based CVs commonly used in enhanced sampling
methods for this system includes the dihedral angles f and j

(Fig. 3a).27,62 In our model, unlike the previous example, the
three elements carbon, nitrogen and oxygen in alanine dipep-
tide are one-hot encoded in their node features. Once again, we
leverage the computational efficiency of using inter-atomic
distances as edge features, similar to the LJ7 model. Although
conformational changes in biomolecules like alanine dipeptide
are generally described by high-order representations such as
torsion angles, lower-dimensional descriptors for enhanced
sampling methods can be learned through machine learning-
based dimensionality reduction on inter-atomic
distances.26,27,63,64 To increase the expressiveness of the model,
we applied a basis function to slice the edge features (refer to
the ESI† for details on this operation).43

The overall architecture remains the same as in the study of
the LJ7 cluster, but we replaced the graph convolution layers
with more informative graph attention network (GAT) convo-
lution layers, to show the robustness of our proposed frame-
work. We have provided information about the training process
and the hyperparameters used in the ESI.65† However, this does
not necessarily mean that the graph convolutional layer, which
was adopted in the LJ7 system, is not applicable here. We
trained another GNN-SPIB with the exact architecture shown in
(Fig. 2a) on alanine dipeptide data and the results showing the
Digital Discovery, 2025, 4, 211–221 | 215
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Fig. 3 Summary of WTmetaD simulation results for the alanine dipeptide system: (a) representation of the alanine dipeptide molecule61 with
definition to expert-based CVs, f and j. Graph representation is constructed with only heavy atoms and atomic labels are followed through the
assigned node index to graphs; (b) a schematic of how the reaction coordinate, {z1, z2}, is computed with node {Vn} and edge {Le} features; (c)
state label predictions in different colors from the model decoder with contour lines separated by 3 kJ mol−1; (d) reweighted free energy surface
biasing the machine learned RC at 300 K using {f, j} projection with conformer definitions in boxes; (e) free energy differences with the state
defined in (d) under different sampling schemes; and (f) kinetic measurements of the transition from (C7eq, C5) to C7ax at 300 K with imetaD
simulation. Dashed line in cyan is the benchmark MD simulation and marker points are results from imetaD using different RCs. The shaded
region and error bars are the 95% confidence intervals. p-values from the K–S test for imetaD simulations are reflected by the colors and when
the p-value is less than 0.05 (in grey), the result is unreliable.
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model's ability in distinguishing all metastable states are pre-
sented in the ESI.† Three distinct minima are shown when
projected onto the learned latent space with input data sampled
at T = 400 K (Fig. 3c), and the reweighted free energy surface in
the f, j space from WTmetaD simulations using the z1 and z2
variables is shown in Fig. 3d, where all targeted states are well-
sampled. The free energy differences between individual
conformers were tabulated and benchmarked with brute-force
MD simulations and WTmetaD simulations using f, j dihe-
drals (see Fig. 3e). The results are in good agreement, with
discrepancies of less than 1 kJ mol−1. The numerical values of
the free energy difference are reported in the ESI.† In addition,
we see a strong correlation of z1 with f and j variables and only
a moderate correlation of z2 with these two torsion angles (see
the ESI† for the scatter plot).

We then move to the more challenging validation of kinetics
through enhanced sampling. The evaluation metric of kinetics
focused on the slowest transition, C7eq / C7ax, in alanine
dipeptide, and the results are summarized in Fig. 3f. The
characteristic transition time was estimated to be 3.340 (95% CI
[2.857, 4.259]) ms, which is in accordance with ref. 66. The values
in Fig. 3f suggest that both the 1-d expert-based CV f and our
GNN-SPIB CV {z1, z2} are effective at the obtained accurate
reweighted kinetics (see the ESI† for complete reports on
kinetics measurements). j alone is known to be a poor CV for
216 | Digital Discovery, 2025, 4, 211–221
this system,66 which is reected in the inaccurate kinetics when
biasing along j irrespective of the frequency of bias deposition.
Notably, unlike the LJ7 case, we directly performed imetaD
simulations on the 2-d CV set, as 1-d imetaD simulations
biasing either z1 or z2 did not yield good estimations of transi-
tion times. This is unsurprising, as the GNN-SPIB latent vari-
ables were set and trained in 2-d, and thus the complete
information of this complex conformational change was likely
not captured by z1 or z2 alone. At a 50 ns

−1 bias addition rate (i.e.
1 Gaussian deposition every 10 000 steps), the estimated tran-
sition time is 4.424 (95% CI [3.662, 5.384]) ms, which is in
agreement with that estimated in MD simulations (see all esti-
mated values at different deposition rates in the ESI†).

