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The application of quantum mechanics (QM)/molecular mechanics (MM) models for studying dynamics in
complex systems is nowadays well established. However, their significant limitation is the high
computational cost, which restricts their use for larger systems and long-timescale processes. We propose
a machine-learning (ML) based approach to study the dynamics of solvated molecules on the ground- and
excited-state potential energy surfaces. Our ML model is trained on QM/MM calculations and is designed
to predict energies and forces within an electrostatic embedding framework. We built a socket-based
interface of our machinery with AMBER to run ML/MM molecular dynamics simulations. As an application,
we investigated the excited-state intramolecular proton transfer of 3-hydroxyflavone in two different
solvents: methanol and methylcyclohexane. Our ML/MM simulations accurately distinguished between the
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1 Introduction

In the last few decades, advances in hardware and software, as well
as algorithmic improvements,* have expanded the applicability of
multiscale approaches combining a quantum mechanical (QM)
treatment with a molecular mechanics (MM) model. The resulting
QM/MM methods are nowadays successfully used to study the
properties and processes of complex systems.>*®

A critical issue of QM/MM methodologies is related to their
computational cost especially when applied to dynamics. At
present, QM/MM molecular dynamics (MD) simulations allow
processes to be studied on the order of 10-100 picoseconds,*”
while purely classical models are needed to study longer time-
scales. Several efforts are being made in order to speed up QM/
MM MD simulations, for example by using enhanced
sampling,”™ and by making smart guesses of the solution of
the QM problem by using the trajectory information.***¢

A possible strategy to significantly enhance the applicability of
QM/MM methods to ground- and excited-state dynamics is to
introduce surrogate machine learning (ML) models. In recent
years, in fact, ML methods have proven to be a viable solution to
obtain energies and properties with QM accuracy at a much
reduced computational cost.”** From the beginning, ML methods
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two solvents, effectively reproducing the solvent effects on proton transfer dynamics.

have been coupled with MD engines, allowing the simulation of
systems over timescales inaccessible to pure QM simulations.'>*
In addition, several efforts have been devoted to properly couple
the ML description with a classical description of the environment.
Some authors have used ML to obtain more accurate implicit
solvent models.”*** When ML is applied to the modelling of an MM
environment, some works focus on some sort of mechanical
embedding®>® scheme, where ML potentials substitute the MM
force field for part of the simulation. More recently, several models
tackled the challenges of a more rigorous electrostatic embedding
level***” These models attempt at reproducing the effects of
electrostatic embedding QM/MM approaches, where the proper-
ties of the QM part are modified by the MM charges. Within deep
learning potentials, some authors have directly included the elec-
trostatic fields from the MM environment into existing neural
network architecture.**** Others focused on predicting atomic
charges and polarizabilities for the ML part, which are then
allowed to interact with the MM environment.*** A similar
strategy is used by Grassano et al.* to correct a purely mechanical
embedding ML/MM with the polarization of the ML part. Another
strategy is to divide the system into more than two regions and
treat their interaction at different levels of theory.***

ML potentials are usually trained to describe the ground
state of molecules,**** even though works have appeared where
ML is used to tackle the additional challenges of excited
states.**™*®* However, to the best of our knowledge, electrostatic
ML/MM models to describe excited-state dynamics in solvated
systems have not been developed.

In this work, we develop ML models to describe the
dynamics of solvated molecules in their ground and excited

© 2024 The Author(s). Published by the Royal Society of Chemistry
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states, taking into account the environment within an electro-
static embedding scheme. In the context of ML simulations in
condensed-phase systems, we aimed to reproduce the environ-
ment effects by including electrostatic interactions with MM
charges and the polarization of the QM region due to the
surrounding environment.

Our work represents the first application of the ML/MM
method with electrostatic embedding in excited-state dynamic
simulations. We exploit the expressiveness of kernel methods such
as Gaussian process regression to construct a model that can
describe a molecule in different solvents using relatively small
training sets. The model is implemented in JAX* in an open-
source package called GPX,* and interfaced to the Sander
program of the AmberTools™ suite to perform ML/MM molecular
dynamics via the Python script ML-server.” The ML/MM MD is
orders of magnitude faster than the corresponding QM/MM
implementation, allowing simulation of the dynamics over larger
timescales with QM accuracy.

This machinery is applied to 3-hydroxyflavone (3HF), a model
system to study excited-state intramolecular proton transfer
(ESIPT). The ESIPT reaction in 3HF allows for the interconversion
between the normal (N) and the tautomeric (T) forms (Fig. 1),
both exhibiting different fluorescent properties. Experiments
have shown that steady state fluorescence and time-resolved
properties have a strong dependence on the solvent.**°
Furthermore, experimental and computational studies indicated
that the ESIPT reaction is characterized by a fast component (tens
of femtoseconds) and a slow component (around 10
picoseconds).'**”-*° The slow component is present exclusively in
hydrogen-bonding solvents®”* and is due to the breaking of
hydrogen bonds between the 3HF and the solvent.® Clearly,
describing such a drastic solvent dependence requires including
the electrostatics of the environment in a QM/MM (or ML/MM)
embedding. We show that our ML/MM MD simulations repro-
duce the fast and slow components of the ESIPT process when
3HF is solvated with methylcyclohexane (MCH) and methanol
(MeOH). This is achieved with as few as 1000 training points and
few hours of training time, making our model an attractive
strategy for ML/MM ground- and excited-state MD simulations.

