
Digital
Discovery

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
D

ec
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 7

/9
/2

02
5 

2:
13

:2
2 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Visualizing high e
aMaterials Science and Engineering Depa

Station, TX, USA. E-mail: trevorhastings@ta
bMechanical Engineering Department, Texas

† Electronic supplementary informa
https://doi.org/10.1039/d4dd00262h

Cite this:Digital Discovery, 2025, 4, 181

Received 14th August 2024
Accepted 25th November 2024

DOI: 10.1039/d4dd00262h

rsc.li/digitaldiscovery

© 2025 The Author(s). Published by
ntropy alloy spaces: methods and
best practices†

Brent Vela, a Trevor Hastings,*a Marshall Allenab and Raymundo Arróyavea

Multi-Principal Element Alloys (MPEAs) have emerged as an exciting area of research in materials science in

the 2020s, owing to the vast potential for discovering alloys with unique and tailored properties enabled by

the combinations of elements. However, the chemical complexity of MPEAs poses a significant challenge in

visualizing composition–property relationships in high-dimensional design spaces. Without effective

visualization techniques, designing chemically complex alloys is practically impossible. In this methods

article, we present a suite of visualization techniques that allow for meaningful and insightful

visualizations of MPEA composition spaces and property spaces. Our contribution to this suite are

projections of entire alloy spaces for the purposes of design. We deploy this of visualization techniques

on the following MPEA case studies: (1) constraint-satisfaction alloy design scheme, (2) Bayesian

optimization alloy design campaigns, (3) and various other scenarios in the ESI. Furthermore, we show

how this method can be applied to any barycentric design space. While there is no one-size-fits-all

visualization technique, our toolbox offers a range of methods and best practices that can be tailored to

specific MPEA research needs. This article is intended for materials scientists interested in performing

research on multi-principal element alloys, chemically complex alloys, or high entropy alloys and is

expected to facilitate the discovery of novel and tailored properties in MPEAs.
1 Introduction

Since its advent in 2004,1 the high entropy alloying paradigm
has garnered considerable attention, even being described as
reviving metallurgy and alloy design.2 Of particular interest to
this work is alloy design. Alloy design refers to the systematic
process of selecting and optimizing the composition and pro-
cessing conditions of alloys to achieve desired properties and
performance criteria for specic applications.3 This involves
navigating complex multi-dimensional compositional spaces to
balance competing factors such as strength, ductility, corrosion
resistance, and thermal properties.

High entropy alloys comprise 4 or more principal alloy
components at concentrations ranging from 5 to 35 at%.4 Multi
Principal Element Alloys (MPEAs) are an extension of the high
entropy alloying paradigm and refer to compositionally complex
alloys without a single principal alloy component but do not
necessarily meet any prescriptions for congurational entropy.5

The motivation behind the MPEA-paradigm is to explore the
compositionally complex inner regions of alloy spaces. To date,
many MPEAs with various attractive properties have been
rtment, Texas A&M University, College

mu.edu

A&M University, College Station, TX, USA

tion (ESI) available. See DOI:

the Royal Society of Chemistry
identied due to the vastness and compositional diversity of the
MPEA space. Such properties include high yield strength,6 good
ductility,7 corrosion resistance,8 high/low thermal conductivies9,10

and coefficients of thermal expansion,10 and magnetism.11

However, designing and optimizing these properties oen involves
trade-offs,3 as improving one property can compromise another.
This complexity underscores the need for advanced visualization
techniques to effectively navigate the high-dimensional MPEA
design space and balance these competing factors.

