
Digital
Discovery

PAPER

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

8
O

ct
ob

er
 2

02
4.

 D
ow

nl
oa

de
d

on
 7

/1
9/

20
25

 5
:0

7:
54

 P
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d
L

ic
en

ce
.

View Article Online
View Journal | View Issue
Navigating the M
aMolecular AI, Discovery Sciences, R&D, As

E-mail: thomas.lohr@astrazeneca.com
bInnovation Centre in Digital Molecular T

University of Cambridge, Lenseld Rd, Cam
cCompound Synthesis & Management, The

Campus, 1 Francis Crick Avenue, AstraZene
dUniversity of St Andrews, KY16 9AJ St Andr
eDepartment of Computer Science and

Technology, Gothenburg, Sweden

Cite this: Digital Discovery, 2024, 3,
2551

Received 5th September 2024
Accepted 26th October 2024

DOI: 10.1039/d4dd00288a

rsc.li/digitaldiscovery

© 2024 The Author(s). Published by
aize: cyclic and conditional
computational graphs for molecular simulation

Thomas Löhr, *a Michele Assante,bc Michael Dodds,ad Lili Cao,a Mikhail Kabeshov,a

Jon-Paul Janet, a Marco Klähna and Ola Engkvist ae

Many computational chemistry and molecular simulation workflows can be expressed as graphs. This

abstraction is useful to modularize and potentially reuse existing components, as well as provide

parallelization and ease reproducibility. Existing tools represent the computation as a directed acyclic

graph (DAG), thus allowing efficient execution by parallelization of concurrent branches. These systems

can, however, generally not express cyclic and conditional workflows. We therefore developed Maize,

a workflow manager for cyclic and conditional graphs based on the principles of flow-based

programming. By running each node of the graph concurrently in separate processes and allowing

communication at any time through dedicated inter-node channels, arbitrary graph structures can be

executed. We demonstrate the effectiveness of the tool on a dynamic active learning task in

computational drug design, involving the use of a small molecule generative model and an associated

scoring system, and on a reactivity prediction pipeline using quantum-chemistry and semiempirical

approaches.
Introduction

Clearly dened workows are essential for reproducibility in
computational sciences.1 They make it easier to reason about
processes, and allow modularization, fast experimentation, and
easy sharing. A workow can be modelled as a graph, in which
each node represents a step of computation, and each edge
represents data being passed between steps. We can addition-
ally consider parameters for each node that determine how the
computation is performed. As an example, one can view a data
processing pipeline as a simple linear workow, in which data is
rst read, then processed with a certain set of parameters, and
then saved to a new location. Workows like this are described
as directed acyclic graphs (DAGs, Fig. 1), because they are
unidirectional and do not involve cyclic data ows. This means
that data ows in one direction only, and each node is only
executed a single time. DAGs are a popular model for workows
because they can represent many typical processing tasks, are
easy to parallelize using topological sorting,2 and simple
enough to reason about. Many tools exist to execute DAGs,
traZeneca, 431 50 Gothenburg, Sweden.

echnologies, Department of Chemistry,

bridge CB2 1EW, UK

Discovery Centre, Cambridge Biomedical

ca, CB2 0AA Cambridge, UK

ews, UK

Engineering, Chalmers University of

the Royal Society of Chemistry
popular ones are Apache Airow,3 Luigi,4 and Dagster.5 Knime6

is another popular tool, featuring a simplied ow-based
architecture optimized for tabular data. Another recent
example designed in particular for linear computational
chemistry workows is our tool Icolos.7 Other recently devel-
oped tools focused on dynamic workow creation are Jobow,8

allowing cases in which the number of computations is not
known at workow-compile time, as well as PerQueue,9 allowing
the use of nodes that can run in a cyclic manner. The workow
structure used by these tools is still fundamentally a DAG,
although they are signicantly more exible than the
Fig. 1 Directed Acyclic Graphs (DAGs, left) and Directed Cyclic Graphs
(DCGs, right). The latter workflow representation allows conditional
and iterative execution, common in computational chemistry
workflows.

Digital Discovery, 2024, 3, 2551–2559 | 2551

http://crossmark.crossref.org/dialog/?doi=10.1039/d4dd00288a&domain=pdf&date_stamp=2024-11-30
http://orcid.org/0000-0003-2969-810X
http://orcid.org/0000-0001-7825-4797
http://orcid.org/0000-0003-4970-6461
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00288a
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD003012

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

8
O

ct
ob

er
 2

02
4.

 D
ow

nl
oa

de
d

on
 7

/1
9/

20
25

 5
:0

7:
54

 P
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d
L

ic
en

ce
.

View Article Online
aforementioned workow engines when it comes to conditional
and cyclic computation.

