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and Eva Zurek *a

Experimentally obtained powder X-ray diffraction (PXRD) patterns can be difficult to solve, precluding the

full characterization of materials, pharmaceuticals, and geological compounds. Herein, we propose

a method based upon a multi-objective evolutionary search that uses both a structure's enthalpy and

similarity to a reference PXRD pattern (constituted by a list of peak positions and their intensities) to

facilitate structure solution of inorganic systems. Because the similarity index is computed for locally

optimized cells that are subsequently distorted to find the best match with the reference, this process

transcends both computational (e.g., choice of theoretical method, and 0 K approximation) and

experimental (e.g., external stimuli, and metastability) limitations. We illustrate how the proposed

methodology can be employed to successfully uncover complex crystal structures by applying it to

a range of test cases, including inorganic minerals, elements ramp-compressed to extreme conditions,

and molecular crystals. The results demonstrate that our approach not only improves the accuracy of

structure prediction, but also significantly reduces the time required to achieve reliable solutions, thus

providing a powerful tool for the advancement of materials science and related fields.
1 Introduction

The crystal structure of a compound is key for predicting and
rationalizing its properties.1–3 Therefore, crystal structure
determination is one of the bedrocks upon which chemistry,
materials science, physics, as well as earth and planetary
science is based. Indeed, common to all of these elds is the
need for characterizing the structure of the chemical system
using various spectroscopies. While methods such as Raman,
Infra-Red or Nuclear Magnetic Resonance Spectroscopy provide
information that can indirectly deduce the structural motifs
present, only diffraction is directly related to the atomic posi-
tions. Various diffraction techniques are available, varying
according to the scattering source (X-rays, neutrons or elec-
trons) or from the nature of the sample (powder, single crystal
or even liquid). Diffraction from single crystals is the gold
standard, but in practice it can be difficult or impossible to
obtain single crystals of adequate quality and size to achieve
a reliable structure solution. Therefore, the possibility of
obtaining structural information frommicrocrystalline powder-
like samples becomes important.4 However, unlike diffraction
from single crystals, powder X-ray diffraction (PXRD) is typically
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not sensitive enough to provide information about the positions
of light elements such as hydrogen and lithium (if combined
with other heavier elements), nor can it differentiate between
elements with similar mass numbers. Though neutron diffrac-
tion is sensitive to the location of light elements it requires large
samples. Thus, PXRD is themost commonly used tool to deduce
the structural information of battery materials, superconduc-
tors, minerals found in the deep Earth, pharmaceutical drugs,
and more.1,5–7

When a good quality PXRD pattern is in-hand, it is relatively
easy to retrieve information on the size of the unit cell, but
a structure solution with renement of the atomic positions
remains, to date, a challenging procedure. The inherent limi-
tation of PXRD lies in its projection of three-dimensional
diffraction data onto a one-dimensional scale when
measuring powder samples, oen resulting in peak overlap.4,8

To perform such renements, various techniques9–11 are avail-
able, from those developed by Rietveld12 or Le Bail13 to model-
lings based on reverse Monte Carlo,4,14 genetic15,16 or machine
learning17,18 algorithms. Nonetheless, crystal structure solution
from PXRD data remains a grand challenge in crystallography.
Further complicating structural characterization is the presence
of mixed-phases, sample peaks that are obscured by ones
originating from the experimental apparatus, noisy background
of the diffractogram, and preferred orientation of the micro-
crystallites. These situations are common, for example, when
compounds are synthesized for the rst time, matter is
compressed within diamond anvil cells or in dynamic (shock or
Digital Discovery, 2025, 4, 73–83 | 73
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ramp) compression experiments, or simply due to the
morphology of the crystallites. Because of these difficulties,
theoretical calculations have become useful tools to assist
structure solution given a PXRD pattern. We also mention
a promising route, which has been applied to organic molecular
crystals, where structures are determined directly from chem-
ical shis, aided by machine learning.19,20

Another strategy, popular especially in the high-pressure
eld, is based upon crystal structure prediction (CSP) algo-
rithms, which aim to locate the most stable atomic congura-
tion for a user-dened chemical composition at a given pressure
and at zero temperature. Some of the most popular techniques
include random or evolutionary searches, particle-swarm opti-
mization, and Monte-Carlo or molecular dynamics based algo-
rithms.21 In the family of evolutionary algorithms, a tness is
assigned to each DFT-optimized structure, and this tness is
related to the structure's likelihood to be chosen as a parent for
the next generation.22 In a traditional evolutionary search, the
tness is obtained from the energy (or enthalpy) of the system
relative to (a subset) of those that have been optimized. This
tness is crucial in driving the algorithm towards promising
regions of the energy landscape in the search for thermody-
namically stable structures.

However, not all of the compounds that are predicted to be
the most stable are necessarily those that are experimentally
observed. When compared to PXRD diffractograms, this
discrepancy can be attributed to several factors, including the
numerous approximations involved in the computations (e.g.,
choice of level of theory, pseudopotential, and the neglect of
nite temperature contributions), as well as variations in
synthetic and experimental conditions.23 As a result, achieving
the closest match with the experimental data oen necessitates
screening many metastable phases, especially in the case of
polymorphism, where the differences in energy between them
may be minimal.24,25 This laborious manual screening process
carries the risk of overlooking the optimal matching structure
amid the hundreds or even thousands of predicted structures.