2 Methods

2.1 Machine learning models

In this section we discuss the ML strategy we adopted to predict
QM/MM quantities. Specifically, our focus in this work is on
predicting QM/MM energies and gradients in the electrostatic
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Fig. 1 3-Hydroxyflavone in its normal (N) and tautomeric (T) forms.
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embedding framework. This approach was applied to obtain
these quantities for both the ground state (GS) and excited state
(ES).

Our model is built on some x = x(R) descriptor of the R
geometry of the system, encoding both the QM and the MM
part, and some parameters @. A QM/MM property (force or
energy) is then given as the function

I?QM/MM = Foumm (X, 9), (1)
Eommm = Eommm (X, ©)

where the hat denotes model estimates.
The QM/MM energy can be written as a sum of contributions

Eommm = EGW + Edhm + EBu = EGW + Eqnin
Egwm is the energy of the isolated QM region in
a vacuum, Eg‘fA_MM is the electrostatic interaction between the
QM electron density and the MM charges, and EE‘;}I is the
energy necessary to polarize the QM region. We can collect the
latter two terms in Eg,ix which indicates the shift of the
potential energy surface upon interaction with MM charges.
Similarly to ref. 34, 37 and 61, we implemented a hierarchical
model for both forces and energies. In this model, the QM-MM
interaction is predicted as the environment shift to be added to
the vacuum prediction.

where

FQM/MM - Fvac(Xvaca ®vac) + Fshifl (Xshift> @shift) (2)
- E,

Eqm/mm ac(Xvacs Ovac) + Eshift (Xshm, @shm)

Both predictions are made with Gaussian process regression
(GPR). The primary consideration is to maintain the integral/
derivative relationship between energies and forces to ensure
energy conservation throughout the simulation. Within GPR,
this can be done by solving the following linear system:***>

K+o’1 V,.K o\ _[(E )
V]VzK + 0'{21 al o —F |

VlK
In this compact notation, V represents the derivative with
respect to the coordinates of the system. The subscripts in 74
and I, indicate that the derivative is performed on the first and
the second argument of the kernel, respectively. In eqn (3), the
upper left block is the kernel matrix

K;; = K(x(R)),x(R))) (4)

plus a regularization term added to the diagonal. The upper
right block indicates the element-wise derivative of the second
argument of the kernel matrix with respect to the coordinates of
the system:

IK (x(R)), x(R)))

VoK = Ty : (5)
.

The lower left block indicates the element-wise derivative of
the first argument of the kernel matrix with respect to the
coordinates of the system:
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IK (x(R), x(R)))

V]K,’/ = (’)R . (6)

The lower right block is the Hessian of the kernel, which can
be written as follows:

PK(x(R), x(R)))

ViVaKy = IROR, @)
iU

to which a term of regularization is added on the diagonal.
Notice that the regularization of energies and forces could be
different, so we named here these hyper-parameters as o. and
of, respectively. In eqn (4)~(7), i, j = 1, Neamples- The right-hand
side contains all the targets, which are energies (Nenergies =
Nsamples) and forees (Nforces = Nsamples X Natoms X 3). By solving
this linear system we obtain a set of Nenergies T Nrorces CO€fficients
(a° of) which are used for the prediction. In this case, the
prediction for a test point x* can be written as:

samples
( Z aevl an )

Nsamples 3Natoms

+ Z Z af_gVLszK(XiaX*)) (®)

i=1 g=1

Nsamples 3Natoms

+;gz

=1

Nsamples

Z oK (xin X

of Vi K(x,x*)  (9)
where i runs over samples. Note that V, K(x;x*) = (3/0R),
K(x;,x*), and analogously for the Hessian kernel in eqn (8).

2.1.1 Vacuum model. Vacuum forces and energies depend
only on the geometry of the QM part. Similarly to other ML
models to produce GS energies and forces for a molecule,*** we
adopted the inverse distance (ID) descriptor to encode for the
internal geometry of the molecule. This is a matrix of inverse
pairwise distances:

1

(10)
- rlb H

XID,iab = I QM
where 7 runs over samples, and a and b run over QM atoms.
Since xip,i,a» is symmetric for each sample i, we used only the
off-diagonal part of the matrix.

The kernel function we used for taking into account the
internal geometry changes belongs to the class of Materns,
v =2.5:

\/gdl“ Sdi'z \/§d1
Kinlemal (XID.N XID.j) = (1 + A : + 3/‘(2 exXpl — T] (11)

dy = |lxip,; — X1DlI- (12)

For the vacuum model (see Fig. 2(a)), following the approach
of the GDML models,*>** we found that it was sufficient to solve
only part of the general system in eqn (3). In particular, we
trained this model only on forces, solving the following
problem:
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(V?MVgMKvac + Uvaczl)avac = _Fvac (13)
where
Vdc(Xan) mterndl(XID taXID,/) (14)
and V" Kyac(xirX)) = (0/0r™)Kac(xX;) and analogously for the

derivative with respect to the second argument.