However, many workows do not conform to this DAG
paradigm, but instead must be modelled as directed (cyclic)
graphs (DCGs, Fig. 1). This is the case whenever data is passed
through the same node repeatedly (without knowing the
number of cycles in advance) or passed to different nodes
depending on the nature of the data. Because of this, the
convenient topological sorting method can no longer be used,
so the graph must be modelled differently. One such approach
is termed ow-based programming.10,11 Here, each node in the
graph is represented as a separate system process, with data
beingmoved through uni-directional channels. Each node waits
for data to be received and can perform computation as soon as
all required data has arrived. Thus, every node is essentially
independent from and agnostic to the surrounding graph
structure. This model of computation has multiple advantages:
rst, due to each node operating in isolation, unexpected
interactions and bugs resulting from different graph structures
can be minimized. Second, parallelism is intrinsic to the graph,
as each node operates as an independent process and can
perform computation as soon as data is available. Third, the use
of specic channels as edges makes it easier to reason about
data inputs and outputs and provides modularity of compo-
nents. Possible disadvantages are the potential overhead of
many system processes running concurrently, the potentially
unclear status of the graph execution (as halting of the
computation cannot be readily predicted), and the sometimes-
high complexity of the created graphs due to additional data
manipulation. Interestingly, this programming model shows
strong similarities to digital hardware design, specically to the
concurrent paradigms of hardware description languages such
as Verilog and VHDL.

Here, we developed Maize, a workowmanager based on the
principles of ow-based programming. The ow-based and
non-linear nature sets it apart from our predecessor workow
engine Icolos.7 Maize is written in and interfaces through
Python, exposing a simple API to allow users to easily dene
workows and add custom nodes. Data handling is accom-
plished with channels enforcing type safety, thus making the
input and output requirements of individual nodes clearer and
minimizing the potential for errors during execution. In addi-
tion, Maize can handle the sending of both small chunks of data
in memory, as well as large les on disk while avoiding race
conditions. System and workow conguration are separated,
allowing workows to be transferable between systems. A
feature unique to Maize is that multiple nodes can be grouped
together into subgraphs, allowing easier reasoning and node
reuse, as well as the construction of highly hierarchical work-
ows that allow multiple levels of granularity in the workow
specication. An important aspect of Maize, compared to a tool
such as Knime,6 is the use of Python throughout, including the
ability to fully control the workow execution and resource
allocation. This makes it easier to quickly integrate custom
soware for computational scientists and allows seamless large-
scale parallelism. To make the integration into production
pipelines as straightforward as possible, workows can also be
2552 | Digital Discovery, 2024, 3, 2551–2559
specied in JSON or other serialization formats for automated
deployments. A nal focus has been the tight integration with
high-performance computing (HPC) environments, e.g., batch
submission systems.

We will rst discuss the underlying principles of Maize in
more detail, discuss some of the useful emergent properties
with regards to processing of large amounts of data and paral-
lelism, and nally demonstrate its use on reinforcement
learning and dynamic active learning tasks for early-stage small
molecule drug discovery and a reactivity prediction task using
quantum-chemical and semiempirical methods.
Design
Workow denition

Maize is written in Python using an object-oriented approach.
The computational graph is internally represented in a hierar-
chical manner as a tree (Fig. 2A), with the root as the full
workow graph, tree-nodes as (optional) subgraphs, and leaf-
nodes as individual computation steps. Each leaf-node
(henceforth termed ‘node’ for brevity) can declare one or
more input or output ports representing data receivers and
senders respectively, as well as parameters that are static for the
duration of graph execution (Fig. 2B). The workow is con-
structed by rst initializing a Workow object, followed by
adding individual nodes or predened subgraphs (Fig. 2C) to
the workow, and nally connecting specic inputs and
outputs (Fig. 2D). This last step creates a Channel object that can
pass both les and serialized in-memory data between nodes.
The ‘root’ workow object thus contains a list of child compo-
nents, made up of nodes that perform individual computations,
and possibly also subgraphs, themselves made up of nodes or
subgraphs and so on, with arbitrarily deep nesting possible.
Finally, the workow can be transformed into an executable
script, with all node parameters exposed on the command line.
Alternatively, the workow can also be specied using a suitable
serialization or conguration system such as JSON or YAML.
Execution

Nodes are declared by inheriting from a base node class,
declaring ports and parameters, and dening a run() method
(Fig. 3A). When running the workow (Fig. 3B), each node's
run() method is executed in a separate process (using Python's
multiprocessing library), potentially with a different Python
interpreter, thus allowing the use of otherwise conicting
environments in a single workow. Each node will perform any
computations it can based on the data available to it through
inputs and/or parameters and can send data through its outputs
at any time. The run() method can either run a single time,
causing the node to complete upon returning from the method,
or run in a looped mode, i.e., re-running the method upon
returning. This latter mechanism allows the creation of cyclic
workows. Conditional execution is possible by sending data to
one of multiple outputs, as a result only nodes that receive data
will perform computation.
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00288a

Fig. 2 (a) Internal workflow representation as a tree (connections, i.e. channel objects are stored separately), (b) node, (c) subgraph, and (d)
workflow architecture. Nodes expose parameters (static values set prior to execution) and input and/or output ports (allowing data to be passed
dynamically). These ports are connected to channels, allowing different nodes to be connected. Subgraphs can group multiple nodes together
and themselves act like individual nodes with their own inputs and outputs. Workflows include many nodes and optionally subgraphs and can
group parameters together and expose them externally, thus abstracting the underlying structure.

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

8
O

ct
ob

er
 2

02
4.

 D
ow

nl
oa

de
d

on
 7

/1
9/

20
25

 5
:0

7:
54

 P
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d
L

ic
en

ce
.