To circumvent this challenge and potentially steer the
structure search towards a better match a constrained algo-
rithm that focuses the search on structures with particular
features (Bravais lattices, space groups, coordination numbers)
has been proposed.26 However, a guiding CSP algorithm, which
employs both the experimental PXRD and the DFT-calculated
energy and structure simultaneously, and in an equal footing,
could prove even more benecial.

Perhaps the most intricate method proposed to date is the
rst-principle-assisted structure solution (FPASS) technique,27,28

which combines DFT calculations with experimental XRD data
and statistical symmetry information in a genetic algorithm for
structure determination. Similar methods have followed during
the years, retaining the philosophy of combining information
gleaned from diffraction data (lattice parameter, symmetry,
stoichiometry, etc.) to reduce the space of a structure search
with DFT optimization.25,29 A similarity index calculated
between experimental and simulated PXRD patterns has been
exploited in particle swarm optimization (PSO),30 utilizing
a weighted cross-correlation function to re-evaluate the velocity
74 | Digital Discovery, 2025, 4, 73–83
of each structure in the crystal structure search. With this
technique, the simulated phases that best match the experi-
mental PXRD pattern lead the PSO search. This methodology
was shown to aid the prediction of the ground state phases of
ZnO and TiO2,30 however the authors did not report if their
discovery was accelerated compared to a standard energy-only-
search, or if this algorithm could aid in the recognition of
metastable phases. Non-CSP-based approaches have also been
proposed, such as molecular dynamics simulations biased by
experimental diffraction data.31 For molecular organic crystals
fast dispersion-corrected DFT optimizations have been
proposed and used to improve the t with the experimental
PXRD patterns.32

In the present study, we outline our approach for enhancing
CSP by leveraging PXRD data through a synergistic combination
of the XtalOpt evolutionary algorithm22,33 and the variable-cell
Gaussian powder-based similarity index (VC-GPWDF)34 imple-
mented in the critic2 program.35 Confusingly, despite the label
“similarity index”, this and similar methods actually calculate
the dissimilarity between two patterns. By using the multi-
objective search capability embedded in XtalOpt,36 we illus-
trate the CSP search is able to accelerate the structural recog-
nition of both experimental and simulated PXRD patterns. This
strategy goes beyond the aforementioned methodologies
developed to assist CSP using crystallographic and diffraction
information.27,30 Specically, it overcomes many of the chal-
lenges that result from the comparison of experimental
diffraction data collected at nite temperature and pressure
with in silico patterns calculated for geometry-optimized struc-
tures at 0 K. Therefore, this technique becomes particularly
advantageous when the reference PXRD diffractogram diverges
from the computed ground state structure of a specic stoi-
chiometry due to experimental conditions (pressure, hydro-
staticity, temperature, etc.) or because of theoretical limitations;
or for nding metastable phases.
2 Computational approach
2.1 Multi-objective search

The foundation of our newly proposed technique is based upon
multi-objective global optimization,37 as implemented in the
XtalOpt code version 13.0.36 In this extension of the XtalOpt
evolutionary algorithm, the tness of an individual structure
can be based upon multiple objectives, including a structure's
energy or enthalpy, as well as other user-specied features. Aer
locally relaxing a structure, XtalOpt automatically calls the
external codes specied by the user to compute the desired
target properties, whose values are employed in conjunction
with the enthalpy to calculate the corresponding multi-objective
tness. In the present work, the similarity in the PXRD pattern
of a structure compared to that of a reference (S) is chosen as an
objective to be minimized, while the enthalpy (H) is simulta-
neously minimized (eqn (1)). With Ss and Hs representing the
numerical value of the similarity index and enthalpy of struc-
ture s, respectively, the tness is dened through the following
weighted sum:
© 2025 The Author(s). Published by the Royal Society of Chemistry
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fs ¼ w

�
Smax � Ss

Smax � Smin

�
þ ð1� wÞ

�
Hmax �Hs

Hmax �Hmin

�
: (1)

Here, w is the weight assigned to the PXRD similarity objective,
and Amin and Amax represent the minimum and maximum value
of the objective {A= S,H} for the pool of structures. The weights
of the objective are constrained to be a real number between
0 and 1, and their sum must equal 1 for the calculation of the
tness, fs. This tness measure, subsequently, is used by Xta-
lOpt to evaluate the suitability of candidate structures for the
selection of the parent pool, from which new structures are
produced by applying various evolutionary operations, as
described more fully in ref. 33.
2.2 PXRD-assisted crystal structure prediction

We introduce here the XtalOpt-VC-GPWDF coupled technique,
whose schematic workow is illustrated in Fig. 1, to conduct
PXRD similarity tests during the execution of the crystal struc-
ture search. In this multi-objective search, the energy or
enthalpy (Hs in eqn (1)) is obtained from any external optimizer
of periodic systems (herein, we employ the Vienna Ab initio
Simulation Package, VASP, see also Computational details).38

