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ulti-task scheduling system for
autonomous chemistry laboratories†

Junyi Zhou, ‡ab Man Luo,‡a Linjiang Chen,‡*a Qing Zhu, ac Shan Jiang,a

Fei Zhang,*b Weiwei Shang*b and Jun Jiang *ad

We present a multi-robot–multi-task scheduling system designed for autonomous chemistry laboratories

to enhance the efficiency of executing complex chemical experiments. Building on the herein formulated

and developed scheduling algorithms and employing a constraint programming approach, the scheduling

system optimizes task allocation across three robots and 18 experimental stations, facilitating the

coordinated and concurrent execution of experiments. The system allows for dynamic task insertion

during ongoing operations without significant disruption, enhancing laboratory efficiency and flexibility

while providing a scalable solution for high-throughput experimentation. In real-world applications

involving four diverse chemical experiments with varied step counts, step durations, and sample

throughputs, the system demonstrated its ability to reduce total execution time by nearly 40% compared

to sequential execution of individual experiments, where in-experiment tasks were already optimized for

concurrency. Our multi-robot–multi-task system represents a timely and significant advancement in

autonomous chemistry, enabling automated laboratories to conduct experiments with greater efficiency

and versatility. By reducing the time and resources required for experimentation, it accelerates the pace

of scientific discovery and offers a robust framework for developing more sophisticated autonomous

laboratories capable of handling increasingly complex and diverse scientific tasks.
Main

In recent years, the elds of chemistry and materials science
have experienced a profound transformation driven by
advances in laboratory automation and robotics.1–17 The rapid
development of sophisticated automation systems, including
high-throughput platforms, dexterous robotic arms, mobile
robots, and automated experimental stations, is propelling the
continuous evolution of autonomous chemistry laboratories.
These advancements not only signicantly shorten the time
from hypothesis formation to experimental validation but also
expand researchers' perspectives and experimental boundaries.
They provide powerful tools for addressing complex scientic
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problems, enabling research in chemistry andmaterials science
to advance at unprecedented speed and scale.

In recent years, several notable initiatives have emerged in
the eld of autonomous chemistry laboratories, also referred to
as self-driving laboratories. These initiatives encompass a wide
range of technological advancements, from programmable
Chemputers for molecular synthesis6,7 to mobile robotic
chemists capable of conducting multi-step material synthesis,
characterization, and testing.1,5 Additionally, advancements
include autonomous reaction optimization driven by large
language models (LLMs)3 and AI-coordinated self-driving labs
that facilitate asynchronous, cloud-based, and delocalized
closed-loop discovery of functional molecules.8 These auto-
mated systems, which typically operate in a “single-robot–
single-task” mode, have demonstrated signicant efficacy and
efficiency in achieving their intended goals.

Research in chemistry and materials science oen involves
complex experimental demands, requiring the execution of
multiple diverse and intricate operations within individual
tasks, as well as the ability to conduct various tasks in parallel.
Single-robot systems and single-task scheduling strategies can
struggle to meet these challenges effectively. To address these
limitations, researchers have turned to multi-robot collabora-
tive systems and multi-task parallelization strategies. For
example, Lunt et al. developed a system using three different
types of robots to collaboratively execute a complex 12-step
© 2025 The Author(s). Published by the Royal Society of Chemistry
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workow, showcasing the ability to integrate various robotic
capabilities within a single task.9 Similarly, Strieth-Kalthoff
et al. created a decentralized automated laboratory by deploy-
ing robots across four geographically separated sites, enabling
the collaborative discovery of functional materials.8 Further-
more, Fei et al. designed a general-purpose soware framework
that implements the parallel execution of diverse workows
composed of modular tasks using a greedy algorithm.15 Mean-
while, Yoo et al. proposed a closed-packing algorithm, which,
under the premise of the greedy algorithm, optimizes idle
resource utilization, improving resource efficiency in multi-task
parallel experiments.16 These examples of “multi-robot–single-
task”, “distributed-system-single-task”, and “single-robot–
Fig. 1 Conceptual diagram of the herein developed multi-robot–multi-

© 2025 The Author(s). Published by the Royal Society of Chemistry
multi-task” setups demonstrate the signicant potential of
automated laboratories to handle complex experimental tasks
more efficiently.

In conventional chemistry laboratories (Fig. 1), it is common
for multiple researchers to conduct various experiments
simultaneously. This “multi-researcher–multi-task” approach is
a core characteristic of laboratory work, as it relies on the
division of experimental resources and cooperation among
researchers to optimize resource utilization. Reproducing this
collaborative effort in an autonomous chemistry laboratory—
achieving effective and efficient collaboration in a “multi-robot–
multi-task” scenario—is crucial for advancing chemistry auto-
mation. However, it remains a signicant challenge, and to the
task system.

Digital Discovery, 2025, 4, 636–652 | 637
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best of our knowledge, no direct demonstration of such capa-
bility has been reported. For autonomous chemistry laborato-
ries to handle the parallel execution of diverse experimental
tasks with complex constraints in a coordinated manner, they
must possess strategies and capabilities to autonomously plan
the sequence and timing of specic experimental steps, resolve
resource conicts between tasks from a global perspective,
ensure rational resource allocation and efficient utilization, and
allocate tasks to multiple robots to guarantee the successful
completion of all tasks. Additionally, these systems must be
exible enough to accommodate new tasks and adapt existing
ones as they run.

Multi-robot–multi-task scheduling has been a focal research
area in the industrial sector, demonstrating signicant value in
elds such as logistics, warehousing, autonomous driving, and
intelligent workshops.18–35 In logistics and warehousing,
research and applications of multi-robot–multi-task scheduling
primarily focus on structured tasks such as pickup and
delivery,18,19 with multi-agent path nding as a central compo-
nent. Methods like Conict-Based Search (CBS)21–24 cleverly
address path conict issues that may arise when multiple
robots move simultaneously between locations. This approach
provides robust theoretical and practical support for efficient,
conict-free task execution in complex environments and has
received widespread recognition in the industry. In intelligent
workshops, multi-task scheduling is crucial due to the
complexity of mixed assembly lines and the high demand for
diverse components. Workshops must sequence the production
processes of different parts based on multiple production goals
and environmental conditions, optimizing one or more
performance metrics to enhance overall production efficiency
and resource utilization. The Job-shop Scheduling Problem
(JSP)25–30 and its derivatives—such as the Flexible Job-shop
Scheduling Problem (FJSP)25,27,31–33 and the Flexible Job-shop
Scheduling Problem with machines having Batch-processing
capacity (FJSP-B)34,35—provide a solid theoretical foundation
for solving multi-task scheduling problems in workshops.
These frameworks allow for the consideration of constraints
such as machine resources and production deadlines, ensuring
that scheduling is both efficient and adaptable to changing
demands.