View Article Online
During execution, all nodes communicate their status, log
messages, and possible errors to the main parent process
through separate message queues. The workow is stopped if
one of the nodes raises an unrecoverable exception, all nodes
are completed, or a shutdown signal is set by one of the nodes or
an external process. Maize uses several heuristics to determine
when to shut down a node, as some nodes may be running in
a loop without necessarily performing useful computation.
When a node has nished computation and exits, it will close its
ports and by extension channels. This closing is communicated
to a connected node, which can use its own set of rules to
Fig. 3 Maize workflow code. Definition of a custom node embedding a
this node in a linear workflow for docking (b).

© 2024 The Author(s). Published by the Royal Society of Chemistry
determine if it should also shutdown. Thus, node completion
can cascade through the workow graph.
Patterns

In the ow-based programming paradigm, some useful patterns
can emerge (Fig. 4):

� Batch processing: if a very large number of datapoints
needs to be processed in a sequential workow, it can be
especially efficient to process it in batches. In Maize, this
process is parallel by default, as one batch can be processed on
the second node while the next batch is processed on the
small molecule from a SMILES code (a) and a workflow definition using

Digital Discovery, 2024, 3, 2551–2559 | 2553

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00288a

Fig. 4 Useful patterns in flow-based programming. Shaded areas indicate domains of the workflow that are run in a loop, and example data
represents the first iteration. Batch processing (left) allows breaking up a large amount of data into chunks, and processing them in parallel,
despite the sequential nature of the workflow. Parallelization (middle) allows splitting the data over multiple identical compute nodes. Iteration
(right) allows the common pattern of checking a computation for completion and potential re-calculation.

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

8
O

ct
ob

er
 2

02
4.

 D
ow

nl
oa

de
d

on
 7

/1
9/

20
25

 5
:0

7:
54

 P
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d
L

ic
en

ce
.

View Article Online
previous node. An example of this is the process of docking
small molecules to a target protein in early-stage drug discovery.
The small molecule rst needs to be prepared, a process that is
typically performed on the CPU, and is then docked, an opera-
tion that can oen be accomplished on the GPU. Thus, a batch
of molecules can be prepared on the CPU, while the previous
batch is docking on the GPU.

� Parallelization/load-balancing: another commonly seen
pattern is parallelization. In Maize, this can be accomplished by
creating multiple identical workow branches and distributing
the incoming datapoints over all branches. This workow
pattern can be automatically generated and implemented as
a subgraph, allowing any kind of computation to be parallelized
naturally without having to worry about locks or race
conditions.

� Iteration: many workows in computational chemistry
require performing costly computations until some nal
condition is fullled. This is possible in Maize by creating
a node that checks if the computation has completed, sending it
either to some nal node or back to the computation node for
another iteration.

Additional features

Maize exposes several convenience functions to make the de-
nition and running of complex workows easier and more
exible. These include the ability to submit jobs to a queuing
system instead of executing locally, re-executing failed nodes
multiple times, loadingmodules (using the LMOD system) from
the Python interpreter, automatically connecting nodes based
on their port types, renaming and combination of multiple
2554 | Digital Discovery, 2024, 3, 2551–2559
parameters into one, and shortcuts to create for instance the
parallelization pattern mentioned above. Because each node
runs in its own separate process (using Python's multipro-
cessing module), each node can run a different Python envi-
ronment, as long as it contains a Maize installation. This is
because both the interpreter path and the sys.path global vari-
able (indicating to Python where it can nd installed modules)
can be changed directly before starting the new process. This
allows the use of potentially conicting packages within the
same workow.
Implemented soware

We have implemented interfaces to various soware packages
common in computational chemistry as Maize nodes. So far,
these include quantum chemistry soware Gaussian,12 semi-
empirical packages xTB13 and CREST,14,15 small molecule
docking tools such as, AutoDock-GPU,16 AutoDock Vina,17

GNINA,18 and GLIDE,19 GROMACS20,21 for molecular dynamics
(MD) trajectory analysis, Gypsum-DL22 for small molecule
embedding, and our in-house developed tools REINVENT23 for
AI-based small molecule de novo drug design and QpTuna,
a tool that automatically generates machine learningmodels for
compound property prediction,24 as well as various input/
output functionality. The domain-agnostic part of Maize also
features nodes to enable easier data movement, such as
copying, merging, and splitting data. The scope of Maize
interfaces is currently expanding rapidly to encompass various
tools related to MD simulations including free energy pertur-
bation methods, quantum chemical soware and other tools.
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00288a

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

8
O

ct
ob

er
 2

02
4.

 D
ow

nl
oa

de
d

on
 7

/1
9/

20
25

 5
:0

7:
54

 P
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d
L

ic
en

ce
.

View Article Online
Applications
De novo design

Motivation. In this rst example we apply Maize on
a complex drug discovery workow, small molecule generation
with reinforcement learning.25,26 The hit-to-lead drug design
process typically begins with small molecule hits for a particular
target protein. The atomistic structure of these protein–ligand
complexes is oen available and details the exact position and
orientation of the ligand in the protein binding pocket. These
initial hit compounds usually exhibit suboptimal properties –

they are oen not strong and specic binders, and they may
have problematic pharmacokinetic properties. It is therefore
necessary to nd small molecule binders with improved prop-
erties using computational approaches, while making use of the
information gained from our initial hits. Potential candidates
can either be picked from existing compound libraries or
created de novo using small molecule generative models such as
REINVENT.27–29 The latter method allows guided generation
using reinforcement learning,30 i.e., we can feed back a score for
each generated molecule indicating if it should be considered
favorable or not. As a result, over many iterations, REINVENT
will learn to create more suitable molecules. The scoring func-
tion used can take many different forms, but here we will be
focusing on the docking score, in which a small molecule is t
into a binding pocket by various geometric transformations and
the binding energy evaluated using a physics-based approach.31

Implementation. We implemented the workow described
above in Maize, using nodes for REINVENT,27 AutoDock GPU,16

Gypsum-DL,22 and various data-handling (Fig. 5). The param-
eter system in Maize allows different congurations of the
involved soware, as well as changes in how the data is piped
Fig. 5 Small-molecule generation reinforcement learning workflow.
Molecules are generated and evaluated by docking them to a target
protein structure. Molecules with a large deviation from the reference
pose are docked again with higher precision andmore conformational
sampling. The resulting scores are fed back to the generative model
and the process repeated.