We further evaluated the attention coefficients from the GAT
layers, which reect how information is exchanged during
message passing, providing insights into the system (see the
ESI† for complete attention matrices). In the rst graph atten-
tion convolution layer, long-range interactions describing
global molecular orientations, such as Cw1–Cw2 and N1–N2
distances, drew the model's attention. In contrast, local
arrangements (e.g., O1–N1 and N1–Cb distances) had high
attention weights in the second graph attention layer (see
Fig. 3a for atom labels). This suggests that, without high-order
representations of the conformation, transitions between
conformers are decoded sequentially from far to near using
© 2025 The Author(s). Published by the Royal Society of Chemistry
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pairwise distances. Additionally, edges with large attention
weights are those connected to the N1 atom, which is used to
dene the torsion angle f, indicating the importance of the f

angle over the j angle.
3.3 Alanine tetrapeptide

For our third and nal example, we study conformational
changes in a much more complicated model system, namely
alanine tetrapeptide in a vacuum. For this system, there exist at
least 8 metastable states in total. For these states, we follow the
notations from ref. 67, numbering these states as in ref. 67 as si,
i = 1/8. In particular, to capture the intricacies of alanine
tetrapeptide conformational changes, six dihedral angles are
considered important: f1, f2, f3, j1, j2, and j3 (see Fig. 4b for
their denitions). Using a similar workow as before, the
alanine tetrapeptide molecule is rst converted into graph
objects, i.e., all hydrogens are removed and C, N, and O atoms
are retained during the graph construction. The nodes in the
graph are set to be fully connected, and edge features are
dened as interatomic distances. We adopted a skip connection
scheme that allows information from all graph layers to ow to
the pooling operator, thereby improving the model's
Fig. 4 Summary of WTmetaD simulation results in the alanine tetrapep
a combination of embeddings of each graph convolution layers via skip co
the alanine tetrapeptide molecule61 with definitions of characteristic dihe
during graph construction; (c) the learned latent variable space {z1, z2}
energy surface with contours separated by 2 kJ mol−1; (d) reweighted fre
350 K projected onto {f1, f2, f3} space; (e) tabulated free energy differenc
simulations biasing {f1, f2, f3}, and WTmetaD simulations biasing {z1, z2}
simulations using different variables at 400 K. Dashed line in cyan is the
using different RCs. The shaded region and error bars are the 95% confi
reflected by the colors and when the p-value is greater than 0.05, the e

© 2025 The Author(s). Published by the Royal Society of Chemistry
expressiveness in capturing features from all metastable states.
Additionally, as shown in Fig. 4a, we considered all three typical
pooling operations: mean, max, and sum in this example.

Once again, the graph layers were switched and chosen to be
an expressive Gaussian Mixture model (see the ESI† for details
about the model).68 Similarly, we trained a GNN-SPIB with the
architecture shown in (Fig. 2a) to present the generalizability of
our approach, and the results (see the ESI†) suggest that the
model is able to identify metastable states in alanine tetrapep-
tide. Our input training data are from a 1 ms-long MD simula-
tion at 400 K, where s6 is barely sampled. These input training
data are projected onto the trained latent space {z1, z2} in Fig. 4c.
As shown by the color coding, the model successfully learned 7
out of 8 metastable states, though the states s6 and s7 remain
indistinguishable from each other. This is due to the lack of
samples from s6 during training. Nevertheless, performing
WTmetaD simulations using {z1, z2} for 200 ns at a lower
temperature of 350 K drives the system to visit all 8 metastable
states for alanine tetrapeptide. To demonstrate the quality of
our sampling, we project the trajectory onto the {f1, f2, f3}
space and label all target states in Fig. 4d. The free energy
differences between all 8 states are computed and shown in
tide system: (a) a schematic of reaction coordinate construction with
nnections before graph-level pooling operations; (b) representation of
dral angles, f1, f2, f3, j1, j2, and j3 and only heavy atoms are involved
with state labels predicted by the model on training data and the free
e energy surface of WTmetaD simulations using 2-d {z1, z2} variables at
es between all conformers from brute force MD simulations, WTmetaD
; and (f) characteristic transition times of s1 / s7 measured by imetaD
benchmark MD simulation and marker points are results from imetaD
dence intervals. p-values from the K–S test for imetaD simulations are
stimation is reliable.
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a box plot (Fig. 4e), along with two benchmark methods: stan-
dard long MD simulations and 3-d WTmetaD simulations using
{f1, f2, f3} variables. The free energy differences converge to
well-dened values, aligning with those from the benchmark
methods (Fig. 4e) (see the ESI† for details). From evaluating the
correlation between machine learned variables and conven-
tional variables, we nd that z1 and z2 show correlations with
only a few torsion angles such as f3 and j2. This suggests that
our machine learning model learned different descriptors of
conformational changes in the system compared to conven-
tional knowledge-based variable – torsion angles, such dis-
crepencies have been detailed investigated in ref. 69.