The similarity of a structure's simulated PXRD pattern with that
of a reference (Ss in eqn (1)) is obtained using the newly devel-
oped variable-cell Gaussian powder-based similarity index (VC-
GPWDF),34 a modied version of de Gelder's similarity index,39

that ranges from 0 for identical structures to 1 for maximum
dissimilarity. Analogous to other methods,40–42 the similarity is
evaluated between a reference PXRD diffractogram, which can
be either experimental or computer-generated, and a second
diffractogram computed from one of the XtalOpt predicted
structures by critic2,35 which also handles the VC-GPWDF
similarity index calculation. The reference diffractogram is
input as an external list of values containing the 2q angle of
diffraction, and its corresponding relative intensity [2q; I], and
then parsed by critic2. The list does not need to be continuous,
nor does it need to cover the whole PXRD diffractogram range.
In fact, a short list of a few specic indexed peaks, or just
fragments of a PXRD diffractogram, are valid inputs as well.
Fig. 1 Schematic workflow for conducting the PXRD-assisted crystal
structure search with the combined XtalOpt-VC-GPWDF method.

© 2025 The Author(s). Published by the Royal Society of Chemistry
This aspect facilitates the PXRD-assisted crystal structure
search, and is particularly useful when multiple phases are
present in the sample, or when the noise is large in the exper-
imental data.

The initial pool of structures can be generated internally
using the RandSpg algorithm,43 or externally (e.g., by PyXtal44),
with the structures subsequently being read in as “seeds”. Local
geometry relaxations can be performed with any external code
for periodic systems. The similarity index, which is used to
determine the tness of the offspring, is calculated by critic2
using the optimized geometries of the structures generated by
XtalOpt and the input [2q; I] list. The use of the similarity index
in the calculation of the tness will steer the evolutionary
algorithm to favor those structures that better represent the
experimental PXRD as structures for the next generation. In our
implementation the nature of the (dis)similarity does not alter
the evolutionary operators used or their probability, though one
can imagine that could.

In the original version of de Gelder's method, a similarity
index is obtained by integrating numerically the product of the
powder patterns of both crystals. It assumes a value of zero if the
two patterns are the same (indicating that the crystals are
identical) and a value of one for completely non-overlapping
patterns. In the modied versions of de Gelder's method
(GPWDF and VC-GPWDF) the similarity index is calculated
analytically, rather than using numerical integration, from the
list of reection angles and intensities.34 This approach is more
efficient compared to de Gelder's, since it allows for the
computation of analytical derivatives with respect to the struc-
tural parameters, enabling the easy minimization of the simi-
larity index as a function of structural parameters like the lattice
strain – which is the basis of the VC-GPWDF approach.

The VC-GPWDF method is exhaustively described in ref. 34;
herein we provide a brief summary. In VC-GPWDF, the reference
powder pattern is rst pre-processed to extract the reection
angle and intensity pairs. This pre-processing step helps in
circumventing the difficulties caused when comparing the
pattern of calculated structures with experimental patterns that
contain artifacts such as noise, varying peak shapes and widths,
and a background contribution (in the present work, the user
inputs a list of [2q; I], as previously described). Given the
experimental reection angles and intensities, VC-GPWDF seeks
lattice deformations (strains) of the input structure that maxi-
mize agreement with the experimental pattern. This is done by
carrying out a global minimization of the GPWDF score as
a function of the six lattice strains in the input structure, up to
a maximum strain chosen by the user (in the present work, we
employed the default values of 10% maximum deformation
over the cell length and 5° for the angles). By doing this, VC-
GPWDF can measure crystal similarity between structures that
are not entirely comparable due to cell deformations because of,
for instance, being determined under different experimental
conditions or, in the case of structures calculated with DFT, due
to missing vibrational effects. The nal VC-GPWDF score is the
smallest GPWDF among all deformations, and is equal to zero
for identical crystals (aer deformation). VC-GPWDF also
produces the cell deformation of the input structure that
Digital Discovery, 2025, 4, 73–83 | 75
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maximizes agreement with the target pattern. Compared to
other programs used to perform structure determination using
cross-correlation functions, like the Fit with Deviating Lattice
parameters (FIDEL),45 VC-GPWDF has two advantages: (i) it
performs a global optimization, and therefore is unlikely to get
caught in a local minimum, and (ii) it uses an analytical version
of de Gelder's index, enabling fast local optimizations. The
whole VC-GPWDF procedure has very low computational cost,
and can take seconds/minutes per structure on a desktop
computer.