In autonomous chemistry laboratories, the challenge of
parallel scheduling for various experimental tasks is analogous
to the FJSP-B scenario. Chemical experiments oen involve
numerous constraints, such as reaction temperature, stirring
speed, and reaction time, which add layers of complexity
beyond those typically encountered in machining environ-
ments. In this work, we propose a multi-robot–multi-task
scheduling system based on the FJSP-B framework that incor-
porates additional constraints specic to chemical experiments.
Our system employs a constraint programming approach to
generate scheduling schemes capable of handling multiple
experimental tasks concurrently, ensuring that all constraints
are met and that resources are optimally utilized. We consider
the transfer of experimental samples in autonomous chemistry
laboratories using mobile robots, which places high demands
on transfer efficiency and requires effective resolution of route
638 | Digital Discovery, 2025, 4, 636–652
conicts. To tackle this issue, we apply the CBS algorithm,
which efficiently resolves path conicts in multi-robot envi-
ronments, to ensure that each experimental sample is delivered
to its designated location accurately and on time, facilitating
seamless integration of the experimental process.

Our multi-robot–multi-task scheduling system provides end-
to-end automation for parsing, scheduling, and executing
concurrent experimental tasks. By assessing the laboratory's
current resources, the system efficiently processes a variety of
tasks submitted by researchers, generating optimal scheduling
plans. Tasks are dynamically assigned to multiple robots in real
time, enabling efficient parallel processing. With an interactive
graphical interface, researchers can input tasks, which are then
translated into algorithm-parsable formats, optimized, and
executed by robots. This approach offers a viable solution for
achieving intelligent scheduling, automation, and simulta-
neous execution of multiple chemical experiments in autono-
mous chemistry laboratories.

In summary, the innovations of this paper are as follows:
- We propose the FESP-B model, which is the rst to model

chemical experimental tasks with complex constraints as
a global optimization problem. Themodel aims tominimize the
overall makespan as the objective function and guides the
optimization process through a series of constraints. This
global perspective enables FESP-B to effectively handle depen-
dencies across tasks, resource limitations, and complex
synchronization requirements, thereby generating the optimal
task scheduling solution.

- Based on the FESP-B model, we further developed a multi-
robot–multi-task scheduling algorithm and successfully imple-
mented the corresponding scheduling system. By combining
the optimization results of FESP-B with the multi-robot sched-
uling algorithm, our system can automate the entire chemical
experimental process, signicantly improving the efficiency and
accuracy of laboratory operations.

Results
Multi-task scheduling

Completing a chemical experimental task involves sequentially
passing an experimental sample through specic stations for
operations such as synthesis, characterization, and testing.
Each operation contributes to the “assembly” of the nal
product or result and completing all operationsmarks the task's
completion. Incorporating batch-processing stations, like
magnetic stirring stations with parallel processing capabilities,
is essential for high-throughput experimentation. A sample
requiring magnetic stirring station, for example, can be pro-
cessed at any available station, and each station can stir
multiple samples in the same batch if the parameters—stirring
time, temperature, and rotation speed—are identical. More-
over, chemical experimental tasks oen involve multiple
parameter constraints; for example, drying operations are con-
strained by time and temperature, while centrifugation is con-
strained by time and rotation speed. The exibility in choosing
stations for samples, combined with the requirement to meet
these constraints, adds signicant complexity to the multi-task
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 An illustrative example of a multi-task scheduling problem involving three chemical experimental tasks and their scheduling process. (a)
The initial sequence derived by analysing the task sequence and laboratory resources: tasks 1 and 2 have five steps each, while task 3 has four
steps. Identical parameters for the first steps allow tasks to be performed on either WS1 or WS2, highlighting the role of redundant resources. The
second steps, which can only be done on WS3 with a capacity of 2, illustrate the impact of station capacity. For the third steps, tasks 1 and 2 differ
in time from task 3, while other parameters match. In the fourth steps, tasks 2 and 3 have different temperatures compared to task 1. These
variations demonstrate the influence of processing time and experimental conditions. The fifth step of tasks 1 and 2 must be done on WS6,
requiring an specific number of samples (i.e., 2 or 4) for balance, illustrating runtime constraints. (b) Solving the FESP-B problemwith a constraint

© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2025, 4, 636–652 | 639
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scheduling problem for chemical experiments. To address this,
we formulate the problem as a Flexible Experiment Scheduling
Problem with Batch-processing capabilities (FESP-B), drawing
inspiration from the FJSP-B in intelligent workshops. This
problem formulation is described in detail below.

Consider a laboratory with a total of m stations, represented
as WS = {WS1, WS2,/, WSm}, where each station has a corre-
sponding maximum working capacity. Some stations have
specic runtime constraints (e.g., a centrifuge station requires
samples to be placed symmetrically to ensure balance, which
imposes constraints on the number of samples it can process in
a batch). Assume there are n experimental tasks to be conducted
in the laboratory, represented as T = {T1, T2, /, Tn}. Each
specic experimental task Ti essentially consists of a series of
ordered operation steps with specic parameters. The param-
eters for each operation step include the expected processing
time for the step, a list of eligible stations where the step can be
executed, and experimental conditions other than processing
time, such as temperature settings for drying or speed settings
for magnetic stirring. The constraints that must be satised
during the experimental process are:

(1) Operation steps within the same experimental task must
be processed in sequence.

(2) At any given time, an experimental sample can only be
processed by one station.