While chemical diversity has allowed the design and
discovery of novel MPEAs, this same chemical complexity
makes visualizing composition–property relationships in MPEA
systems difficult. The properties of binary alloy systems can be
represented on a standard x–y diagram. Making use of bar-
ycentric coordinates and the fact that compositional degrees of
freedom n is one less than the order of the alloy system e, the
properties associated with ternary systems can be plotted over
a Gibbs-triangle using contour-lines and color maps. Again
making use of barycentric coordinates, quaternary systems (e =
4) can be represented by a Gibbs-tetrahedron. Regions inside
this Gibbs-tetrahedron can be colored or partitioned according
to properties within the quaternary system. Such 3D visualiza-
tions are difficult to quickly interpret, yet are still possible.
However, quinary systems and above (e $ 5, n $ 4) cannot be
represented in 3 dimensions. Visualizing high dimensional
alloy spaces has been identied as a challenge facing the MPEA
community since at least 2017.4
Digital Discovery, 2025, 4, 181–194 | 181
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Various attempts have been made to visualize high-
dimensional alloy design spaces. Regarding conventional
dimensionality reduction techniques, stacks of 3D pseudo-
ternary diagrams can be arranged in a way to show how
a varying 4th compositional dimension affects the remaining 3
dimensions;4 however, this method is not scalable to arbitrary
dimensions. Schlegel diagrams have been suggested as
a method to visualize the MPEA space;4 In a Schlegel diagram,
a polytope in d-dimensional Euclidean space (Ed) is represented
by a polytope in E

d−1. This projected polytope will have poly-
topal subdivisions (edges and nodes) in the facet. In these
diagrams, nodes encode the vertices of the polytope, while lines
encode the edges of the polytope. In the case of MPEAs, the
composition space can be represented as a e − 1-dimensional
simplex, i.e., a generalization of triangles and tetrahedra to
higher dimensions. This simplex can be represented in a lower
dimension by a Schlegel diagram. However, because Schlegel
diagrams are only capable of projections from E

d to E
d−1, these

diagrams would only be useful for 3-dimensional and 4-
dimensional composition spaces, i.e., quaternary and quinary
systems. Furthermore, with these diagrams, the quinary system
could only be visualized in 3D space, adding further complexity
to an already relatively complex diagram. Schlegel diagrams
would not be useful for projecting senary systems as this
projection would be from 5D to 4D.

Graph networks have been used to visualize the coexistence
of phases in hyper-dimensional thermodynamic space.4,12 In
these graph network implementations of phase diagrams, each
phase is represented by a node, and if two phases coexist at
a given T and P, their nodes are connected by a line.4,12 In
a similar vein, via the use of artistic features such as color, line
width, and marker shape, so-called ‘Hull Webs’ have been used
to visualize thermodynamic quantities, i.e., convex hull depth,
reaction driving forces, meta-stability, and the likelihood of
phase separation.13 These methods are particularly useful for
preserving and visualizing relational information where the
connections between entities (e.g., phases) are critical for
interpreting the system. While this method provides a means
for visualizing the coexistence of phases and other thermody-
namic properties, it is not appropriate to visualize arbitrary
properties such as price, density, etc. There is a need for
a visualization method that can visualize arbitrary chemistry-
property relationships for high-dimensional alloy space.

Regarding more sophisticated and interactive visualization
techniques, van deWalle et al.14 demonstrated a soware capable
of visualizing high dimensional phase spaces. The authors
demonstrated this framework on the 4-dimensional Cantor alloy
space. For a given temperature and pressure conditions, this
framework begins by randomly sampling a high dimensional
composition space and evaluating the phase equilibria at each
sampled MPEA. MPEAs determined to consist of a single phase
are discarded; these points are discarded as observations of
single phase MPEAs do not provide information regarding phase
boundaries. Next, the MPEAs are grouped based on the phases
that take part in each equilibrium. Specically, compositions are
grouped based on the endpoints, which of the tie-line these
MPEAs lay on and are further grouped based on the phases
182 | Digital Discovery, 2025, 4, 181–194
present at equilibrium. Next, a meshed phase boundary is
created. This generates an estimate of the true phase boundary.
Once a high-dimensional phase diagram is generated, a cross-
section of this ‘high-dimensional’ object can be taken. In this
way, the dimensionality of the phase diagram is reduced. Despite
the advantages of this method (accurate representation of high
dimensional phase space), this framework comes at a high
computational cost. Furthermore, this framework is currently
limited to visualization phase boundaries and has not been
generalized to other alloy properties of interest. While the
aforementioned visualization techniques are useful for specic
situations, they do not summarize composition properties in
MPEA systems of arbitrary dimensionality.