We employed this approach for both GS and ES vacuum
models, where F,,. in eqn (13) represents forces for the QM part
calculated in a vacuum for the ground state and the first excited
state, respectively. From the model described above, the
prediction of forces on a x* test point is achieved through
a linear combination of Hessian kernel evaluations with the
training points:

Nsamples 3Nom

Z Olyac,i, gv V Kvac(Xn )

Fvac(x*) = -

i=1

(15)

The prediction of energies is then obtained as the integral of
the previous expression

Nsamples 3Nom

Z avac.ﬁgv(])‘g/[Kvac(Xh X*) + C

EvaC(X*) = (16)

i=1

Notice that since this prediction requires an integral, this

energy is defined up to a constant C, which can be defined
ag:41:64

Nsamples E — Ei

C= (17)

1 N, samples

i=

and is computed on training points.

2.2 Environment model

The environment model (eqn (2), see also Fig. 2(c)) consists of
the sum of vacuum prediction and the environment shift, which
takes into account the QM-MM interaction. The latter depends
both on internal changes of the molecular geometry and the
effect of the environment. The effect of the environment was
taken into account using the electrostatic potential generated
by MM atoms on QM positions:

Nvm

_ Z qm

(18)
m= l||rlll un ”

XPot,i.a
where i runs over samples, a runs over QM atoms and m runs
over MM atoms. Charges used for computing the electrostatic
potential are the same as those adopted in the reference QM/
MM calculations, within the electrostatic embedding frame-
work. For the direct environment effect, we opted for a linear
kernel:

(19)

T
Kdirect(XPot,iaXPot,/) = Xpot,i *APot,j-

Contrary to the vacuum model, the environment shift model
needed to train on both energies and forces (eqn (3), see also

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Schematic representation of our models in terms of descriptors and linear system to be solved. (a) Vacuum model, (b) environment shift

model, (c) environment model (@Environment = @Vacuum + @Shift).

Fig. 2(b)) to obtain low errors. We attribute this different
behaviour to the amount of information contained in the xp
and xpo: descriptors. Indeed, while x;p is a complete descriptor
of the molecular geometry, the potential xp,: contains a trace
over the MM atoms and is evaluated on the QM atoms only, so it
is intrinsically approximate. For this model, we imposed an
equal regularization for energies and forces (¢, = oy). In this
case, the targets are energies and forces for both the ground and
the first excited state, computed as the difference between the
QM/MM calculation and the vacuum:

- F vac
- Evac‘

Faire = Fom/mm

20
Egire = Eom/mm (20)

Also in this case we trained two models, for GS and ES
respectively. We put both the direct environment effect and the
influence of internal geometry in the covariance matrix:

(21)

Kshift(Xian) = Kdirecl(XPot,iaXPot,/')'Kinternal(XlD,iaXID,]’)-

This is possible due to the versatility of GPR, which allows
the use of any symmetric and positive semi-definite function as
a kernel, e.g. the Hadamard product of two symmetric and
positive semi-definite functions.

Note that we train only on shift forces acting on QM atoms,
but the QM-MM interaction contributes to the forces on both
QM and MM atoms. This means that during the prediction
phase, the derivative with respect to the first argument of the
kernel will always pertain to QM positions, as it corresponds to
the training points. On the other hand, the derivative with
respect to the test point geometry will vary: it will be with respect

© 2024 The Author(s). Published by the Royal Society of Chemistry

to the QM coordinates for the QM/MM force contribution to QM
atoms (FQ¥i) and with respect to the MM coordinates for the
QM/MM force contribution to MM atoms (Fhymf):

Namples
~QM

Fain(X*) = — Z
i1

M
“:hm,iV§ Kanise (x5 X)

Neamples 3Nom
=D D g Vi V3 Kanin 0 X¥) (22)
i=1 g=1
MM Nsamples .
€
Faie (X¥) = — Z i Vo Kshiee (Xi, X*)
i=1
Nsamples 3Nom
Z aihift,i,gv?,yVSAMKshiﬁ(Xiv x*) (23)
=1
where
K it (X1 X;
™ K (1,3 = () )

orMM

The energy (Egnir) is predicted following eqn (9). More
detailed expressions of the derivatives in eqn (22) and (23) are
provided in the ESL{ Our environment shift model essentially
learns the relationship between QM/MM energy and force shifts
and the electrostatic potential used as a descriptor. Since
changing the solvent alters the MM charges and, consequently,
the potential, our shift model should, in principle, be able to
extrapolate to any solvent, despite being trained on a specific
one.
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The separation of our QM/MM prediction into a vacuum
component and a shift component gives us greater control over
each model. It also makes our environment shift model
compatible with any existing model for the vacuum. Addition-
ally, the environment shift model depends only on the coordi-
nates of the system (both QM and MM) and the MM charges.
These quantities are readily available in any MD engine capable
of performing QM/MM simulations.