© 2024 The Author(s). Published by the Royal Society of Chemistry
through the system. In practice the workow exhibits some
additional complexity: the generated small molecules rst need
to be embedded, i.e., the SMILES32 codes need to be converted
to an actual 3D representation, which also involves selecting an
adequate protonation state and stereo-isomer for the corre-
sponding compound (using Gypsum-DL22). To demonstrate
Maize's control ow abilities, we added an additional docking
node with higher precision that is triggered whenever the root-
mean-square deviation of the docked small molecule to the
original reference compound is above a certain threshold.

A ow-based implementation of such a workow has
multiple advantages: rst, nodes can be treated completely
independently, and are isolated from one another, reducing
possible side-effects. Second, the docking node can be re-used
in two locations, with the only difference being a slightly
different set of parameters. Third, because every node runs in
its own process, environments can be kept separate, and code
can run in parallel.
Active learning

Motivation. As the number of iterations required to nd
more favorable small molecules can be quite high, and some
scoring methods are oen computationally expensive, we would
like to replace some of these calculations with a simple machine
learning model that can learn an approximation of a physics-
based score. This way, instead of always calculating a score
using the expensive scoring function, we can in some cases fall
back on our fast-to-evaluate approximate model.

This is the main idea behind dynamic active learning:25,33–36

we rst generate a set of small molecules to score against our
target protein. In the rst iteration, these molecules are evalu-
ated using our physics-based oracle function such as docking,
and the scores fed back to our generator, as well as used to train
a simple surrogate model emulating our oracle function for
future iterations. In subsequent iterations we start by predicting
a score for each molecule using this surrogate model. Next, we
pick a subset of these compounds using an acquisition function
to send to our oracle and use the calculated scores to re-train
our surrogate model. Finally, we send all scores back to the
small molecule generator and repeat the process. This process
has large potential savings in computational time, as the
accurate but expensive physics-based calculations are reduced.
Additionally, the resulting surrogate model can feature high
accuracy despite being a simple model such as a random forest
due to the very narrow domain. Here, model training will be
limited to a single target protein and is thus non-transferable to
other targets. Commonly used acquisition functions use various
strategies: we could pick a random subset of molecules, pick the
ones predicted to have the highest scores (greedy sampling), use
a combination of both (epsilon-greedy), or pick ones with a high
uncertainty in their score prediction (e.g., using the upper-
condence bound).

Implementation. Building on the reinforcement learning
workow described above, we implemented an active learning
system. We used the same nodes as described above, with the
addition of Qptuna37,38 to provide the surrogate model (Fig. 6).
Digital Discovery, 2024, 3, 2551–2559 | 2555

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00288a

Fig. 6 Simplified active learning workflow. The generator (in this case
REINVENT) proposes several molecules, which are fed to a surrogate
machine learning model predicting how well these molecules may
bind the target protein. Based on these scores, the acquisition function
sends a small fraction of the molecules to the computationally
expensive oracle (in this case docking). The computed scores are
merged with the predicted ones and sent back to the generator to
update it. A copy of the scored molecules is sent to the surrogate
model for retraining.

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

8
O

ct
ob

er
 2

02
4.

 D
ow

nl
oa

de
d

on
 7

/1
9/

20
25

 5
:0

7:
54

 P
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d
L

ic
en

ce
.

View Article Online
The surrogate model is split into separate nodes for training
and prediction to simplify the graph dependencies. Finally, the
rst n iterations will be pooling runs to build up the rst
training dataset for the surrogate model, i.e. during this initial
phase all compounds are scored by the oracle only.

As a result of this design, parallelization emerges naturally
from the graph denition, for instance, the surrogate model can
be re-trained while the next batch of molecules is generated,
despite this independence not being explicitly accounted for.
The nodes for the tools mentioned above are run in separate
Python environments, thus avoiding conicting dependencies.