(3) At any given time, the number of experimental samples
processed by a station must not exceed its maximum capacity.

(4) At any given time, only experimental samples with iden-
tical processing times and experimental conditions can be
handled by the same station.

(5) Each station must meet the corresponding runtime
constraints while performing the operational steps.

The goal of solving the problem is to schedule the tasks for
each station to determine the start time and end time for each
step in each experimental task, with the objective of minimizing
the maximum completion time of all experimental tasks. To
solve this optimization problem, we adopted the constraint
programming approach for the FJSP-B35,36 and adapted it to
yield a new constraint programming approach specically for
FESP-B. Details of the algorithm are provided in the ESI.†

Fig. 2 outlines the scheduling process of a multi-task
scheduling problem involving three chemical experimental
tasks with different parameters, as an illustrative example.
Fig. 2a shows the initial sequence of these tasks and highlights
the differences between them. Aer analysis, Fig. 2b depicts the
scheduling process using a constraint programming algorithm,
and Fig. 2c shows the nal scheduling results. The following
describes how contraints in Fig. 2b affect the scheduling
outcomes in Fig. 2c:
programming algorithm involves adding constraints based on task seque
optimal solutions. (c) Scheduling results for an illustrative example, consi
table, use rectangles to represent task steps, with labels Ti–Sj–WSk indica
WSk station. Start and end times are shown on the rectangle's edges, with
the last step represents the makespan. The station scheduling table's vert
task scheduling table's vertical axis shows tasks, with dashed lines distingu
execution.

640 | Digital Discovery, 2025, 4, 636–652
(1) Sequence constraints within an experimental task. This
constraint ensures that the sequence of experimental steps
within each task remains unchanged. Thus, from the perspec-
tive of each task in the scheduling table, although there may be
time gaps between steps due to other constraints, the order of
the steps is always xed and will not be disrupted.

(2) Allocation of eligible stations. This involves listing
candidate stations for each step of a specic experimental task.
The rst step of all three tasks can be processed on either WS1
or WS2. As WS1 and WS2 are single-capacity stations, each can
process only one sample (i.e., one step of a task) at a time.
However, WS1 and WS2 can process different samples, from two
different tasks, in parallel. According to the scheduling tables,
step 1 of tasks 1 and 2 are processed simultaneously onWS1 and
WS2, while step 1 of task 3 follows.

(3) Station capacity limitation. This parameter species the
number of operations a station can handle simultaneously. For
instance, WS3 has a maximum capacity of 2, so step 2 of the
three tasks cannot be processed at the same time, despite being
identical. Thus, step 2 of tasks 1 and 2 are processed rst, fol-
lowed by step 2 of task 3.

(4) Processing time of current step. This parameter indicates
the estimated processing time of the current step. For instance,
for the third step of the three tasks, the processing time for task
3 differs from tasks 1 and 2, although other parameters remain
the same. Only steps with the same processing time and
experimental conditions can be assigned to the same station for
parallel processing. Although WS4 can process up to four
samples simultaneously, the discrepancy in processing time
prevents simultaneous processing of all three tasks. Therefore,
step 3 of tasks 1 and 2 are processed rst, followed by step 3 of
task 3.

(5) Experimental conditions other than processing time.
Specic conditions are set according to each step and each
station's specication, such as temperature for drying stations,
and temperature and rotation speed for stirring stations. In the
fourth step of the three tasks, all parameters match except
temperature. Samples from tasks 2 and 3 can be processed in
the same batch due to matching temperature parameters, while
the sample from step 4 of task 1 is processed separately.

(6) Runtime constraints of stations. Some stations have
specic runtime constraints. For example, the centrifuge
station (WS6) requires a specic number of samples to be placed
symmetrically to maintain balance. Therefore, although step 4
of task 1 nishes before that of task 2, it waits until task 2 is
ready so both can be processed together, satisfying the runtime
constraint of WS6.

In the illustrative example shown in Fig. 2, by considering
and addressing all constraints, the nal completion time for
nces, constructing them into a tree, and using heuristic search to find
sting of a station scheduling table and an experimental task scheduling
ting assignments: i-th experimental task's j-th step, conducted on the
overlapping rectangles indicating parallel operations. The end time of

ical axis lists stations with capacities in brackets, while the experimental
ishing steps. A time pointer traverses the scheduling table, guiding task

© 2025 The Author(s). Published by the Royal Society of Chemistry
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conducting all tasks concurrently is optimized to 38 minutes. In
comparison, performing the same three tasks sequentially
requires a total of 84 minutes.

Since most existing multi-task scheduling algorithms are
based on greedy strategies and lack the ability to handle run-
time constraints of stations, it is difficult to make a compre-
hensive comparison between the performance of FESP-B and
these algorithms. However, ESI, Fig. S1† presents a simple
example where all tasks have no complex synchronization
requirements, allowing the greedy algorithm to execute
smoothly following a “rst-come-rst-served” principle without
violating any critical constraints. This example demonstrates
the advantage of FESP-B's global optimization through its
objective function, reducing the experimental time by 45%
compared to the local optimization of the greedy algorithm.
This indicates that even in relatively simple task environments,
FESP-B can signicantly improve experimental efficiency
Fig. 3 Simulatedmulti-robot–multi-task scheduling tables for four expe
sample transfer time, and each colour other than grey represents a diff
experimental task (i.e., sample), while the horizontal axis depicts the timeli
for individual experiments conducted sequentially, with tasks within e
execution of the different types of experiments, with all tasks scheduled

© 2025 The Author(s). Published by the Royal Society of Chemistry
through its global optimization capability, showing a clear
advantage over traditional methods.
Multi-robot–multi-task scheduling

The scheduling table provides a clear execution plan for
multiple experimental tasks, with robots acting as executors.
When executing tasks according to the scheduling table, a time
pointer traverses from the le end, guiding task execution.
Robots must retrieve samples from their stations when the
operation step's end time equals the time pointer and place
samples into stations when the start time equals the time
pointer. Since operation steps within a task are sequential,
a sample must complete the current step before beginning the
next. Therefore, at the time indicated by the time pointer,
robots rst remove all samples that need to be taken out and
then place samples that need to start their next step into the
corresponding stations.
riments using 2 mobile robots. Grey vertical lines indicate the estimated
erent type of experiment. Each tick on the vertical axis represents an
ne. Both scheduling tables share the same timeline. (a) Scheduling table
ach experiment scheduled together. (b) Scheduling table for parallel
concurrently.