Let us now illustrate the power of this new technique for
three inorganic systems: (1) brookite, a metastable polymorph
of TiO2; (2) sodium ramp-compressed to hundreds of GPa of
pressure; and (3) vaterite, a natural polytypic structure of
calcium carbonate. Each system will be introduced and dis-
cussed in-depth in their specic sections, while the complete
computational details are reported at the end of this work.
These systems were chosen to limit the computational cost
while demonstrating the advantages provided by our method,
since the number of local minima scales exponentially with the
degrees of freedom, 3N + 3 for a 3D crystal.46 In fact, the number
of atoms in our CSP searches is not greater than 60 per unit cell,
reached by CaCO3 with Z = 12 (see Computational details).
However, the PXRD-assisted strategy could, in principle, be
applied to larger systems (depending on the available compu-
tational resources, and on themethod used for local relaxation),
for which the acceleration would be even more evident
compared to random or unassisted searches.
Fig. 2 Polymorphs of TiO2 and their simulated powder X-ray diffraction (
of TiO2 at ambient conditions: anatase (I41/amd, 4 FU), brookite (Pbca, 8
Below, we show the PXRD pattern generated from the three phases (l= 1
the corresponding similarity index calculated by VC-GPWDF using the P
smallest similarity index that can be obtained by varying the unit cell par

76 | Digital Discovery, 2025, 4, 73–83
3 Results and discussion
3.1 TiO2 – brookite

TiO2 naturally exists in three different polymorphs at ambient
conditions: anatase (I41/amd), brookite (Pbca) and rutile (P42/
mnm) with 4, 8 and 2 formula units (FUs), respectively, in their
conventional unit cells (Fig. 2). These polymorphs have been
frequently used as benchmarks for CSP methods and related
computational models.22,26,30,43 At the PBE level of theory, we
predict anatase as the ground state, followed by brookite (DE =

13.5 meV per atom) and rutile (DE= 26.7 meV per atom), in-line
with previous DFT calculations.26 Some classic interatomic
potentials developed for this system, however, predict different
stability orderings.26

A typical CSP search performed on TiO2 will almost certainly
locate the ground state phase, in this case, anatase (within the
PBE approximation and ensuring that the FUs considered in the
search include multiples of 4). While a standard CSP search is
also likely to discover metastable rutile, owing to its high-
symmetry and small unit cell, brookite may be difficult to nd
due to its metastability and low symmetry. Indeed, in an earlier
study, a regular CSP search on TiO2 with 8 FU found anatase,
rutile and brookite as the 187th, 559th and 1141st crystals opti-
mized, respectively.26 A constrained search, where the parent
pool was restricted to those structures that possessed an
orthorhombic Bravais lattice only, accelerated the discovery of
brookite (as the 345th structure). Another way in which brookite
might be found is by steering an evolutionary algorithm with
PXRD) patterns. Conventional unit cells of the three natural polymorphs
FU) and rutile (P42/mnm, 2 FU). Titanium atoms are blue, oxygen red.
.54056 Å, which corresponds to the wavelength of Cu Ka radiation) and
XRD-pattern of brookite as reference. The patterns shown are for the
ameters.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Benchmark tests on TiO2-brookite using single- or multi-
objective crystal structure prediction runs with 8 formula units. The
number of total structures-per-run (# structures), the weight assigned
to the powder X-ray diffraction similarity objective (w), and the output
result of the search (if brookite was found or not), are reporteda

Run

Single-objective Multi-objective

1 2 1 2 3

# Structures 1000 1000 500 500 500
w 0.0 0.0 0.3 0.6 0.9
Brookite No No No Yes Yes

a If the Pbca brookite phase was fortuitously generated in the initial pool
by RandSpg, the run was repeated.
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additional information, such as PXRD data, as we illustrate
below.

In the bottom panel of Fig. 2, the PXRD pattern of the
geometry-optimized structures of the three aforementioned
polymorphs of titanium dioxide are plotted. The similarity to
brookite, where the reference PXRD data was generated with
Mercury 2022.3.0 (ref. 47) in the range from 1° to 120° in 2q with
a step of 0.1°, from the experimental structure collected by
Meagher and Lager at room temperature (ICSD = 36408; lattice
parameters in Å: a = 5.138, b = 9.174, c = 5.449)48 is also
provided. Despite the fact that the similarity index (or dissimi-
larity) is low, 0.01, the DFT-optimized cell parameters are quite
different from that of the reference: a= 5.192 Å, b= 9.274 Å, c=
5.509 Å. In fact, if we calculated the similarity index using the
DFT-optimized structure directly, as proposed in other meth-
odologies (see Introduction), a value of 0.17 would be obtained
(to be compared to 0.43 for anatase and 0.93 for rutile). Because
VC-GPWDF performs unit cell deformations, which include
varying the DFT-optimized cell parameters during the compar-
ison of the reference and trial structures, it becomes possible to
retrieve a nearly zero similarity index for the correct structure.
The cell parameters of the relaxed structure post-renement
with VC-GPWDF are varied to a = 5.140 Å, b = 9.171 Å and c =
5.447 Å, which almost exactly coincides with the reference
structure.