To evaluate the efficiency gains from the above-mentioned
parallelism, we ran the active learning workow in a sequen-
tial and fully parallel manner and compared execution times.
We limited the run to 10 iterations and used a batch size of 512
generated compounds at each iteration, with 128 acquired
molecules to be evaluated by the oracle. The parallel workow
was 13% faster than the näıve sequential workow due to the
more efficient resource utilization. For a more detailed
demonstration of the capabilities of dynamic active learning,
see ref. 36.
Fig. 7 Reaction prediction workflow based on first-principles calcu-
lations. Control node initially generates molecular structures for
reactants, products, intermediates, and transition states. Pre-defined
structural templates are used to generate geometries for intermedi-
ates and templates.
Automated rst-principles calculations

Motivation. First-principles calculations, such as Quantum-
Mechanics and Density Functional Theory, can offer great
insight into chemical systems. Molecular properties obtained
with such calculations can predict reactivity of chemical
compounds and be used as advanced features in data-driven
2556 | Digital Discovery, 2024, 3, 2551–2559
models to increase performances.39–41 A promising application
is the integration of the above-mentioned features in reaction
prediction and optimization routines, especially if experimental
data is scarce. However, these types of methods oen require
signicant computational resources to be performed as well as
specic expertise to be initialized and analyzed correctly. In this
context, automation of rst-principles calculations could be
a remedy to this limitation by providing a faster, more reliable,
and more systematic way to perform such calculations. Indeed,
to achieve accurate results, a correct description of the system is
required; choice of functional, basis set, molecular exibility
and solvent environment are some of the aspects to take in
account when dening the system of interest.42 At the same
time, it is crucial to nd the right balance between the level of
accuracy to be achieved and the computational resources
available. In practice, this results in the selection of different
computational methods for different tasks, oen involving the
utilization of multiple soware. In this sense, a workow
manager able to orchestrate the requirements of several
computational chemistry soware is crucial to achieve auto-
mation of rst-principles calculations and ultimately the inte-
gration of such techniques in data-driven methods.

Implementation. Information about the reaction and the
chemical structure of its components is received in tabular
format and loaded into a control node (Fig. 7). Here, depending
on the type of reaction, 3D-geometries for relevant chemical
structures in the reaction are generated either through the rdkit
package43 or with custom in-house functions. These input
geometries are sent to the rst sub-workow. Initially a molec-
ular mechanics pre-optimisation step removes potential arti-
facts from the geometries, these are then used as inputs for the
conformer generation step performed with semiempirical
based metadynamics calculations.

The generated conformers are later inspected by the control
node for any inconsistencies or artifacts and later submitted to
the second sub-workow. Here all the conformers of each
component undergo geometry optimization at semiempirical
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00288a

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

8
O

ct
ob

er
 2

02
4.

 D
ow

nl
oa

de
d

on
 7

/1
9/

20
25

 5
:0

7:
54

 P
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d
L

ic
en

ce
.

View Article Online
level and single point calculation at DFT level. Once completed,
the calculations results are redirected back to the control node
which in turn handles potential errors in calculations.
Depending on the types of error, individual jobs can be either
removed from the workow or re-submitted. Successful calcu-
lations are sent to a return node, which simply reports results in
a tabular format.

Discussion

We have presented Maize, a workow manager capable of
executing cyclic and conditional workows as commonly found
in computational chemistry and early-stage drug discovery. We
detailed the design and demonstrated its use on a complex
active learning workow to identify possible new small mole-
cule drug candidates. We showed how parallelization emerges
naturally from the graph structure, enabling efficiency
improvements in possibly unexpected ways. We also detailed
useful patterns providing potentially signicant speedups to
certain workows.

While Maize was written with computational chemistry in
mind, its architecture and design were deliberately kept
domain-agnostic to enable its use in other elds. To enable ease
of contributing custom nodes, subgraphs, and workows, the
core domain-agnostic part of Maize is a separate package, and
all domain-specic components and utilities are in a separate
contribution namespace package. This mechanism allows
straightforward extensions and simplies code reuse.

However, Maize is not necessarily suitable for all workows:
while communication between nodes is fast, it is not intended
for low-latency, high-frequency, or inter-processor message
passing – here, a system such as the Message Passing Interface
(MPI) would be more suitable. Related to the previous point is
that Maize is not intended to be run onmultiple compute nodes
the way that MPI applications are, instead Maize can submit
jobs to existing job queuing systems such as SLURM and wait
for jobs to complete. This means that compute-intensive
workows that potentially require multiple compute nodes
will run on a single compute node but submit jobs to other
compute nodes and collect the results. Additionally, while we
have not observed slowdowns, the use of many Python
processes – one for each workow node – in complex workows
could result in undesirable overheads. Python essentially
features two parallelization primitives: threads and processes.
Threads have low overhead and allow the use of shared memory
but are currently limited by Python's global interpreter lock
(GIL), which only allows a single thread to make use of the
interpreter at a time. Maize by contrast is implemented using
Python's processes, which have a higher overhead and no
shared memory, but allow distribution over multiple cores.
Future versions of Python will likely remove the GIL, thus in
principle allowing the use of threads for Maize, reducing the
overhead for very large workows.

To conclude, we envision Maize as a useful and versatile tool
to handle the complexity and many diverse workows in
molecular simulation, computational chemistry, and drug
design. It is distributed under the permissive Apache 2.0 license
© 2024 The Author(s). Published by the Royal Society of Chemistry
and available at https://github.com/MolecularAI/maize and
https://github.com/MolecularAI/maize-contrib. The latter
includes several prepared workows for common
computational chemistry tasks.
Data availability

The code for Maize can be found at https://github.com/
MolecularAI/maize and https://github.com/MolecularAI/maize-
contrib. The versions of the code employed for this study are
maize 0.8.3 and maize-contrib 0.5.5.
Author contributions

Conceptualization – TL, MaK, OE; Soware – TL, MA, MD, LC,
MiK, JPJ, MaK; writing – original dra – TL, MA; writing – review
& editing – TL, MA, MD, LC, MiK, JPJ, MaK, OE.
Conflicts of interest

The authors declare no conict of interest.
References

1 S. Cohen-Boulakia, K. Belhajjame, O. Collin, J. Chopard,
C. Froidevaux, A. Gaignard, K. Hinsen, P. Larmande,
Y. L. Bras, F. Lemoine, F. Mareuil, H. Ménager, C. Pradal
and C. Blanchet, Scientic Workows for Computational
Reproducibility in the Life Sciences: Status, Challenges and
Opportunities, Future Gener. Comput. Syst., 2017, 75, 284–
298, DOI: 10.1016/j.future.2017.01.012.