3 Coupling with molecular dynamics

In order to perform ML/MM molecular dynamics, we have built
an interface with Sander, the CPU simulation engine of the
AmberTools MD suite,** which already provides an infrastruc-
ture to perform QM/MM simulations with external programs.®
Our interface allows for any model exposed to Python to be used
in MD. In our case, our models are implemented using the GPX
program® (see Fig. 3). Sander deals with the trajectory propa-
gation, and computes energies and forces for the classical (MM)
subsystem and dispersion and repulsion ML-MM interactions.
It receives from the Python server the total energies and forces
for the ML part and the ML-MM component for MM atoms,
which are then added to the MM forces computed by Sander.®

The communication between Python and Sander is based on
a TCP socket, in which a Python server (ML-server®) is
executed at the start of the MD and kept running during the
whole simulation. Avoiding the Python initialization at each
step has the advantage of saving the time needed to import all
the necessary packages. In addition, since our models are
implemented in JAX*® via the GPX*® packages and are thus JIT-
compiled, having a single instance of Python running for the
whole simulation means that the JAX functions are compiled
only at the first step, with significant gains in performance
during the MD. The Python server communicates with a Sander
client through a Socket implementation in Fortran
(f2py-sockets®) which allows exchanging data between
Python and Sander without writing and reading on disk.
Avoiding input/output (I0) operations on disk allows for a much
faster exchange of information, at the price of recompiling

QM coordinates
Trajectory /| MM coordinates
propagation Sander /;"”/i e R "
)\
Amber-GPX /4

)3
,%\ interface /#

SN

MM bonded and
electrostatics

"\ (MLMM Forces)) /J ML prediction

\ forallatoms
~\ML/MM Energy

Dispersion
Repulsion

Fig. 3 Scheme representing the Amber-GPX interface via the
ML-server program.®? At each step of the dynamics, Sander computes
the MM energies and forces, and the ML-MM dispersion and repulsion
interaction. Coordinates and charges are sent to the Python server,
and are used by GPX models to predict the energies and forces of the
ML part, as well as the MM forces coming from the ML-MM interac-
tion. This information is sent back to Sander, which performs one step
of the trajectory.
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Sander with the Fortran-based socket. We also provide the
option to leave Sander untouched, and perform the communi-
cation between Python and Sander using disk 10 operations, in
a similar way to the implementation in the emle-engine® code.
Throughout this paper, we present ML/MM MD results ob-
tained with the faster, in-memory data exchange mode.

4 Computational details
4.1 Machine learning scores

For the validation of our models, we show the root mean
squared error (RMSE) and the mean absolute error (MAE),
defined as follows:

(25)

(26)

3NNom

> |Fi=F

i=1

1

MAE (F) = WNau

In eqn (25) and (26), N is the number of test points and Nom
is the number of QM atoms.

4.2 Dataset generation with active learning

The geometries for the dataset were derived from an ab initio
umbrella sampling (US) simulation of 3HF in MeOH conducted
in a previous study.’® We implemented an active learning
procedure based on an initial GPR model trained on energy
data. We used a starting training set of 200 geometries, on
which we fitted the GPR model. Then, we iteratively extracted
200 additional geometries with the highest predicted uncer-
tainty at each step and fitted a GPR model on the enlarged
dataset. The procedure was continued until an RMSE error on
the energy below chemical accuracy was reached, for a total of
10 000 training points (see Fig. S1 in the ESI{). We randomly
split this dataset in the training (80%) and test sets (20%). The
higher amount of information (3 X< Nqm per sample) contained
in the training on forces allowed us to use a number of training
points which is far below 10 000, obtaining errors under the
chemical accuracy for both energies and forces with 1000
samples, which were chosen among the initial 8000 training
points.

Since the aim was to simulate a reactive process, the training
was constructed including all significant geometries that the
molecule can assume during time evolution. The most difficult
part to be described is the transition state (TS), where the
moving proton is in the middle between the two oxygen atoms.
Because of that, the training set was divided in three parts,

© 2024 The Author(s). Published by the Royal Society of Chemistry
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corresponding to the two minima (N and T forms) and the
region surrounding the TS. For both vacuum and environment
models, the actual training set comprises 500 geometries
among the two 3HF forms and 500 geometries near the TS,
selected using the farthest point sampling (FPS)*” approach.
This approach allows us to obtain configurations as distant as
possible from each other.

The prediction of excited-state energies and forces presents
the additional challenge of dealing with the mixing between
different states. We followed the same procedure described
above in terms of building the 1000-point training set, and we
trained two models: one including only the excitations with
pure HOMO-LUMO transitions and the other selecting geom-
etries among the whole dataset, allowing for mixing with other
states. While both models performed similarly on the test sets,
we observed differences in their performance during simulation
tests. In particular the mixed-state model was more prone to
simulation crushes. Therefore, we present the results obtained
with the pure HOMO-LUMO transition model.

The target for the vacuum models is simply 3HF forces in
a vacuum (see Fig. 2(a)). For the environment shift model, the
targets are the differences between QM/MM energies and forces
and the respective vacuum quantity (see Fig. 2(b)), ie., the
environment shift model requires two sets of calculations for
each geometry. Following the same approach of the US simu-
lation, all the calculations were performed at the wB97XD level
(TD-wB97XD for the excited state). The basis set was customized
in order to have an accurate description of the proton transfer,
so we used 6-31G(d,p) for the moving proton and the two oxygen
atoms involved in the bond breaking and formation and 6-31G
for all the others. All calculations were run on Gaussian16.%®

4.3 Training of ML models

All our models were implemented and trained using our Python
package GPX.** The inverse distance and electrostatic potential
descriptors, and the FPS algorithm are implemented in the
Python package Moldex.®® Both packages were implemented in
JAX** and are available on GitHub under the GNU LGPL
agreement.