Digital Discovery, 2025, 4, 636–652 | 641
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Fig. 4 Simulated scenarios of using 1 to 5 robots to automate the four
experiments shown in Fig. 3. Comparison of the overall completion
time between cross-experiment parallel scheduling and sequential-
experiment independent scheduling of the four different types of
experiments, considering varying numbers of mobile robots. The
vertical axis represents the total time to complete all four experiments,
while the horizontal axis represents the number of robots.
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In Fig. 2c, at the time point indicated by the time pointer, for
example, the robot rst removes the sample of experimental
task 3 from WS3 and the samples of tasks 1 and 2 from WS4,
then places the sample of task 3 intoWS4 and the sample of task
1 into WS5. If there is only one mobile robot, it must sequen-
tially remove samples from WS3 and WS4, and then place them
into WS4 and WS5. With two mobile robots, robot 1 can take the
sample from WS3 while robot 2 takes samples from WS4,
allowing robot 1 to place its sample into WS4 while robot 2
places its sample into WS5. This approach halves the sample
transfer time compared to a single-robot scenario. At any given
time point, samples to be removed are categorized by their
respective stations, and all samples from the same station are
assigned to the same robot. If the number of robots matches the
number of station categories, each robot is assigned to a desig-
nated station to retrieve samples. If there are fewer robots than
station categories, those handling fewer samples are assigned
additional stations. If there are more robots than station cate-
gories, some robots remain idle. Samples that need to be placed
into stations are handled by the robot carrying them. In case of
conicts where multiple robots need access to the same station,
they will take turns placing the samples.

The impact of multi-robot–multi-task scheduling was
assessed through simulations involving four types of chemical
experiments, each with different setups. Experiment 1 consisted
of 3 tasks, each with 11 steps; experiment 2 included 14 tasks,
each with 12 steps; experiment 3 comprised 4 tasks, each with
23 steps; and experiment 4 involved 15 tasks, each with 6 steps.
Together, these tasks utilized 18 different stations, with
capacities ranging from 1 to 20, and individual step processing
times varying from 3 to 720 minutes. Fig. 3 presents optimized
task scheduling tables for four types of chemical experiments,
comprising a total of 36 tasks (i.e., samples), using two mobile
robots in the laboratory. Two scenarios are considered: (1) the
four different types of experiments are conducted sequentially
with multi-robot–multi-task scheduling applied only within
each experiment (Fig. 3a); (2) a full parallel multi-robot–multi-
task scheduling is applied to all tasks across the four experi-
ments (Fig. 3b). In the rst scenario, the sequential execution
requires 1958 minutes for experiment 1 (3 tasks), 1413 minutes
for experiment 2 (14 tasks), 829 minutes for experiment 3 (4
tasks), and 324 minutes for experiment 4 (15 tasks), totalling
4524 minutes. In contrast, the full parallel scheduling requires
only 2912 minutes, reducing the total execution time to 64% of
that needed for sequential experiments and achieving signi-
cant time efficiency improvements.

Fig. 4 illustrates the positive impact of increasing the
number of mobile robots and using cross-experiment parallel
scheduling to reduce the makespan of experiments. Simulation
results show that deploying more robots in the lab improves the
efficiency of sample transfers, thereby shortening the make-
span. However, this time reduction effect diminishes as the
number of robots increases for three main reasons. First, pure
experimental times—the time required for each experiment
itself—remain unchanged, regardless of any efficiency gains in
sample transfers. ESI, Fig. S2a† shows that the essential total
duration of the four experiments, excluding sample transfer
642 | Digital Discovery, 2025, 4, 636–652
times, is 1928 minutes. Thus, even with zero transfer time, the
minimum experimental duration is still 1928 minutes. Second,
adding more robots does not proportionally enhance sample
transfer efficiency. In the scenario depicted in ESI, Fig. S2b,† at
a given time step, two samples require transfer with different
starting and ending points. With one robot, two transfers are
needed. With two robots, each robot handles one sample,
halving the transfer time. However, with three robots, only two
samples need transfer, leaving the third robot idle, and the
transfer time remains the same as with two robots. Finally, if
the experimental process is dominated by a long-duration step,
the transfer time of short-duration steps during this phase,
although inuenced by the number of robots, will not affect the
overall experimental process. As shown in the grey rectangle of
ESI, Fig. S2c,† the time required for short-duration steps may
vary with the number of robots, but this variation does not
impact the total completion time due to the lengthy waiting
period for the long-duration step that follows. These factors
create a saturation point for optimization, beyond which adding
more robots provides diminishing returns in improving time
efficiency.

Importantly, our multi-robot–multi-task scheduling system
can dynamically handle the insertion of new tasks during the
operation of existing ones. Fig. 5a illustrates the simulated
scenario of conducting a new experiment 5 aer completing the
initial four experiments, which were scheduled concurrently
using the cross-experiment parallel scheduling approach shown
in Fig. 3b. In this case, experiment 5 took 748 minutes to nish,
resulting in a total completion time of 3660 minutes for all ve
experiments. For comparison, Fig. 5b presents a simulated
scenario where the scheduling system dynamically handled the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Dynamic rescheduling upon insertion of new tasks in simulation. (a) A new experiment 5 was inserted and started after completing the
initial four experiments, adding 748 minutes to the total time. (b) The same new experiment 5 was inserted after the 800th minute and began
running in parallel with the four ongoing experiments, adding only 39 minutes to the original makespan.
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insertion of experiment 5 into the ongoing parallel execution of
the initial four experiments aer the 800th minute. When a new
experiment is inserted, a task rescheduling strategy is triggered,
and the unnished task steps from ongoing experiments are
combined with the newly added experiment for constraint
evaluation and optimization, generating a new task scheduling
table. During this process, completed task steps are excluded
from optimization, and their scheduling status remains
unchanged. Therefore, as shown in Fig. 5a and b, the sched-
uling plan before the 800th minute remains unchanged. Aer
the 800th minute, the unnished task steps from the original
schedule were rescheduled along with the newly added experi-
ment 5, resulting in changes to the task scheduling plan. Tasks
from experiment 5 began in parallel with the other experiments
shortly aer their insertion, utilizing available resources as they
became free. As a result, the overall makespan increased by only
39 minutes, just 5.2% of the increase in the scenario without
dynamic handling capability. This demonstrates that efficient
task rescheduling signicantly improves resource utilization
and overall efficiency.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Notably, the computation time for rescheduling tasks aer
an insertion does not signicantly impact the experimental
process. The speed of generating the task schedule depends on
the scale of variables, the complexity of constraints, and the
optimality of the solution. During rescheduling, completed
tasks are excluded from optimization, which signicantly
reduces the number of variables and the search space. On the
laboratory computing platform (i9-12900H), scheduling the
mixed execution of four experiments takes 20 seconds, while
rescheduling aer the insertion of experiment 5 takes only 2
seconds.
Deploying the multi-robot–multi-task scheduling system