2 A. B. Kahn, Topological Sorting of Large Networks, Commun.
ACM, 1962, 5(11), 558–562, DOI: 10.1145/368996.369025.

3 Apache Airow, 2023, https://github.com/apache/airow,
accessed 2023-10-17.

4 Spotify/Luigi, 2023, https://github.com/spotify/luigi,
accessed 2023-07-31.

5 Dagster-Io/Dagster, 2023, https://github.com/dagster-io/
dagster, accessed 2023-07-31.

6 M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter,
T. Meinl, P. Ohl, C. Sieb, K. Thiel, B. Wiswedel, KNIME:
The Konstanz Information Miner, in Data Analysis, Machine
Learning and Applications, ed. C. Preisach, H. Burkhardt, L.
Schmidt-Thieme, R. Decker, Studies in Classication, Data
Analysis, and Knowledge Organization, Springer, Berlin
Heidelberg: Berlin, Heidelberg, 2008, pp 319–326, DOI:
10.1007/978-3-540-78246-9_38.

7 J. H. Moore, M. R. Bauer, J. Guo, A. Patronov, O. Engkvist and
C. Margreitter, Icolos: A Workow Manager for Structure-
Based Post-Processing of de Novo Generated Small
Molecules, Bioinformatics, 2022, 38(21), 4951–4952, DOI:
10.1093/bioinformatics/btac614.

8 A. S. Rosen, M. Gallant, J. George, J. Riebesell,
H. Sahasrabuddhe, J.-X. Shen, M. Wen, M. L. Evans,
G. Petretto, D. Waroquiers, G.-M. Rignanese, K. A. Persson,
A. Jain and A. M. Ganose, Jobow: Computational
Digital Discovery, 2024, 3, 2551–2559 | 2557

https://github.com/MolecularAI/maize
https://github.com/MolecularAI/maize-contrib
https://github.com/MolecularAI/maize
https://github.com/MolecularAI/maize
https://github.com/MolecularAI/maize-contrib
https://github.com/MolecularAI/maize-contrib
https://doi.org/10.1016/j.future.2017.01.012
https://doi.org/10.1145/368996.369025
https://github.com/apache/airflow
https://github.com/spotify/luigi
https://github.com/dagster-io/dagster
https://github.com/dagster-io/dagster
https://doi.org/10.1007/978-3-540-78246-9_38
https://doi.org/10.1093/bioinformatics/btac614
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00288a

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

8
O

ct
ob

er
 2

02
4.

 D
ow

nl
oa

de
d

on
 7

/1
9/

20
25

 5
:0

7:
54

 P
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d
L

ic
en

ce
.

View Article Online
Workows Made Simple, J. Open Source Sow., 2024, 9(93),
5995, DOI: 10.21105/joss.05995.

9 B. H. Sjølin, W. S. Hansen, A. A. Morin-Martinez,
M. H. Petersen, L. H. Rieger, T. Vegge, J. M. Garćıa-Lastra
and I. E. Castelli, PerQueue: Managing Complex and
Dynamic Workows, Digital Discovery, 2024, 3(9), 1832–
1841, DOI: 10.1039/D4DD00134F.

10 J. P. Morrison, Data Stream Linkage Mechanism, IBM Syst. J.,
1978, 17(4), 383–408, DOI: 10.1147/sj.174.0383.

11 J. P. Morrison, Flow-Based Programming, A New Approach to
Application Development, CreateSpace Independent
Publishing Platform, Unionville, Ont, 2nd edn, 2010.

12 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato,
A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts,
B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov,
J. L. Sonnenberg, F. Williams; Ding, F. Lipparini, F. Egidi,
J. Goings, B. Peng, A. Petrone, T. Henderson,
D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega,
G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, T. Vreven, K. Throssell,
J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro,
M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin,
V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar,
J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo,
R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma,
O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Rev. C.01,
2016.

13 C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen,
P. Pracht, J. Seibert, S. Spicher and S. Grimme, Extended
Tight-Binding Quantum Chemistry Methods, Wiley
Interdiscip. Rev.: Comput. Mol. Sci., 2021, 11(2), e1493, DOI:
10.1002/wcms.1493.

14 P. Pracht, F. Bohle and S. Grimme, Automated Exploration of
the Low-Energy Chemical Space with Fast Quantum
Chemical Methods, Phys. Chem. Chem. Phys., 2020, 22(14),
7169–7192, DOI: 10.1039/C9CP06869D.

15 S. Grimme, Exploration of Chemical Compound,
Conformer, and Reaction Space with Meta-Dynamics
Simulations Based on Tight-Binding Quantum Chemical
Calculations, J. Chem. Theory Comput., 2019, 15(5), 2847–
2862, DOI: 10.1021/acs.jctc.9b00143.