While performing 3-d biasing along {f1, f2, f3} space reveals
accurate kinetic measurements, imetaD simulations using {j1,
j2, j3} performed poorly by largely overestimating the transi-
tion time under various biasing paces. Values estimated by
imetaD simulations biasing the 2-d GNN-SPIB {z1, z2} variables
were in agreement with benchmark values and this variable
remained robust to frequent biasing deposition rates. As
summarized in the subplot of Fig. 4f, we estimated the char-
acteristic transition time from the unfolded substate s1 to the
folded substate s7 at 400 K. The timescale was estimated to be
489 (95% CI [409, 612]) ns using reference unbiased MD
simulations. Values estimated by imetaD simulations biasing
the 2-d GNN-SPIB {z1, z2} variables were 460 (95% CI [378, 618])
ns with a 500 ns−1 deposition rate (i.e. 1 Gaussian deposition
every 1000 steps), in agreement with the benchmark values and
remained robust to frequent bias deposition rates (see the ESI†
for details). Finally, while performing 3-d biasing along the {f1,
f2, f3} space reveals accurate kinetic measurements, imetaD
simulations using {j1, j2, j3} performed poorly, signicantly
overestimating the transition time under various biasing paces.
This reects how one set of expert-based CVs can signicantly
differ from another in the quality of sampling.

4 Conclusion

While enhanced sampling methods have signicantly extended
the capabilities of molecular dynamics simulations, identifying
optimal coordinates remains an ongoing challenge. Even
methods using machine learning, while somewhat automating
the process, still rely on expert-based features to be pre-selected.
In this work, we introduced a hybrid framework combining
graph neural networks and the state predictive information
bottleneck, named the GNN-SPIB approach, to automatically
learn low-dimensional representations of complex systems,
further removing this limitation. This approach allows the
model to learn congurations via graph layers while capturing
system dynamics through the past-future information
bottleneck.

We demonstrated the effectiveness of our method on three
benchmark systems: the Lennard-Jones 7 cluster, alanine
dipeptide, and alanine tetrapeptide. Each system presents
distinct challenges in learning meaningful representations,
such as the need for permutation invariance in the Lennard-
Jones cluster or high-order variables like angles for peptide
systems. By applying three representative graph message-
218 | Digital Discovery, 2025, 4, 211–221
passing layers, we showcased the robustness and exibility of
the proposed framework. Importantly, our results are not
conned to specic graph layers or architectures, underscoring
the generalizability of this approach across diverse systems.

Biasing these GNN-SPIB in WTmetaD simulations yielded
results comparable to those obtained using conventional CVs
both for the calculation of free energy surfaces and kinetic
transition times. Given the simplicity of the input features,
specically pairwise distances, we believe that this method
holds promise for complex systems where optimal reaction
coordinates for enhanced sampling methods are not known
a priori. The major computational cost of the current method
remains to be backpropagating low-dimensional representa-
tions to high-dimensional atomic coordinates, which can be
properly accelerated with GPU-support44 and/or by optimizing
the design of current models with an optimal number of
training parameters. Like other variants in the RAVE family, our
learned reaction coordinates can be iteratively improved with
better sampling, particularly for complex systems, as noted in
ref. 29. Future work could expand this approach by incorpo-
rating high-order representations such as angles or spherical
harmonics.51 Additionally, the input data for model training
need not be limited to simulations; static data from metastable
states, as demonstrated in previous studies, can also lead to
meaningful latent representations.17,19–21
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learning heralding a new development phase in molecular
dynamics simulations, Artif. Intell. Rev., 2024, 57, 102.

12 L. Müllender, A. Rizzi, M. Parrinello, P. Carloni and
D. Mandelli, Effective data-driven collective variables for
free energy calculations from metadynamics of paths,
PNAS Nexus, 2024, 3, pgae159.

13 A. Majumder and J. E. Straub, Machine Learning Derived
Collective Variables for the Study of Protein
Homodimerization in Membrane, J. Chem. Theory Comput.,
2024, 20, 5774–5783.