Now that we have described how the VC-GPWDF method can
modulate a DFT-optimized structure, so that it provides the best
match with the reference, let us examine the optimal similarity
it provides between brookite and the two higher symmetry
polymorphs. The main difference between the diffractogram of
orthorhombic brookite with the one computed for the two
tetragonal phases is the number of peaks, which is much larger
in the less symmetric case. Moreover, brookite presents three
intense peaks at low angles, two of them very close to each other
(25.3°, 25.7° and 30.8° in 2q degree, respectively), while in the
tetragonal phases, only one high intensity peak is found. One of
the reasons why rutile has a larger similarity index to brookite
than anatase, is that in anatase the intense peak is in a range of
2q similar to where the rst doublet of peaks in brookite is
found, while in rutile it is at a higher angle (∼27°).

Now, let's put the VC-GPWDF similarity index in action with
XtalOpt to predict the metastable, low symmetry, phase of TiO2,
brookite. To begin, two single-objective (classic enthalpy based)
CSP runs with 8 FU in the cell (24 atoms) were performed as
reference tests generating a total of 1000 structures each
(Table 1). In both searches, brookite was not found, while the
more symmetric anatase and rutile were generated, in-line with
previous studies where 1100+ structures were optimized to nd
the orthorhombic phase.26 Coupling XtalOpt with the VC-
GPWDF algorithm to perform the multi-objective search, it was
possible to nd brookite in shorter evolutionary searches (see
Table 1). However, this success appeared to be sensitive to the
tness weight parameter connected to the PXRD data (eqn (1)).
In this test, brookite was successfully found using w $ 0.6
prompting us to analyze how the choice of the weight inuences
the tness of the three polymorphs of TiO2 (Section S1†). The
tness is related to the probability that a structure has for being
© 2025 The Author(s). Published by the Royal Society of Chemistry
chosen as a parent in the evolutionary search, but there are
other factors, including the symmetry and the types of lattices
in the initial pool, as well as the random parameters chosen
during the course of the CSP search, which also inuence
a structure's discovery. Though the tness of brookite was
higher than that of anatase already using a weight of 0.1, this
polymorph was not discovered in our short CSP search even
when a weight of 0.3 was used. While it is probable that brookite
could be found in fewer structures than in a regular search
(∼1100) with this weight, increasing the weight to 0.6 hastens
its appearance by more than a factor of two.

In the past, when the multi-objective PXRD search was not
available, it was suggested that constraining the breeding pool
to structures whose (sub)lattice was consistent with a particular
Bravais lattice or space group (potentially deduced from a dif-
fractogram) could be employed for unveiling the structure of
a synthesized compound.49 However, as shown in the following
two examples, the PXRD search proposed herein is preferred
since it accounts for possible variations in the crystal lattice (see
below, Na in ramp-compression), and constraining a CSP search
with an indexed unit cell might even be counter-productive in
some rare cases (see below, The tricky case of vaterite).
3.2 Na in ramp-compression experiments

High-quality, and perhaps already indexed PXRD data can
surely increase the success of the multi-objective search strategy
that we describe above. However, data collected at extreme
conditions, such as in dynamic or ramp compression experi-
ments that explore the chemistry of the interiors of planets or
high-energy-density quantum matter,50 oen require substan-
tial support from theory for their interpretation. In fact, the data
obtained in these experiments is obscured by noisy back-
ground, mostly sourced by the hot plasma ablated by the
sample target during the laser irradiation,51 jeopardizing the
indexing of weak reection's peaks, which might be covered by
the background. Therefore, the comparison with PXRD data
simulated from theoretical structures is oen necessary to
identify a phase in shock experiments. Despite this synergistic
approach, the structural determination of new phases
measured at extreme conditions still remains a great scientic
challenge.52
Digital Discovery, 2025, 4, 73–83 | 77
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Fig. 3 Simulated XRD patterns and experimental lineouts of Na
structures under pressure. (a) Section of the diffraction pattern
measured by Polsin et al.59 (black line) together with the diffraction
lines calculated from the DFT-optimized (red line) and refined (blue
line) structures of Na-hP4 (l = 1.481 Å, see ref. 59). The similarity index
changed from 0.991 (hP4) to 0.086 (hP4*) upon refinement. The
calibration peak in the diffraction data is shaded in green. (b) View of
the unit cell of Na-hP4 along the (110) plane, as optimized by DFT
(hP4), and after the volume-cell refinement with VC-GPWDF (hP4*).
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A noisy background is not the only challenge in the struc-
tural solution from shock and ramp compression experiments.
In fact, the kinetics in dynamic compression experiments,
together with the uniaxial orientation of the shock front can
alter the expected (theoretical) P–T path followed in a phase
diagram, greatly diverging from the ideal thermodynamic path
at low temperature, and leading to unexpected phase transi-
tions, or even decompositions.53 Yet, these variables are nothing
but additional coordinates of the phase diagram of a compound
that must be explored to understand the behavior of matter at
extreme conditions.50 From the theoretical point of view, this
means that the system must be simulated with techniques
beyond the standard 0 K DFT approximation, including quasi-
harmonic phonons to account for the thermal volume expan-
sion,54 or by performing expensive molecular dynamics simu-
lations.55 Moreover, the computational reproduction of an
anisotropic (e.g., uniaxial) compression can be a challenging
task even for simple unary systems.56 Therefore, the possibility
to perform volume-cell modulations on-the-y, and emulate all
the effects that contribute to the divergence from an ideal
compression experiment, can become useful for a rapid, but
meaningful, interpretation of the experimental data. Below, we
illustrate the power of this approach on Na, which assumes the
iconic hP4 insulating electride phase, observed for the rst time
in diamond anvil cells at ∼200 GPa,57 where the electronic
structure could be rationalized using a multi-center bonding
scheme.58