16 D. Santos-Martins, L. Solis-Vasquez, A. F. Tillack,
M. F. Sanner, A. Koch and S. Forli, Accelerating AutoDock4
with GPUs and Gradient-Based Local Search, J. Chem.
Theory Comput., 2021, 17(2), 1060–1073, DOI: 10.1021/
acs.jctc.0c01006.

17 O. Trott and A. J. Olson, AutoDock Vina: Improving the
Speed and Accuracy of Docking with a New Scoring
Function, Efficient Optimization, and Multithreading, J.
Comput. Chem., 2010, 31(2), 455–461, DOI: 10.1002/
jcc.21334.

18 A. T. McNutt, P. Francoeur, R. Aggarwal, T. Masuda, R. Meli,
M. Ragoza, J. Sunseri and D. R. Koes, GNINA 1.0: Molecular
2558 | Digital Discovery, 2024, 3, 2551–2559
Docking with Deep Learning, J. Cheminf., 2021, 13(1), 43,
DOI: 10.1186/s13321-021-00522-2.

19 R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren,
J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll,
M. Shelley, J. K. Perry, D. E. Shaw, P. Francis and
P. S. Shenkin, Glide: A New Approach for Rapid, Accurate
Docking and Scoring. 1. Method and Assessment of
Docking Accuracy, J. Med. Chem., 2004, 47(7), 1739–1749,
DOI: 10.1021/jm0306430.

20 M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith,
B. Hess and E. Lindahl, GROMACS: High Performance
Molecular Simulations through Multi-Level Parallelism
from Laptops to Supercomputers, SowareX, 2015, 1–2, 19–
25, DOI: 10.1016/j.sox.2015.06.001.

21 S. Páll, A. Zhmurov, P. Bauer, M. Abraham, M. Lundborg,
A. Gray, B. Hess and E. Lindahl, Heterogeneous
Parallelization and Acceleration of Molecular Dynamics
Simulations in GROMACS, J. Chem. Phys., 2020, 153(13),
134110, DOI: 10.1063/5.0018516.

22 P. J. Ropp, J. O. Spiegel, J. L. Walker, H. Green, G. A. Morales,
K. A. Milliken, J. J. Ringe and J. D. Durrant, Gypsum-DL: An
Open-Source Program for Preparing Small-Molecule
Libraries for Structure-Based Virtual Screening, J. Cheminf.,
2019, 11(1), 34, DOI: 10.1186/s13321-019-0358-3.

23 H. H. Loeffler, J. He, A. Tibo, J. P. Janet, A. Voronov,
L. H. Mervin and O. Engkvist, Reinvent 4: Modern AI–
Driven Generative Molecule Design, J. Cheminf., 2024,
16(1), 20, DOI: 10.1186/s13321-024-00812-5.

24 L. Mervin, A. Voronov, M. Kabeshov and O. Engkvist,
QSARtuna: An Automated QSAR Modeling Platform for
Molecular Property Prediction in Drug Design, J. Chem. Inf.
Model., 2024, 64(14), 5365–5374, DOI: 10.1021/
acs.jcim.4c00457.

25 D. E. Graff, E. I. Shakhnovich and C. W. Coley, Accelerating
High-Throughput Virtual Screening throughMolecular Pool-
Based Active Learning, Chem. Sci., 2021, 12(22), 7866–7881,
DOI: 10.1039/D0SC06805E.

26 I. Filella-Merce, A. Molina, M. Orzechowski, L. D́ıaz,
Y. M. Zhu, J. V. Mor, L. Malo, A. S. Yekkirala, S. Ray and
V. Guallar, Optimizing Drug Design by Merging Generative
AI With Active Learning Frameworks, arXiv, 2023, preprint,
arXiv:2305.06334, DOI: 10.48550/arXiv.2305.06334.

27 T. Blaschke, J. Arús-Pous, H. Chen, C. Margreitter,
C. Tyrchan, O. Engkvist, K. Papadopoulos and A. Patronov,
REINVENT 2.0: An AI Tool for De Novo Drug Design, J.
Chem. Inf. Model., 2020, 60(12), 5918–5922, DOI: 10.1021/
acs.jcim.0c00915.

28 J. He, E. Nittinger, C. Tyrchan, W. Czechtizky, A. Patronov,
E. J. Bjerrum and O. Engkvist, Transformer-Based
Molecular Optimization beyond Matched Molecular Pairs,
J. Cheminf., 2022, 14(1), 18, DOI: 10.1186/s13321-022-
00599-3.

29 J. P. Janet, L. Mervin and O. Engkvist, Articial Intelligence
in Molecular de Novo Design: Integration with Experiment,
Curr. Opin. Struct. Biol., 2023, 80, 102575, DOI: 10.1016/
j.sbi.2023.102575.
© 2024 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.21105/joss.05995
https://doi.org/10.1039/D4DD00134F
https://doi.org/10.1147/sj.174.0383
https://doi.org/10.1002/wcms.1493
https://doi.org/10.1039/C9CP06869D
https://doi.org/10.1021/acs.jctc.9b00143
https://doi.org/10.1021/acs.jctc.0c01006
https://doi.org/10.1021/acs.jctc.0c01006
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1186/s13321-021-00522-2
https://doi.org/10.1021/jm0306430
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1063/5.0018516
https://doi.org/10.1186/s13321-019-0358-3
https://doi.org/10.1186/s13321-024-00812-5
https://doi.org/10.1021/acs.jcim.4c00457
https://doi.org/10.1021/acs.jcim.4c00457
https://doi.org/10.1039/D0SC06805E
https://doi.org/10.48550/arXiv.2305.06334
https://doi.org/10.1021/acs.jcim.0c00915
https://doi.org/10.1021/acs.jcim.0c00915
https://doi.org/10.1186/s13321-022-00599-3
https://doi.org/10.1186/s13321-022-00599-3
https://doi.org/10.1016/j.sbi.2023.102575
https://doi.org/10.1016/j.sbi.2023.102575
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00288a

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

8
O

ct
ob

er
 2

02
4.