Concerning the performance of our GPX package, we trained
our models on a single computer node AMD EPYC 7282
running@2.8 GHz using 32 threads. By exploiting an analytic
solver, GPX took 6.5 min for the training on forces and 8.1 min
for the training on energies and forces with 1000 training points
(average time between GS and ES models).

Since we imposed equal regularization for energies and
forces in eqn (3), we have two hyperparameters to optimize for
both vacuum and environment models: A of the Matern kernel
and ¢ of regularization. Hyperparameter optimization for each
model was conducted using grid search (A =[5, 10, 15, 20], ¢ =
[107°,10 %, 10 7)) and four-fold cross-validation (CV). The total
training time, including CV for hyperparameter optimization,
was 4.29 h. For all the models, CV produced very small values of
the ¢ hyperparameter (10°), making them more prone to
overfitting. Indeed, during initial MD simulation tests, we
encountered instabilities in our environment shift models,

© 2024 The Author(s). Published by the Royal Society of Chemistry
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leading to the breaking of the system. We utilized these failed
trajectories as additional test cases to further validate our
models, but we did not include them in the training set. This
process revealed the need to increase the regularization
strength to accurately describe geometries outside the training
set. Raising the ¢ parameter from 10> to 10~ caused slightly
larger errors on the test set, but significantly improved the
robustness of our environment shift models. Therefore, for
both GS and ES shift models we set ¢ = 10~ * and used again
cross-validation to find the optimal value of A. These last models
are the ones we show in the Results section and that we used for
production simulations. We included the learning curves for all
models in the ESI (Fig. S27).

4.4 Generation of the test set

We validated our models on geometries of 3HF in both MeOH
and MCH solvents. The MeOH test set comprises 1000 geome-
tries extracted from the test set mentioned in the Dataset
generation section. For generating geometries of MCH, we
performed two 2.5 ps long NVE simulations (GS and ES) using
our ML/MM machinery. From each trajectory, we extracted 500
geometries as the MCH test set. On these geometries, we per-
formed reference calculations at the same level of theory as the
MeOH dataset.

4.5 Molecular dynamics simulations

We started from the classical MD simulations of 3HF in the two
solvents of interests (MeOH and MCH), which were performed
in a previous work.' For each solvent, we extracted 25 starting
points and, following the same protocol of ref. 10, we used the
“droplet model” approach, in which we selected droplets con-
taining the solute and solvent molecules within 30 A from it
(Fig. 4). To avoid the solvent evaporation, we applied
a harmonic potential pointing towards the geometrical center of
3HF to all atoms beyond a certain threshold. More details on
how the harmonic constant has been determined can be found
in ref. 10. This harmonic restraint was imposed using the open-
source, community-developed PLUMED library,” version 2.9.”
All the simulations were performed using a modified version of
Amber interfaced with GPX and with PLUMED. The instructions
to recompile the AmberTools with the provided files can be
found in the README available on GitHub.”® We performed a 10
ps long NVT ML/MM simulation on the ground state with the

Fig. 4 Representation of the systems analyzed with MD simulations.
(a) 3HF in MCH; (b) 3HF in MeOH. We zoomed the solvent molecules
within 3 A from 3HF. We treated 3HF as the ML part and all the solvent
molecules at the MM level.
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Langevin thermostat to keep the temperature at 300 K. This
equilibration is necessary to relax the system after the discon-
tinuity in the potential energy surface that appears when we
move from classical simulations to the ML/MM ones, as is
common practice in QM/MM molecular dynamics.'®'*”> From
these ground-state trajectories we extracted coordinates and
velocities every 2.5 ps, for a total of 100 starting points for both
solvents. We then ran the excited-state ML/MM production
simulations in the NVE ensemble. We did not impose any cutoff
on the electrostatics, both for MM-MM interactions and ML-
MM ones. This means that all the MM atoms are taken into
account and are used for the ML/MM prediction at each step of
the simulation.

5 Results and discussion
5.1 ML models for forces and energies

As previously mentioned, we trained four models: a vacuum
model and an environment shift model for both GS and ES.
Since all the geometries in the training set were extracted from
simulations in MeOH, at first we validated our models on a test
set consisting of 1000 3HF geometries in MeOH. In Fig. 5, we
report the correlation curves for the energy and the force on the
proton that moves during proton transfer. Plots of the total
force for all QM atoms can be found in Section S2 of the ESI.t

In Table 1 we report the errors on the MeOH test set for all
the models. GS and ES models have similar errors, indicating
that, in the absence of mixing with other states, learning the
excited state is not more difficult than learning the ground
state. For the vacuum model, the error in energies is generally

GS Energy (MeOH)

—
()
p=

(b) GS Force on the moving proton (MeOH)