To achieve a seamless transition from user-specied experi-
ments to the precise execution of multiple tasks in multiple
steps using multiple robots and various experimental stations,
the cross-experiment parallel multi-robot–multi-task sched-
uling system is deployed as depicted in Fig. 6. To start,
researchers submit various chemical experiments via an
Digital Discovery, 2025, 4, 636–652 | 643
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Fig. 6 Multi-robot–multi-task scheduling system deployed in our autonomous chemistry laboratory. (a) Interactive graphical user interface for
task management. (b) Multi-task scheduling module, optimizing and organizing task flows into a scheduling table. (c) Multi-robot–multi-task
scheduling module, managing the task pool and monitoring the runtime status of tasks, stations, and robots, providing scheduling decisions and
hardware commands. (d) Automated experimental stations. (e) Multi-robot system, comprising two mobile robots and one benchtop robot,
facilitating sample transfer between stations and coordinating with them to complete experiments.
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interactive graphical user interface (GUI) for task management
(Fig. 6a). These tasks are added to the task pool and processed
by the multi-task scheduling module (Fig. 6b), which optimizes
the task sequence into a scheduling table based on task inter-
dependencies and constraints. The multi-robot–multi-task
scheduling system uses this scheduling table, along with real-
time status updates of robots, stations, and operation records
(Fig. 6c), to assess status and progress for each task, assigning
the next steps to appropriate robots and stations.

Throughout task execution, a time pointer manages task
progression, incrementing with time to indicate each step from
start to completion. Task runtime status, along with system
status from the automated experimental stations (Fig. 6d) and
the multiple robots (Fig. 6e), is dynamically monitored by the
scheduling system. When robots need to transfer samples
between stations, the CBS algorithm is employed to plan
conict-free optimal paths for navigation. The interactive task
management GUI maintains real-time communication with the
scheduling system, allowing users to view task status, robot
status, station status, and operation records in real-time.

Multi-robot–multi-task scheduling system in action: real
chemical experiments

To evaluate the performance of our multi-robot–multi-task
scheduling system in practical applications within autono-
mous chemistry laboratories, we used it to orchestrate four
different types of experiments with distinct objectives and
procedures. The rst experiment involved preparing graphitic
carbon nitride (g-C3N4) using the thermal polycondensation
method with dicyandiamide as a precursor under varying
synthetic temperatures. Calcination temperatures were set at
500, 550, and 600 °C, each with a holding time of 5 hours,
including heating and cooling for a total duration of
644 | Digital Discovery, 2025, 4, 636–652
approximately 10 hours, resulting in three tasks for synthe-
sizing g-C3N4 samples. This experiment also included charac-
terizing the g-C3N4 samples and assessing their photocatalytic
hydrogen production performance, as shown in ESI, Fig. S3.†
The second experiment focused on synthesizing quinary metal–
organic high-entropy catalysts (MO-HECs) for electrocatalytic
oxygen evolution reactions. Fourteen MO-HECs were synthe-
sized by adjusting the ratios of metal ions—Co, Cu, Fe, Mn, and
Ni—while maintaining a constant total metal feedstock of
0.434 mol. The overpotential for each synthesized MO-HEC was
measured, with results given in ESI, Fig. S4.†

In the third experiment, we investigated the performance of
four binary layered double hydroxides (LDHs) with varying Ni2+/
Fe2+ ratios, exploring their potential for urea oxidation. The X-
ray diffraction patterns and electrocatalytic urea oxidation
properties of the LDHs weremeasured, as shown in ESI, Fig. S5–
S9.† The nal experiment explored the aggregation-induced
emission (AIE) properties of berberine chloride (BBR), assess-
ing AIE luminescence of BBR solutions at concentrations of 5,
10, 15, 20, and 25 mM within solvents containing tetrahydro-
furan volume fractions of 30%, 60%, and 90%. This resulted in
15 tasks, with photoluminescence spectra measured for each
BBR solution, as illustrated in ESI, Fig. S10.† These experiments
were scheduled in our autonomous chemistry laboratory,
equipped with two mobile robots, one benchtop robot, and 18
automated experimental stations. The workows for these
experiments were input and visualized in the interactive task
management GUI, as depicted in Fig. 7.