 D
ow

nl
oa

de
d

on
 7

/1
9/

20
25

 5
:0

7:
54

 P
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d
L

ic
en

ce
.

View Article Online
30 M. Olivecrona, T. Blaschke, O. Engkvist and H. Chen,
Molecular De-Novo Design through Deep Reinforcement
Learning, J. Cheminf., 2017, 9(1), 48, DOI: 10.1186/s13321-
017-0235-x.

31 J. Li, A. Fu and L. Zhang, An Overview of Scoring Functions
Used for Protein-Ligand Interactions in Molecular
Docking, Interdiscip. Sci.: Comput. Life Sci., 2019, 11(2),
320–328, DOI: 10.1007/s12539-019-00327-w.

32 D. Weininger, SMILES, a Chemical Language and
Information System. 1. Introduction to Methodology and
Encoding Rules, J. Chem. Inf. Comput. Sci., 1988, 28(1), 31–
36, DOI: 10.1021/ci00057a005.

33 J. Sacks, S. B. Schiller andW. J. Welch, Designs for Computer
Experiments, Technometrics, 1989, 31(1), 41–47, DOI:
10.1080/00401706.1989.10488474.

34 D. R. Jones, M. Schonlau and W. J. Welch, Efficient Global
Optimization of Expensive Black-Box Functions, J. Glob.
Optim., 1998, 13(4), 455–492, DOI: 10.1023/
A:1008306431147.

35 J. Yu, X. Li and M. Zheng, Current Status of Active Learning
for Drug Discovery, Artif. Intell. Life Sci., 2021, 1, 100023,
DOI: 10.1016/j.ailsci.2021.100023.

36 M. Dodds, J. Guo, T. Löhr, A. Tibo, O. Engkvist and J. Paul
Janet, Sample Efficient Reinforcement Learning with Active
Learning for Molecular Design, Chem. Sci., 2024, 15(11),
4146–4160, DOI: 10.1039/D3SC04653B.

37 T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna: A
Next-Generation Hyperparameter Optimization Framework,
© 2024 The Author(s). Published by the Royal Society of Chemistry
in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD ’19;
Association for Computing Machinery, New York, NY, USA,
2019, pp 2623–2631, DOI: 10.1145/3292500.3330701.

38 QPTUNA: QSAR Using Optimization for Hyper-Parameter
Tuning, 2023, https://github.com/MolecularAI/Qptuna,
accessed 2023-07-31.

39 M. H. Samha, L. J. Karas, D. B. Vogt, E. C. Odogwu, J. Elward,
J. M. Crawford, J. E. Steves and M. S. Sigman, Predicting
Success in Cu-Catalyzed C–N Coupling Reactions Using
Data Science, Sci. Adv., 2024, 10(3), eadn3478, DOI:
10.1126/sciadv.adn3478.

40 S. M. Maley, D.-H. Kwon, N. Rollins, J. C. Stanley,
O. L. Sydora, S. M. Bischof and D. H. Ess, Quantum-
Mechanical Transition-State Model Combined with
Machine Learning Provides Catalyst Design Features for
Selective Cr Olen Oligomerization, Chem. Sci., 2020,
11(35), 9665–9674, DOI: 10.1039/D0SC03552A.

41 K. Jorner, T. Brinck, P.-O. Norrby and D. Buttar, Machine
Learning Meets Mechanistic Modelling for Accurate
Prediction of Experimental Activation Energies, Chem. Sci.,
2021, 12(3), 1163–1175, DOI: 10.1039/D0SC04896H.

42 M. Bursch, J.-M. Mewes, A. Hansen and S. Grimme, Best-
Practice DFT Protocols for Basic Molecular Computational
Chemistry, Angew. Chem., 2022, 134(42), e202205735, DOI:
10.1002/ange.202205735.

43 RDKit: Open-Source Cheminformatics. https://
www.rdkit.org.
Digital Discovery, 2024, 3, 2551–2559 | 2559

https://doi.org/10.1186/s13321-017-0235-x
https://doi.org/10.1186/s13321-017-0235-x
https://doi.org/10.1007/s12539-019-00327-w
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1080/00401706.1989.10488474
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1016/j.ailsci.2021.100023
https://doi.org/10.1039/D3SC04653B
https://doi.org/10.1145/3292500.3330701
https://github.com/MolecularAI/Qptuna
https://doi.org/10.1126/sciadv.adn3478
https://doi.org/10.1039/D0SC03552A
https://doi.org/10.1039/D0SC04896H
https://doi.org/10.1002/ange.202205735
https://www.rdkit.org
https://www.rdkit.org
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00288a

	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation

	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation

	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation
	Navigating the Maize: cyclic and conditional computational graphs for molecular simulation