Studying Na to pressures above 200 GPa, conditions that are
accessible mostly with dynamic compression techniques, is
currently of great interest as the ndings will address important
questions for theory and for condensed matter physics.59

Therefore, recent laser-driven ramp compression experiments
where sodium was squeezed to a nearly 7-fold increase in
density at a pressure of 500 GPa (and a temperature of ∼1500–
3000 K) were performed.59 In situ XRD revealed a series of peaks
obtained at the highest pressures that could be indexed as the
hP4 phase, but the peaks observed between 242–292 GPa were
not consistent with hP4 and were instead interpreted as either
the cI16 structure (previously observed between 108–120 GPa
(ref. 60)) or an R�3m phase. A following theoretical study,61

however, revealed that both cI16 and R�3m were not dynamically
stable at the experimentally attained P–T conditions. In 0 K CSP
searches hP4 emerges as by far the most stable phase at the
pressures attained in experiment, but a subset of seven systems
was also found, and computed to be preferred at high temper-
atures within the quasi-harmonic approximation.61 Unfortu-
nately, none of their diffraction patterns and densities were
fully consistent with the experiments.

To identify a Na structure that could have been created using
ramp compression, we carried out a VC-GPWDF assisted multi-
objective CSP search for Na at 315 GPa using the experimental
data published in ref. 59, and a weight of 0.7. In this case, the
reference list of reection values is constituted by only six
indexed peaks (six [2q; I] pairs), also to avoid contamination
from the high noise over the experimental 2q range (Fig. 3a).
This search found that the phase producing the best similarity
index was actually hP4, the expected ground state at these
78 | Digital Discovery, 2025, 4, 73–83
conditions. So why wasn't it previously identied by either
experiment or by theory? The answer stems from the severe
distortions the structure seems to undergo during the ramp-
compression, which cannot be emulated by the standard 0 K
DFT optimization or molecular dynamics with isotropic pres-
sure, but that is easily revealed by the cell-variation routine in
VC-GPWDF.

In Fig. 3 we illustrate the structure of the hP4 phase as it
emerges from the DFT optimization and post-renement with
VC-GPWDF (hP4*), coupled with the diffraction peaks that these
two phases yield overlaid on the XRD data collected by Polsin
et al.59 The main structural difference between hP4 and hP4* is
the extra anisotropic compression along the c-axis (Fig. 3b)
estimated to be equal to ∼425 GPa (DFT stress value) and
compared to the ∼370 GPa obtained along the a- and b-axes,
causing the lowered c/a ratio and the increased density of the
crystal. The subsequent effect of this distortion on the calcu-
lated diffraction lines is, on one hand, to move the (101) to
higher 2q angles, and on the other hand to almost merge the
reections from the (102) and the (2–10) planes (Fig. 3a),
matching with the doublet peaks experimentally observed at
∼63°.

In Na-hP4* the density increases up to 6.3–6.4 g cm−3, which
is relatively high compared to what is expected from 0 K DFT
calculations on hP4.57 However, the pressure versus density
curve of sodium can deviate quite substantially from the ideal
© 2025 The Author(s). Published by the Royal Society of Chemistry
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trend, and produce very different results depending on the
experimental conditions.59 For example, at 300 GPa, the density
of sodium can be estimated as being ∼3.5 g cm−3 following the
Sesame principal Hugoniot, or being ∼5.9–6.0 g cm−3 if
extrapolated using static compression data from the FCC and
BCC phases.59 Moreover, hP4* is calculated to be 199 meV per
atom higher in enthalpy than the fully relaxed hP4 structure
(while retaining all real phonons, see Fig. S1†), which is none-
theless accessible based on the estimated temperature in Pol-
sin's experiment (∼2200 K).59 The weak peak at ∼42° that was
previously indexed as the hP4 (101), was suggested to indicate
that multiple phases coexisted, resulting from pressure and
temperature gradients present in the sample, in-line with prior
interpretations.59,61

Na-hP4* is a distorted structure that cannot be obtained with
classic DFT geometry optimizations at high-pressure or molec-
ular dynamics simulations, since in both cases, the system
would evolve towards the most stable (relaxed) conguration.
Instead, Na-hP4* mirrors the effects of anisotropic/uniaxial
compression along the c-axis and the thermal expansion,
which are extrapolated and accessed thanks to the iterative
renement over the experimental data. Though, it is not
possible to unequivocally identify the phase observed by Polsin
et al.59 as hP4*, it is worth noting that the PXRD assisted CSP
with XtalOpt-VC-GPWDF could access interesting new alterna-
tives for the interpretation of challenging data collected at
extreme conditions.52,62
3.3 The tricky case of vaterite