Fig. 8 illustrates the optimized scheduling results and
execution times for the four experiments based on the task
scheduling table. We performed two actual executions of the
four experiments using two approaches, sequentially conducted
and concurrently conducted, to demonstrate the capability of
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Workflows of four chemical experiments visualized in the interactive taskmanagement GUI. Experiment 1 included 11 steps across 3 tasks;
experiment 2 included 12 steps across 14 tasks; experiment 3 included 23 steps across 4 tasks; and experiment 4 included 6 steps across 15 tasks.
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our multi-robot–multi-task scheduling algorithm. The indi-
vidual execution times were 1947 minutes for experiment 1,
1316 minutes for experiment 2, 833 minutes for experiment 3,
© 2025 The Author(s). Published by the Royal Society of Chemistry
and 252 minutes for experiment 4. These experiments exhibited
signicant overlap in their requirements for the experimental
stations: experiments 2, 3, and 4 all required the magnetic
Digital Discovery, 2025, 4, 636–652 | 645
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Fig. 8 Scheduling results for the four real chemical experiments. Each scheduling table features a vertical axis where each tick represents an
experimental task and a horizontal axis indicating the precise start and end times of each step, which are the actual time recordings during the
execution of the chemical experiments in our autonomous chemistry laboratory. (a) Scheduling table for individual experiments conducted
sequentially, with tasks within each experiment scheduled together. (b) Scheduling table for parallel execution of the different experiments, with
all tasks scheduled concurrently. (c) The same scheduling table as in (b) but viewed from the perspective of the experimental stations' utility
during the execution of all the experiments and their tasks.

646 | Digital Discovery, 2025, 4, 636–652 © 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Utilization statics of the multi-robot system

Sequentially conducted;a total duration: 4348 minutes
Concurrently conducted;b

total duration: 2580 minutes

Experiment 1
(3 samples)

Experiment 2
(14 samples)

Experiment 3
(4 samples)

Experiment 4
(15 samples)

Experiments 1–4
(36 samples)

Total time (min) 1947 1316 833 252 2580
Time spent on experimentsc (min) 1914 1052 622 132 2472
Time spent on non-experiment
operationsd (min)

33 264 211 120 108

Mobile robot 1's operations/
total number of operations

42/72 (58.33%) 304/364 (83.52%) 162/208 (77.88%) 122/210 (58.10%) 604/854 (70.73%)

Mobile robot 2's operations/
total number of operations

18/72 (25.00%) 4/364 (1.10%) 14/208 (6.73%) 28/210 (13.33%) 90/854 (10.54%)

Benchtop robot's operations/
total number of operations

12/72 (16.67%) 56/364 (15.38%) 32/208 (15.38%) 60/210 (28.57%) 160/854 (18.74%)

a Statistics of the experiments shown in Fig. 8a. b Statistics of the experiments shown in Fig. 8b. c Time lapsed when at least one experimental step
was being executed. d Time lapsed when not a single experimental step was being executed; for example, all samples were being or waiting to be
transferred.
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stirring stations; all four experiments required the liquid
stations; experiments 1 and 3 both needed the PXRD station;
and experiments 2 and 3 required the aspiration station,
centrifuge station, and electrocatalytic station. When the four
experiments were conducted sequentially, in conjunction with
in-experiment multi-robot–multi-task scheduling, the total
cumulative time reached 4348 minutes (Fig. 8a). In contrast,
when multi-robot–multi-task scheduling was done fully across
the four experiments, the total execution duration reduced to
2580 minutes, achieving nearly a 40% time saving compared to
executing the experiments sequentially.

Among the experiments, 1 and 3 involved fewer tasks, while 2
and 4 handled a larger number of tasks. In terms of duration,
experiments 1 and 2 had a long initial phase (Fig. 8b, phase 1);
however, experiment 1 had relatively fewer subsequent steps,
whereas experiment 2's later part comprised numerous short
steps. Experiment 3 began with medium-duration steps fol-
lowed by short ones, similar to experiment 2. Experiment 4 had
relatively few steps, each with a short processing time. The
algorithm identied experiments 1 and 2, with their long-
duration steps, as key factors limiting overall completion
speed. To maximize time efficiency, it prioritized the 10 hour
calcination step for experiment 1 and the 12 hour magnetic
stirring step for experiment 2. The scheduling also considered
other factors, such as the single-capacity calcination station
requiring experiment 1's samples to be processed one at a time,
while the magnetic stirring station, with two units
Table 2 Comparison between the simulated and real schedules

Sequentially conducted

Experiment 1
(3 samples)

Experiment 2
(14 samples)

Simulation; total time (min) 1958 1413
Real; total time (min) 1947 1316

© 2025 The Author(s). Published by the Royal Society of Chemistry
accommodating up to 10 samples each, fully met the needs of
experiment 2. As a result, the 14 samples for experiment 2 were
batch-processed in the two magnetic stirring stations, each
processing 6 and 8 samples, respectively (Fig. 8c). In the second
phase, only experiments 1 and 3 had long-duration steps
remaining. Since the calcination station used for experiment 1
and the drying station used for experiment 3 did not conict
with the station needs of other experiments, parallel execution
was unaffected. As shown in the scheduling table, the second
phase achieved a high level of parallelism, with experiments 4
and 2 fully completed. In the third phase, experiments 1 and 3
continued in parallel until all tasks were completed.

Building on the discussion in Fig. 4, Table 1 reveals
a signicant imbalance in the workload between the twomobile
robots in both the sequential-experiment (Fig. 8a) and
concurrent-experiment (Fig. 8b) scenarios. The benchtop robot
was assigned to fewer experimental stations, which were less
frequently required by the four experiments. In contrast, the
two mobile robots served similar purposes and were treated
equivalently by the scheduling algorithms. This indicates that,
for these specic experiments, the demand for sample transfers
at any given time was relatively low, potentially underutilizing
the multi-robot system's capabilities. The ndings suggest that
further efficiency gains could be realized in scenarios involving
a larger number of short-duration steps, where the benets of
a multi-robot setup are more pronounced. By optimizing task
allocation to better leverage the capabilities of multiple robots,
Concurrently
conducted

Experiment 3
(4 samples)

Experiment 4
(15 samples)

Experiments 1–4
(36 samples)

829 324 2912
833 252 2580

Digital Discovery, 2025, 4, 636–652 | 647
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particularly in experiments with high-frequency transfers or
overlapping steps, the system could achieve even greater
throughput and efficiency.

Table 2 compares the actual execution time of four experi-
ments (Fig. 8) with the simulation time (Fig. 3), revealing
differences closely related to the logic of multi-robot–multi-task
scheduling. The execution of multi-robot–multi-task scheduling
involves two steps: rst, the task ows are optimized into a task
scheduling table; second, the task scheduling table is used to
guide the robots in transferring samples and instructing
workstation operations.