_ 601(RmsE: 0.27 o°| & 100{(RMSE: 0:35 .
i MAE: 0.22 o <L MAE: 0.26 &
[ o o X
Q " L o
€ °] &
= 3 o
© — o
g 30 © 0 &“.
= X o
& % g |
T o i o F
e < o* F
0le ~ —100 e
0 30 60 -100 0 100
Prediction (kcal mol~1) Prediction (kcal mol~1A-1)
(c) ES Energy (MeOH) (d) ES Force on the moving proton (MeOH)
— |[RmsSE: 0.27 & 1001{(RMSE: 0:36 .
T 40 MAE: 0.22 oL MAE: 0.26 '.o‘
S T '
€ © ‘,s'
© £ s
19} —_ O ..
<20 3 &
g o
5 bt o* o F
o o & x
© o [ e F
= T
0 = —1001 ® e F:
0 20 40 —-100 0 100

Prediction (kcal mol~1) Prediction (kcal mol~tA-1)

Fig.5 Correlation plots representing @Environment (@Environment =
@Vacuum + @Shift) energy and forces on the moving proton for 3HF
embedded in MeCOH. (a) and (b) refer to GS; (c) and (d) refer to ES. The
inset reports the RMSE and MAE error, in kcal mol~* and kcal mol™* A~*
for energies and forces, respectively.
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Tablel List of the scores for all the models: vacuum and environment
shift for GS and ES for the MeOH test set. We reported the errors on
energies and forces for each model and the error on the QM/MM
prediction (@Environment = @Vacuum + @Shift). RMSE and MAE
errors are in kcal mol™ and kcal mol™ A~ for energies and forces,
respectively

@Vacuum @Shift @Environment

RMSE MAE RMSE MAE RMSE MAE

GS Energy 0.067 0.051 0.267 0.214 0.273 0.217
Force 0.433 0.280 0.143 0.100 0.458 0.307

ES Energy 0.066 0.050 0.265 0.215 0.272 0.218
Force 0.473 0.291 0.184 0.125 0.497 0.321

below 0.1 kcal mol ' and the error in forces is below
0.5 keal mol™ A™". Notably, these very low errors in energy are
achieved despite the model being trained solely on forces.
Moving to the shift model, we can observe a decrease in the
error in forces with respect to the vacuum, likely due to the
lower absolute value of shift forces. Conversely, the error in
energies increases despite the lower absolute value of environ-
ment shift energy. We attribute this behaviour to the fact that,
as previously mentioned, the environment shift model contains
only a trace of the MM atoms, while the energy depends equally
on QM and MM atoms. However, the combined prediction gives
an error well below the chemical accuracy (environment model,
Table 1). We also reported a plot of the errors in energy and
forces along the reaction coordinate in Fig. S15 in the ESL}

5.2 Extrapolation to methylcyclohexane

As already mentioned, the environment shift model should be
able to extrapolate to any solvent. Our interest was to study this
reaction in the same solvents used in ab initio simulations in
ref. 10; therefore, we validated our models trained on MeOH
samples also for 3HF in MCH.

The performance of our models is reported in Table 2 and
Fig. 6. Plots of the force for all QM atoms can be found in
Section S2 of the ESI.f When examining the @shift column of
Table 2, we can conclude that the model is capable of describing
the environment effect in MCH. The environment shift model
errors in MCH are significantly lower than the ones in MeOH
because MCH provides a minimal environmental contribution
to energies and forces, resulting in reduced error.

Table 2 List of the scores for all the models: vacuum and shift for GS
and ES for the MCH test set. We reported the errors on energies and
forces for each model and the error on the QM/MM prediction. RMSE
and MAE errors are in kcal mol ™! and kcal mol™* A~* for energies and
forces, respectively

@Vacuum @Shift @Environment

RMSE MAE RMSE MAE RMSE MAE

GS Energy 0.221 0.157 0.091 0.074 0.240 0.171
Force 0.890 0.606 0.062 0.043 0.891 0.607

ES Energy 0.509 0.316 0.121 0.100 0.537 0.337
Force 1.612 1.033 0.070 0.048 1.612 1.034

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Correlation plots representing @Environment energy and
forces on the moving proton for 3HF in MCH. (a) and (b) refer to GS; (c)
and (d) refer to ES. The inset reports the RMSE and MAE error,
in kcal mol~t and kcal mol™ A~ for energies and forces, respectively.

A larger error is present for the vacuum model. This
dissimilarity can be attributed to the different way in which
MeOH and MCH test sets are generated, since for MeOH we
used geometries extracted from the same ab initio trajectory of
the training set, whereas the MCH test set consists of
completely new geometries extracted from an ML/MM simula-
tion (see Section 4.4). The larger error on the full prediction in
the environment reflects the larger error on the vacuum model.

5.3 Performance analysis

In this section we report the analysis of the timings for our ML/MM
simulations. These values refer to an MD simulation in MCH of 13
531 atoms in total. The latter was conducted on a single computer
node AMD EPYC 7282 running@2.8 GHz using 32 threads,
exploiting MPI-compiled versions of Amber and PLUMED.

Fig. 7 shows the approximate timings for each significant part.

The bar-plot highlights that 70% of the time is employed by
Amber, which evaluates the MM-only classical energies and
forces, and computes the van der Waals interactions with the
3HF. Concerning the ML part, we can say that the remaining 30%
is almost equally divided between the computation of the
descriptor and Jacobian for the MM part, Xpor and Jpo, and the
predictions of the vacuum and shift contributions. The calcula-
tion of the ID descriptor x;p and Jacobian Jip, as well as the data
exchange between Sander and the Python server, takes negligible
time (more details are provided in Table S1 in the ESI{).