14 A. France-Lanord, H. Vroylandt, M. Salanne, B. Rotenberg,
A. M. Saitta and F. Pietrucci, Data-Driven Path Collective
Variables, J. Chem. Theory Comput., 2024, 20, 3069–3084.
© 2025 The Author(s). Published by the Royal Society of Chemistry
15 S.-K. Lee, S.-T. Tsai and S. C. Glotzer, Classication of
complex local environments in systems of particle shapes
through shape symmetry-encoded data augmentation, J.
Chem. Phys., 2024, 160, 154102.

16 D. Wang and P. Tiwary, State predictive information
bottleneck, J. Chem. Phys., 2021, 154, 134111.

17 Z. Zou and P. Tiwary, Enhanced Sampling of Crystal
Nucleation with Graph Representation Learnt Variables, J.
Phys. Chem. B, 2024, 128, 3037–3045.

18 Y. Wang, J. M. L. Ribeiro and P. Tiwary, Past–future
information bottleneck for sampling molecular reaction
coordinate simultaneously with thermodynamics and
kinetics, Nat. Commun., 2019, 10, 1–8.

19 B. P. Vani, A. Aranganathan, D. Wang and P. Tiwary,
AlphaFold2-RAVE: From Sequence to Boltzmann Ranking,
J. Chem. Theory Comput., 2023, 19, 4351–4354.

20 B. P. Vani, A. Aranganathan and P. Tiwary, Exploring Kinase
Asp-Phe-Gly (DFG) Loop Conformational Stability with
AlphaFold2-RAVE, J. Chem. Inf. Model., 2024, 64, 2789–2797.

21 X. Gu, A. Aranganathan and P. Tiwary, Empowering
AlphaFold2 for protein conformation selective drug
discovery with AlphaFold2-RAVE, eLife, 2024, 13, RP99702.

22 S. K. Kearsley, On the orthogonal transformation used for
structural comparisons, Acta Crystallogr., Sect. A, 1989, 45,
208–210.

23 S.-T. Tsai, Z. Smith and P. Tiwary, Reaction coordinates and
rate constants for liquid droplet nucleation: Quantifying the
interplay between driving force and memory, J. Chem. Phys.,
2019, 151, 154106.

24 P. J. Steinhardt, D. R. Nelson and M. Ronchetti, Bond-
orientational order in liquids and glasses, Phys. Rev.
B:Condens. Matter Mater. Phys., 1983, 28, 784.

25 P. Geiger and C. Dellago, Neural networks for local structure
detection in polymorphic systems, J. Chem. Phys., 2013, 139,
164105.

26 J. Rydzewski and O. Valsson, Multiscale Reweighted
Stochastic Embedding: Deep Learning of Collective
Variables for Enhanced Sampling, J. Phys. Chem. A, 2021,
125, 6286–6302.

27 L. Bonati, V. Rizzi and M. Parrinello, Data-Driven Collective
Variables for Enhanced Sampling, J. Phys. Chem. Lett., 2020,
11, 2998–3004.

28 S. Mehdi, D. Wang, S. Pant and P. Tiwary, Accelerating All-
Atom Simulations and Gaining Mechanistic Understanding
of Biophysical Systems through State Predictive Information
Bottleneck, J. Chem. Theory Comput., 2022, 18, 3231–3238.

29 S. Lee, D. Wang, M. A. Seeliger and P. Tiwary, Calculating
Protein–Ligand Residence Times through State Predictive
Information Bottleneck Based Enhanced Sampling, J.
Chem. Theory Comput., 2024, 20, 6341–6349.

30 D. Wang and P. Tiwary, Augmenting Human Expertise in
Weighted Ensemble Simulations through Deep Learning
based Information Bottleneck, J. Chem. Theory Comput.,
2024, DOI: 10.1021/acs.jctc.4c00919.

31 J. Behler and M. Parrinello, Generalized neural-network
representation of high-dimensional potential-energy
surfaces, Phys. Rev. Lett., 2007, 98, 146401.
Digital Discovery, 2025, 4, 211–221 | 219

https://doi.org/10.1021/acs.jctc.4c00919
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00315b


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
N

ov
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

0/
26

/2
02

5 
1:

46
:4

9 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
32 J. Rogal, E. Schneider and M. E. Tuckerman, Neural-
Network-Based Path Collective Variables for Enhanced
Sampling of Phase Transformations, Phys. Rev. Lett., 2019,
123, 245701.