In the rst step of computing the task scheduling table, the
multi-task scheduling algorithm requires estimated processing
time parameters for each experimental step, which is a crucial
condition. Some stations, such as the magnetic stirring station,
only require timed placement and retrieval of samples, so the
actual experimental time closely aligns with the estimated
processing time. However, other stations that involve opera-
tions, such as liquid stations, lack inherent time parameters,
necessitating estimated times based on equipment actions.
This results in some discrepancies between the actual experi-
mental time and the estimated processing time used for
calculating the task scheduling table. The simulation experi-
ment adopts slightly relaxed time settings—estimated process-
ing times that most operations in the actual experiment will not
exceed. The purpose of these relaxed settings is to provide users
with a maximum acceptable experimental duration.

During sample transfer operations in the simulation exper-
iment, the transfer time for a single sample is modeled by
assigning a xed value for a robot's motion to a single station to
perform one retrieval or placement operation. In actual exper-
iments, sample transfer time varies due to differences in robotic
arm movements at each station and the robot travel time
between stations. Similarly, the simulated sample transfer time
is set to be more relaxed than the actual time.

The simulation results are based on the generated task
scheduling table, using the estimated processing experimental
time and the robot's simulated sample transfer time; while the
actual experiments are conducted strictly according to the
logical sequence of tasks planned in the generated scheduling
table, using the actual experimental time and the actual sample
transfer time to calculate the actual experimental results. In
summary, the discrepancies between the simulation results and
the actual experimental results primarily stem from two sour-
ces: (1) differences between the actual experimental time and
the estimated processing time for operational stations, and (2)
differences between the robot's actual sample transfer time and
the transfer time estimated by the simulation program. Due to
the relatively relaxed estimated processing times in the task
scheduling algorithm and the robot transfer time in the simu-
lation, the actual experimental time is shorter than the simu-
lated time in most cases.

Discussion

In this work, we have developed and implemented a multi-robot–
multi-task scheduling system for autonomous chemistry
648 | Digital Discovery, 2025, 4, 636–652
laboratories, which enables the efficient execution of complex
chemical experiments. Our system seamlessly integratesmultiple
robots and numerous experimental stations, allowing for the
coordinated and concurrent execution of diverse experimental
tasks. Through real-world application—comprising four experi-
ments with varied step counts, step durations, sample through-
puts, and other differing aspects—we demonstrated the system's
ability to signicantly reduce total execution time, achieving
nearly a 40% time saving compared to sequential execution. This
efficiency gain was realized even when the tasks within the
individual experiments were already optimized for concurrent
execution during the experiments' sequential execution.

This work offers several key contributions to the eld of
autonomous chemistry. We have adapted and expanded the
Flexible Job-shop Scheduling Problem with Batch-processing
capabilities (FJSP-B) framework to address the unique
constraints of chemical experiments, resulting in the develop-
ment of the Flexible Experiment Scheduling Problem with Batch-
processing capabilities (FESP-B) framework. This framework can
be readily deployed in other autonomous chemistry laboratories.
Building on FESP-B and employing a constraint programming
approach, we have formulated and developed a robust multi-
robot–multi-task scheduling system capable of optimizing task
allocation across multiple robots and numerous stations.
Furthermore, we have demonstrated the system's dynamic
handling capability, which allows for the insertion of new tasks
during ongoing operations without substantial disruption,
thereby enhancing laboratory efficiency and exibility.

Future improvements could focus on rening the scheduling
algorithms to handle a broader range of experimental conditions
and constraints. Expanding the system to incorporate more
advanced robotic technologies and sensor networks could further
enhance its capabilities. Additionally, our results highlight the
importance of tailoring scheduling strategies to the specic
requirements of each experimental setup. Adjusting the balance
of workloads among robots and ensuring that tasks are distrib-
uted in a way thatmaximizes the utilization of available resources
could lead tomore efficient operations. Future experiments could
focus on dynamically adjusting robot roles based on real-time
demands, thus optimizing the deployment of robotic resources
in response to varying experimental conditions.

Overall, our work represents a timely advancement toward
highly efficient autonomous chemistry laboratories, high-
lighting a new direction in multi-robot–multi-task coordination
for future developments in the eld. By enhancing the exibility
and scalability of such systems, they open new avenues for
scientic exploration and innovation, paving the way for more
sophisticated autonomous laboratories capable of handling
increasingly complex and diverse scientic tasks. Our system
enables chemists to conduct high-throughput experiments with
greater efficiency and versatility, thereby accelerating the pace
of scientic discovery. By reducing the time and resources
required for experimentation, our approach facilitates rapid
iteration of experiments, allowing for quicker hypothesis testing
and validation. Looking ahead, this approach could signi-
cantly advance autonomous chemistry by integrating articial
intelligence (AI) to further enhance scheduling and decision-
© 2025 The Author(s). Published by the Royal Society of Chemistry
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making processes. For instance, AI algorithms could predict
experimental outcomes based on available data and dynami-
cally adjust schedules to prioritize tasks with the greatest
potential impact.
Methods
Interactive task management GUI

The interactive task management GUI acts as the interface
bridge between the multi-robot–multi-task scheduling system
and research users, providing an intuitive platform for experi-
mental task management. As shown in Fig. 9 of the Appendix,
the interactive GUI is designed with a dual-permission mode,
comprising user mode and administrator mode, to accommo-
date users at different levels.

In user mode, the GUI offers a convenient task design plat-
form. Users can easily construct experimental step sequences
through simple drag-and-drop operations of various station
widgets, visually representing the tasks' logical order by con-
necting components with lines. Once the task ow is created,
users can initiate experiment execution with a single click.
Additionally, users can save frequently used workows as
templates for quick deployment in future experiments. The GUI
integrates real-time monitoring of station and robot statuses,
allowing users to view the global status of all equipment at any
time. Users can also adjust the material information of each
station according to current experimental needs to ensure the
smooth execution of experiments.