5.4 Validation of ML/MM dynamics and comparison with
QM/MM

Test errors alone may not be sufficient to guarantee the stability
and accuracy of simulations.””* For this reason, we validate our

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Graphical representation of the average time required for each
operation at each step of the simulation.

ML/MM simulations first by direct comparison with QM/MM
simulations. Starting from a specific phase space point extrac-
ted from the equilibration, we ran both an ML/MM simulation
and a QM/MM simulation at the same QM level used for the
training set to compare the results. The QM/MM simulation was
conducted using the interface between Gaussian16 and Sander.
The plots in Fig. 8 show reaction coordinates for the proton
transfer in all four cases. Oy indicates the protonated oxygen
atom when 3HF is in its N form, and Oy indicates the oxygen
protonated in the T form. For GS trajectories, the ML/MM
simulations closely match the reference ones for the first 100
fs. After this period, despite some differences starting to arise,
the oscillation amplitudes remain consistent. This divergence is
expected, as the ML prediction errors accumulate over time
causing the trajectories to diverge. This error is slightly more
pronounced for the ES case. Although we cannot achieve
a perfect match between ML/MM and QM/MM, we are still
sampling the correct region of the phase space with the correct
oscillation. In Fig. S16 in the ESIf we reported the same

= OyH ML = OrH ML === OnH QM === 0OrH QM
=
Y2
MeOH &
8
A
[a)
i ”
=<
MCH 82 W\//\\\‘\;
C
8
0
[a]
1 Y

0 50 100 150 200 O 50 100 150 200
Time (fs) Time (fs)
GS ES

Fig. 8 Comparison between the ML/MM and QM/MM dynamics of
3HF in MeOH and MCH for GS and ES. Oy indicates the protonated
oxygen atom when 3HF is in its N form and O+ indicates the oxygen
protonated in the T form.
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comparison for the dihedral angle which involves the Oy and Ot
atoms.

In terms of computational efficiency on similar hardware,
reference QM/MM simulations achieve a performance of
approximately 1.0 ps per day for ground-state simulations. In
contrast, using our ML/MM strategy, we achieve a significantly
higher performance of 200 ps per day. For excited-state simu-
lations, the advantage is even more pronounced. Here, our ML/
MM approach maintains the same high performance as ground-
state simulations. In contrast, traditional TD-DFT simulations
typically achieve a performance of only 0.1 ps per day.

This significant improvement in performance allows us to
conduct simulations more rapidly and efficiently, which is
particularly beneficial for studying complex processes such as
excited-state dynamics.

Finally, to show the stability of our ML/MM potential for
longer dynamics, we plot in Fig. S17 of the ESI the results of a 1
ns long ML/MM simulation of the ES in MeOH in the NVE
ensemble. Within this timescale we did not observe drifts in the
total energy or sudden spikes in the force, which demonstrates
the stability of our simulations.

5.5 Simulation of ESIPT in MeOH and MCH

After validating all the models, we initiated our production ES
ML/MM simulations to study the ESIPT reaction of 3HF in
MeOH and MCH. As detailed in the Computational details
section, we conducted 10 ps long trajectories, 100 per solvent.
This approach allowed us to explore both the ultrafast and the
slow components of the ESIPT reaction, which would be
unfeasible with standard ab initio simulations due to their high
computational cost.

In Fig. 9 we plotted the reaction coordinates (OrH and OxH)
for the proton transfer over the simulation time for a represen-
tative MeOH trajectory. The moment in which the two lines

Distance (4)

0 2 4 6 8 10
Time (ps)

Fig.9 Plot of the reaction coordinates for the proton transfer over the
simulation time for a representative ES ML/MM trajectory in MeOH.
The three circles illustrate snapshots taken from the simulation to
depict the ESIPT reaction. Oy indicates the protonated oxygen atom
when 3HF is in its N form, and O+ indicates the oxygen protonated in
the T form.
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cross identifies the proton transfer. Grey lines in Fig. 9 show all
the other MeOH trajectories, which display PT at different
times.

The cumulative results of our simulations in both solvents
are reported in Fig. 10. This plot illustrates the fraction of
trajectories that undergo PT over the simulation time. We can
confirm that our model effectively captures the differences
between the two solvents. The plot shows that the ultra-fast
component is observed in both solvents, but with lower prob-
ability in MeOH. On the other hand, the slow component is
present only in MeOH, due to the presence of hydrogen bonds,
which must be broken before the proton transfer can happen.
This is the reason why all trajectories exhibit the ESIPT within
approximately 3 ps for MCH. Conversely, for MeOH, not all
trajectories reached the T form even after 10 ps of simulation.
This is in agreement with the experimental observation that
fluorescence emanates only from the T form in non-hydrogen-
bonding solvents and from both N and T forms in hydrogen-
bonding ones.*® Within the statistical uncertainty, this plot is
comparable to the one obtained with ab initio simulations,
even though a direct comparison is not possible due to the
different approach for what concerns the environment
description (electrostatic embedding vs. polarizable embed-
ding) and the statistical accuracy (fewer trajectories were run in
ref. 10).