Among the biogenic minerals, calcium carbonate (CaCO3) is
arguably the most abundant. From the three known anhydrous
crystalline polymorphs of CaCO3, calcite, aragonite and vaterite,
the latter is the least stable, but still commonly found in
nature.63 Surprisingly, despite the nearly 100 year debate on its
crystal structure, an apparently satisfying solution was
proposed only very recently.64 Specically, it was suggested that
Fig. 4 Plot of the properties of the structures predicted with XtalOpt-VC
versus similarity index generated using (a) Le Bail's65 and (b) DuPont's66 e

© 2025 The Author(s). Published by the Royal Society of Chemistry
vaterite should be regarded as a polytypic structure, a specic
type of polymorphism built up by a stacking of almost identical
layers, which differ in their stacking sequence. This has made
vaterite a very challenging system to solve, even combining
several experimental techniques,64 and almost impossible with
computational methods alone. In fact, though vaterite is
a relatively simple mineral (composition-wise), it cannot be
solved solely with standard CSP methods, even with the possi-
bility of using supercells. Therefore, what can a structure search
do to support the solution of such challenging systems? This is
what we will try to understand with this last example using our
new methodology.

The multi-objective evolutionary search coupled with VC-
GPWDF is obviously limited by the type of PXRD data used. In
this case, it was possible to retrieve two extensive lists of peaks
[2q; I] from the studies performed by Le Bail et al.65 and by
DuPont et al.,66 and two CSP runs using a weight of 0.7 were
carried out using one, or the other, as a reference. In Fig. 4, we
plot the energy difference (relative to calcite) vs. similarity index
of the phases output by the CSP runs, focusing on those iden-
tied as good matches (similarity index < 0.1).

Using the data indexed by Le Bail et al.65 (Fig. 4a), it is not
surprising to see that the proposed Ama2 phase was predicted
by our PXRD assisted-CSP as the best match. However, using
this list of peaks, our search also found the Pnma structure
proposed by Meyer,67 which is ∼35 meV per atom more stable
than the Ama2 phase proposed by Le Bail, as well as the P212121
phase proposed by DeMichelis68 (which is isoenergetic to Pnma).
Using the second set of data, collected by DuPont et al.66

(Fig. 4b), yields different results. The structures proposed
previously by Le Bail65 (Ama2), Meyer67 (Pnma) and DeMichelis68

(P212121) were still found. Notice that the similarity index of the
recurrent structures changes from one data set to another, but it
is consistently very low (<0.1).

Moreover, the two assisted searches have also generated new
structures having excellent similarity index and a low energy
-GPWDF for vaterite. The relative energies (using calcite as a reference)
xperimental powder X-ray diffractograms.
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(only ∼10 meV per atom above calcite), and not proposed in
past works, which are commented on in Section S4.† The most
interesting result obtained with DuPont's data is probably the
prediction of both the C2 and C2/c structures, previously pre-
dicted in another work by DeMichelis et al.,69 which differ by the
specic orientation of the carbonate group along the stacking
direction of the layers. These two structures are extremely
important, since they form the sub-set of phases composing the
polytypic crystal structure recently proposed.64

These results show how the coupled XtalOpt-VC-GPWDF
algorithm can support the solution of complicated crystal
structures such as vaterite, without the need of performing
crystal structure searches on supercells as large as the real
crystal, which would be computationally inaccessible. Our
method was able to generate, almost on-the-y, most of the
crystal structures proposed for vaterite in past theoretical and
experimental works, including those forming the polytypic
structure, and ranking them by energy and similarity with the
experimental PXRD. As we have postulated, even by generating
the correct metastable crystal structure, it would have been
impossible to thoroughly solve the case of vaterite. However,
our newmethodology was able to provide all the building blocks
necessary to construct the polytypic model that solves the
intricate crystal structure of vaterite, supporting crystallogra-
phers dealing with such challenging systems.

4 Conclusions

We have introduced a powder X-ray diffraction-assisted crystal
structure prediction method that employs both the enthalpy of
a structure and its similarity index, as compared to that of
a reference X-ray diffraction pattern, in an equal footing. This
technique has been implemented within the open-source
evolutionary algorithm code, XtalOpt. The similarity index is
calculated using VC-GPWDF, a modied version of de Gelder's
similarity index, which assesses the overlap between diffraction
patterns through a cross-correlation function upon iterative
distortions of the unit cells. Either complete or partial PXRD
patterns can be used to assist the crystal structure predictions,
which can depend on the availability and quality of the experi-
mental data. This similarity index is then used to determine the
value of the tness in XtalOpt's multi-objective global optimi-
zation process. Our method is shown to be optimal for identi-
fying metastable phases, facilitating the identication of
polymorphs in inorganic samples, and aiding in the analysis of
structures distorted by the extreme conditions created in shock
and ramp compression experiments. Moreover, it is also effec-
tive in identifying challenging structures such as polytypic
systems. Thanks to the cell-variation procedure, it is likely that
a target structure might also be found from geometries opti-
mized at low levels of theory (e.g., DFTB, machine-learned
potentials, low energy cut-offs or sparse k-point meshes), even
in the case where the energy order is not correct, since for the
PXRD only the structural information is relevant. However, care
would need to be taken so the computational parameters
employed yield sufficiently accurate forces to ensure reasonable
optimizations. We believe that the coupled XtalOpt-VC-GPWDF
80 | Digital Discovery, 2025, 4, 73–83
tool will be highly benecial for crystallographers, chemists,
materials scientists and geochemists for the solution of chal-
lenging structures at ambient and extreme conditions.