Administrator mode provides system administrators with
comprehensive monitoring and control capabilities. In this
mode, administrators can access the task execution status of the
entire system, including task progress, station usage, and
operation command records. Administrators can also track the
real-time location of each experimental sample and take timely
measures, such as restarting stations or resending operation
commands, to maintain system stability when experimental
operations encounter faults.
Multi-robot–multi-task scheduling module

As shown in Fig. 6c, the multi-robot–multi-task scheduling
module is the core data processing hub of the scheduling
system, responsible for maintaining and managing global data
while ensuring real-time updates and accurate information
transmission. Its main functions include:

(1) Task pool management: the scheduling module maintains
a global task pool where all task sequences submitted by users
through the interactive GUI are injected. Completed tasks are
removed from the pool, and all task information in the pool is sent
to the multi-task scheduling module for scheduling. The tasks in
the task pool encoded in JSON format are shown in ESI, Fig. S36.†

(2) Robot and station status management: the module peri-
odically polls robots and stations to monitor their real-time
operational status. When equipment is idle, the polling
frequency is typically 0.1 Hz. Upon completing an instruction,
robots or stations immediately report their status. This status
information is also sent to themulti-task schedulingmodule for
© 2025 The Author(s). Published by the Royal Society of Chemistry
scheduling purposes. We use JSON format data to manage and
transmit the status of robots and stations, with key information
including station capacity, material information, and the
samples (bottles) in stations and carried by robots. The station
capacity and material information will inuence which station
an operation step will be assigned to for processing, while the
bottle location information will determine which robot will pick
up or place the sample. The detailed arrangement of the
information format is shown in ESI, Fig. S34 and S35.†

(3) Operation records management: the module maintains
a detailed list of operation records from task submission to
completion, logging each experimental step (ESI, Fig. S37†),
including experiment name, operation start and end times,
completion status, and the station or robot involved. The multi-
task scheduling module updates the task progress pointer
based on these records, controlling overall task progress.
Administrators can view operation records (ESI, Fig. S33†) to
troubleshoot and resolve issues during experiments.

(4) Instruction forwarding function: serving as a communi-
cation bridge between the multi-task scheduling module and
the stations and robots, the module maintains IP addresses and
operation instruction API lists for all equipment. By forwarding
scheduling instructions (ESI, Tables S2 and S3†), it reduces the
burden on the multi-task scheduling module, allowing it to
focus on core scheduling tasks.

Automated experimental stations

As shown in Fig. 6d, the automated experimental stations are
a key component of the multi-robot–multi-task scheduling
system, responsible for executing specic experimental opera-
tions. As illustrated in Fig. 10 of the Appendix, each station is
equipped with a Raspberry Pi embedded device that responds
fully to standardized system instructions. With precise param-
eter settings and automated control, these stations can inde-
pendently perform specic experimental steps without manual
intervention. This standardization ensures consistent operation
and reliable results, minimizing errors and inconsistencies
typically associated with manual operations. Additionally, some
stations are designed with high-throughput parallel processing
capabilities, allowing them to handle multiple experimental
samples simultaneously, which signicantly enhances
throughput and efficiency. All station control commands are
structured as modular programming interfaces, facilitating the
quick integration of new stations into the system.

Multi-robot system

As shown in Fig. 6e, themulti-robot system consists of twomobile
robots and one benchtop robot, which are crucial for sample
transfer during the experimental process. The system optimizes
the collaboration and division of labour among different types of
robots to enhance the overall efficiency of task execution. The
benchtop robot handles sample transfer and auxiliary experi-
mental operations on the high-throughput platform, performing
efficiently in high-density environments, as depicted in Fig. 11 of
the Appendix. Meanwhile, the mobile robots are responsible for
transferring samples between various locations within the
Digital Discovery, 2025, 4, 636–652 | 649
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laboratory, facilitating transfers over a wider range and connect-
ing different phases of the experimental process.
Multi-agent path nding algorithm

The smooth transfer of experimental samples between different
stations relies on mobile robots. The Multi-Agent Path Finding
(MAPF) algorithm addresses path planning problems in multi-
robot systems, providing collision-free paths for a group of
robots in a shared environment while minimizing total move-
ment time. We use the classic Conict-Based Search (CBS)
algorithm to solve MAPF problems. This algorithm constructs
a hierarchical search tree to resolve potential conicts among
robots step-by-step, generating collision-free path planning
solutions. By applying the CBS algorithm, the multi-robot
system can achieve intelligent obstacle avoidance and path
optimization during sample transfer tasks, ensuring the safe
transfer of experimental samples between stations while mini-
mizing waiting time and movement distance. This approach
signicantly improves the efficiency and smoothness of the
entire experimental process.
Data availability

The authors declare that the data supporting the ndings of this
study are available within the paper and its ESI† le. Open-
sourced codes include minimal implementations of multi-
agent path nding algorithms and scheduling algorithms,
designed to be hardware-agnostic, as well as scripts to repro-
duce the simulation results for the various scheduling scenarios
discussed in the manuscript. These codes are available at
https://github.com/pic-ai-robotic-chemistry/multi-bot-
Fig. 9 Architecture of the interactive task management GUI. The GUI in
user mode, users can view information about the laboratory's robots and
used for the maintenance and management of the experimental proces
view historical operation records, and use the command resending func

650 | Digital Discovery, 2025, 4, 636–652
coordinator, which have been deposited at https://doi.org/
10.5281/zenodo.14597765. The GUI is not open-sourced, as it
is an integral part of the broader AI robotic chemist operating
system (OS) designed for uses extending beyond the scope of
this research, such as integration into other academic
autonomous chemistry laboratories and commercial
deployment. Furthermore, the GUI plays an auxiliary role in
providing a user-friendly interface for visualizing experiment
progress and laboratory status, and it does not constitute the
central innovation or primary objective of this study.
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cludes two permission modes: user mode and administrator mode. In
stations and submit experimental tasks. Administrator mode is primarily
s. Administrators can track the location of each experimental sample,
tion to restore experimental progress in case of any issues.
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Fig. 11 High-throughput platform. (a) Real scene. (b) Grid map.

Fig. 10 Control structure for automated experimental stations. The multi-robot–multi-task scheduling module can fully control station
operations through Raspberry Pi embedded devices, achieving a high level of automation.
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