In Table 3, we present the results of a multi-exponential
fitting of the curves shown in Fig. 10. The fitted curves are
depicted in Fig. S18 of the ESI.f We achieved a good fit using
a combination of two exponential functions for MCH and three
for MeOH. For both solvents, we found an ultrafast component
of the order of 150 fs and a slower one of 1.0 ps. The presence of
an ultrafast component is in agreement with transient absorp-
tion experiments,®”*® although in experiments this component
seems even faster than in our simulations. A 1.6 ps component
was also measured in ref. 59, which we connect with the 1.0 ps
component found in simulations.

The slow component (~10 ps) was observed only for MeOH,
which is consistent with experimental measurements,*** as the

'_
5 —
5
g el
@©
e
=== MeOH
0 2 4 6 8 10

Time (ps)

Fig. 10 Fraction of reactive ES ML/MM trajectories over the simulation
time for both solvents. The light colored area represents the confi-
dence interval, computed with the Clopper—Pearson method, with
a confidence limit of 95%.
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Table 3 Times obtained from multi-exponential fitting of the fraction
plotted in Fig. 10. For each time t, we show in parentheses the cor-
responding pre-exponential factor

71 Ps (a1) 75 ps (@) 73 ps (as)
MCH 0.15 (0.50) 1.0 (0.50)
MeOH 0.18 (0.04) 1.0 (0.23) 16.0 (0.73)

authors could attribute the ~10 ps component measured in
MCH to hydrogen-bonding impurities in the solution.

Overall, our simulations well reproduce the qualitative
difference between MeOH and MCH solvents in the PT time-
scale and extent. The ultrafast components indicate that PT is
almost barrierless in MCH, as well as in part of the MeOH
configurations.’ Our timescales are slightly slower than exper-
iments for this component, which we can tentatively attribute to
missing nuclear quantum effects in the proton transfer
coordinate.

6 Conclusions

We have presented a strategy to predict QM/MM energies and
forces within the electrostatic embedding framework for the
ground and the excited state of solvated molecules. Our
approach is based on a hierarchical prediction, in which the
QM/MM contribution is reproduced as the sum of a vacuum
term and an environment shift contribution. Despite this
requiring two sets of calculations for each sample (one in
a vacuum and one in the environment), two such separated
models are easier to tune and are independent. In principle, our
model for the environment can be coupled to any model that
predicts energies and forces in a vacuum. Our models were
trained on geometries extracted from reference ab initio simu-
lations in solvent, which still represent an expensive step.
Simpler methods are needed to generate training datasets for
solvated molecules without sacrificing simulation accuracy.
Further work in our group will be devoted to overcoming this
limitation.

For the training of our models we rely on GPR in the gradient
domain (learning only forces or both energies and forces). This
approach is beneficial because it provides 3 x Nqu forces from
a single sample, allowing us to train with a relatively small
dataset. With only 2 x Ngmple calculations (one in a vacuum
and one in the environment) one can run numerous trajectories
over extended timescales. This approach can thus significantly
enhance ground-state simulations, but it has an even greater
effect on excited-state simulations, which are considerably more
computationally demanding. Training a model for excited
states is very delicate, as strong mixing can significantly impact
learning, sometimes necessitating the use of diabatization
procedures.’”**”> However, for excited states with low mixing,
learning based on geometries that exhibit a pure HOMO-LUMO
transition makes training for the excited state as straightfor-
ward as for the ground state.

We also built a machinery which is able to connect the GPX
software with Amber to perform ML/MM simulations. The core
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of this interface is a Python script (ML-server), which receives
coordinates and charges from Sander and returns forces and
energies. This server is not specific to GPX, allowing any ML
model to be implemented and used for simulations. This
socket-based data exchange is crucial as it eliminates the over-
head associated with reading and writing files, significantly
reducing the cost of the simulation.

Our strategy was applied to the study of excited-state intra-
molecular proton transfer (ESIPT) of 3-hydroxyflavone in two
solvents: methanol as a polar protic solvent and methyl-
cyclohexane as an apolar and aprotic one. The use of ML can
overcome the main limitations of ab initio approaches. By
running 100 trajectories per solvent, we significantly increased
the statistical accuracy of our descriptions. Furthermore, we
were able to investigate both the ultra-fast and the slow
components of the ESIPT reaction using standard simulations,
whereas the latter required enhanced sampling techniques for
ab initio simulations.' Our simulations could reproduce with
good accuracy the experimentally determined ESIPT time
constants in both solvents. Importantly, our environment
models proved able to extrapolate to a different solvent than the
one used in the training. On the other hand, these models are
specific for the molecule in the QM part. In fact, both the
inverse distance descriptor and the electrostatic potential on
QM atoms encode the QM molecule “globally”. However, we
note that training our models requires only a relatively small
number (1000) of training points, and the training time for
a molecule like 3-hydroxyflavone is of few hours for both GS and
ES. This makes us confident that a similar protocol could be
applied to diverse and more complex systems.

Data availability

The ML models used for this article, including vacuum and
environment models for the ground and the first excited state of
3-hydroxyflavone, and two examples of input files for simula-
tions in methanol and methylcyclohexane are available in
a zenodo repository at https://doi.org/10.5281/
zenodo.13739507.
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