5 Methods
5.1 Computational details

The open-source evolutionary algorithm XtalOpt33,36 version
13.0 was employed for crystal structure prediction, using the
multi-objective tness measure. The parameters employed in
XtalOpt are thoroughly described in ref. 22. The initial genera-
tion consisted of random symmetric structures that were
created by the RandSpg algorithm,43 except in the case of
CaCO3, where the initial generation was created externally with
PyXtal44 then imported as seeds, using Ca atoms and CO3

trigonal planar units. PyXtal was employed for this purpose,
because the generation of symmetric crystals containing
molecular fragments for the initial pool of structures is not
implemented in XtalOpt. The number of initial structures was
equal to 50 in all cases. We believe that the rst generation of
structures could be improved using automated classications,70

by generating a more accurate initial pool of structures,
focusing on the most probable space groups identied by the
machine learning engine, a possibility that we will explore in
future works. The number of formula units (FUs) was set equal
to 8 in the case of TiO2 to automatically cover the FU of all the
natural polymorphs, i.e. anatase (4 FU), brookite (8 FU) and
rutile (2 FU); 4, 6, 8, 12, 20, 24 and 32 in Na; and 4, 6, 8 and 12 in
CaCO3. A sum of the atomic radii scaled by a factor of 0.7 was
used to determine the shortest distances allowed between pairs
of atoms. Duplicate structures were identied and removed
from the breeding pool using the XtalComp algorithm.71 For the
TiO2-brookite test, the total number of generated structures
could vary from 500 to 1000 (see Section TiO2 – brookite). For
the tests performed on high-pressure Na and CaCO3, the total
number of generated structures per run was equal to 1000. Each
structure search followed a multi-step strategy, with three
subsequent optimizations with increased level of accuracy, plus
a nal accurate single point (see below).

Geometry optimizations and electronic structure calcula-
tions were performed using Density Functional Theory (DFT)
with the Vienna Ab initio Simulation Package (VASP), version
6.4.2.38 The PBE72 exchange–correlation functional was
employed. The projector augmented wave (PAW) method73 was
used to treat the core states in combination with a plane-wave
basis set with an energy cutoff of 500 eV. The O 2s22p4

(PAW_PBE O_s), Ti 3d34s1 (PAW_PBE Ti), Na 2p63s1 (PAW_PBE
Na_pv), Ca 3p64s2 (PAW_PBE Ca_pv) and the C 2s22p2

(PAW_PBE C_s) states were treated explicitly. The k-point
meshes were generated using the G-centered Monkhorst–Pack
scheme,74 and the number of divisions along each reciprocal
lattice vector was selected so that the product of this number
with the real lattice constant was greater than or equal to a given
value. The values of 20, 25 and 30 Å were used for the three
subsequent optimization steps in the crystal structure search of
TiO2 and CaCO3, then a value of 50 Å was used for the nal
single point. In the case of sodium, a value of 40 Å was used at
© 2025 The Author(s). Published by the Royal Society of Chemistry
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each optimization step, and one of 50 Å for the nal single
point. The accuracy of the energy convergence was set to
increase from 10−3 to 10−5 eV for the optimizations, and to 10−6

for the nal single point on the structures for which the norms
of all the forces calculated during the relaxations were smaller
than 10−3 eV Å−1. A Gaussian smearing was used at each opti-
mization step, and for each system with a sigma of 0.02 eV. The
tetrahedron method was adopted in the last single point.75

CSP methods employ metaheuristic algorithms, which do
not always guarantee that the optimal solution, or set of optimal
solutions are found. Therefore, in addition to varying the
parameters employed in a standard CSP search,22 a user may
need to perform searches where the weights in the objective
function are varied (as in Section 3.1), or explore a range of
potential solutions identied by plotting the enthalpies of the
optimized structures versus their similarity index (as in Section
3.3) to nd the most likely candidate structure.

Data availability

The data supporting the article has been included as part of the
ESI.† The crystal structure prediction code XtalOpt is open
source and it can be downloaded at this link https://
xtalopt.github.io/. The code VASP, used for the density
functional theory calculations, is commercial, and needs to be
purchased. The code critic2, used to calculate the similarity
index, is open source, and it can be downloaded at this link
https://aoterodelaroza.github.io/critic2/. The script used to
guide the crystal structure prediction performed by XtalOpt
with the experimental data is provided in the ESI† of the
manuscript, together with a step-by-step procedure for its use.
The rened Na-hP4* structure and new Pca21 and P21/c CaCO3

phases are provided in a separate folder as cif-les.
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