33 D. Kuroshima, M. Kilgour, M. E. Tuckerman and J. Rogal,
Machine Learning Classication of Local Environments in
Molecular Crystals, J. Chem. Theory Comput., 2024, 20(14),
6197–6206.

34 M. Sipka, A. Erlebach and L. Grajciar, Constructing
Collective Variables Using Invariant Learned
Representations, J. Chem. Theory Comput., 2023, 19, 887–901.

35 R. S. DeFever, C. Targonski, S. W. Hall, M. C. Smith and
S. Sarupria, A generalized deep learning approach for local
structure identication in molecular simulations, Chem.
Sci., 2019, 10, 7503–7515.

36 A. Moradzadeh, H. Oliaei and N. R. Aluru, Topology-Based
Phase Identication of Bulk, Interface, and Conned
Water Using an Edge-Conditioned Convolutional Graph
Neural Network, J. Phys. Chem. C, 2023, 127, 2612–2621.

37 S. Banik, D. Dhabal, H. Chan, S. Manna, M. Cherukara,
V. Molinero and S. K. Sankaranarayanan, CEGANN: Crystal
Edge Graph Attention Neural Network for multiscale
classication of materials environment, npj Comput.
Mater., 2023, 9, 23.

38 Q. Kim, J.-H. Ko, S. Kim and W. Jhe, GCIceNet: a graph
convolutional network for accurate classication of water
phases, Phys. Chem. Chem. Phys., 2020, 22, 26340–26350.

39 M. Fulford, M. Salvalaglio and C. Molteni, DeepIce: A deep
neural network approach to identify ice and water
molecules, J. Chem. Inf. Model., 2019, 59, 2141–2149.

40 T. Xie and J. C. Grossman, Crystal graph convolutional
neural networks for an accurate and interpretable
prediction of material properties, Phys. Rev. Lett., 2018,
120, 145301.

41 P. B. Jørgensen, K. W. Jacobsen and M. N. Schmidt, Neural
message passing with edge updates for predicting
properties of molecules and materials, arXiv, 2018,
preprint, arXiv:1806.03146, DOI: 10.48550/arXiv.1806.03146.

42 J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals and
G. E. Dahl, Neural message passing for quantum
chemistry, International conference on machine learning,
2017, pp. 1263–1272.

43 K. Schütt, P.-J. Kindermans, H. E. Sauceda Felix, S. Chmiela,
A. Tkatchenko and K.-R. Müller, Schnet: A continuous-lter
convolutional neural network for modeling quantum
interactions, Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information
Processing Systems 2017, ed. I. Guyon, U. von Luxburg, S.
Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan
and R. Garnett, Long Beach, CA, USA, December 4–9, 2017,
30, pp. 991–1001.

44 J. Zhang, L. Bonati, E. Trizio, O. Zhang, Y. Kang, T. Hou and
M. Parrinello, Descriptors-free Collective Variables From
Geometric Graph Neural Networks, arXiv, 2024, preprint,
arXiv:2409.07339, DOI: 10.48550/arXiv.2409.07339.

45 O. Valsson, P. Tiwary and M. Parrinello, Enhancing
important uctuations: Rare events and metadynamics
220 | Digital Discovery, 2025, 4, 211–221
from a conceptual viewpoint, Annu. Rev. Phys. Chem., 2016,
67, 159–184.

46 A. Laio and M. Parrinello, Escaping free-energy minima,
Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 12562–12566.

47 P. Tiwary and M. Parrinello, From metadynamics to
dynamics, Phys. Rev. Lett., 2013, 111, 230602.

48 J. M. L. Ribeiro, P. Bravo, Y. Wang and P. Tiwary, Reweighted
autoencoded variational Bayes for enhanced sampling
(RAVE), J. Chem. Phys., 2018, 149, 072301.

49 N. D. Pomarici, S. Mehdi, P. K. Quoika, S. Lee, J. R. Loeffler,
K. R. Liedl, P. Tiwary and M. L. Fernández-Quintero,
Learning high-dimensional reaction coordinates of fast-
folding proteins using State Predictive information
bottleneck and Bias Exchange Metadynamics, bioRxiv,
2023, preprint, DOI: 10.1101/2023.07.24.550401.

50 D. Wang, R. Zhao, J. D. Weeks and P. Tiwary, Inuence of
Long-Range Forces on the Transition States and Dynamics
of NaCl Ion-Pair Dissociation in Water, J. Phys. Chem. B,
2022, 126, 545–551.

51 A. Duval, S. V. Mathis, C. K. Joshi, V. Schmidt, S. Miret,
F. D. Malliaros, T. Cohen, P. Liò, Y. Bengio and
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