Of particular interest to this article are the works that used
dimensionality reduction techniques such as t-SNE (t-
distributed stochastic neighbor embedding)15 and UMAP
(uniform manifold approximation and projection).16 These
techniques aim to project high-dimensional data to a lower-
dimensional embedding. Details on these methods are
provided in the ESI.† These methods have been used extensively
in alloy design. For example, in their work with generative
adversarial networks (GANs), Li et al.17 used t-SNE to visualize
and compare the high dimensional data distributions gener-
ated by their GANs. t-SNE enabled them to effectively demon-
strate how different GAN architectures captured the underlying
data distribution of alloy compositions. This visualization
technique helped identify areas where the models succeeded or
fell short, providing critical insights for rening the generative
models to better t the complex, multidimensional alloy design
space. Similarly, in our previous works,18 we used UMAP to
summarize the composition of a chemically diverse data set of
additive manufacturing experiments. The result was a diagram
that clustered alloys based on their composition, providing
a ‘family portrait’ of the database. Additionally, more advanced
dimensionality reduction techniques have emerged, such as
TriMap19 and Independent Nonlinear Component Analysis,20

which also aim to provide insights into complex data structures.
For example, Jiang et al.21 used TriMap to guide their feature
mining and fusion network for natural image matting.

While the aforementioned of t-SNE and UMAP is valid, these
dimensionality reduction methods are only trained on a subset
of the design space. Consequently, the resulting graphs can be
difficult to interpret and oen lack the full context of the bar-
ycentric nature of alloy design spaces.

In previous works, we used t-SNE and UMAP in a novel way,
employing these dimensionality reduction techniques to project
high-dimensional barycentric design spaces into 2D. Beginning
in 2022,22 predecessors in our group utilized t-SNE to project
entire barycentric design spaces, resulting in polygonal 2D
diagrams resembling an extension of a Gibbs ternary diagram
but for higher-order systems. These projections enabled the
visualization of chemistry-structure, chemistry-property, and
chemistry–performance relationships. By using t-SNE on the
entire barycentric design space, the resulting projection was
more interpretable than those based on subsets of the space, as it
retained some sense of locationwithin the barycentric coordinate
system, putting the data in the context of the full alloy space.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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In later works,23–26 we enhanced our visualization approach
by adopting UMAP to project barycentric design spaces. UMAP
proved superior in preserving both the global and local struc-
ture during the projection process, producing plots that closely
resembled polygons, similar to ternary diagrams but applicable
to higher-order systems. This resulted in more interpretable
and meaningful visualizations for alloy design.

However, during the revision of this work, we were encouraged
to explore an analytical and deterministic method for projecting
barycentric coordinates—specically, affine projections,27,28

which inscribe high-dimensional barycentric coordinates within
a 2D n-polygon. This method offers the same insights as tech-
niques like t-SNE and UMAP but with signicantly lower
computational costs. Importantly, this projection arguably
represents the ‘ground truth’ of what manifold learning methods
like UMAP are attempting to approximate, i.e., a barycentric
design space projected and inscribed within a 2D polygon.

Projection of entire alloy design spaces, whether created using
t-SNE, UMAP, or affine projections, have been a recurring feature
in our previous works.23–26 These techniques serve as tools to
visualize and explore high-dimensional design spaces. These
methods all accomplished the same goal: to generate interpret-
able projections of barycentric design spaces that aid designers
in understanding their design choices more effectively.

However, alloy space projections are unsuitable for every
visualization need. For example, they are less effective when
visualizing property–property relationships or quantitatively
summarizing alloy compositions. No single visualization tech-
nique can address all the scenarios encountered in alloy design.
Each method has its strengths and limitations. Therefore,
designing high-entropy alloys (HEAs) requires a range of visu-
alization techniques to interpret data in high-dimensional
composition spaces.

The contribution of this work is twofold: (1) while alloy space
projections have proven useful, there is no comprehensive
resource detailing their application in alloy design. This is
important because, despite their utility, dimensionality reduction
techniques can be complex and non-obvious in materials science.
A guide would help the alloy design community navigate complex
design spaces effectively, optimize material properties, and make
more informed decisions. In this paper, we formally introduce
a visualization technique called alloy space projections. These
alloy space projections provide intuitive overviews of chemistry-
property relationships in high-dimensional barycentric design
spaces. (2) We also discuss the advantages and disadvantages of
other commonly used visualization techniques, including
compositional box–whisker plots, pairwise plots, chemical
signatures/chemical kernel density estimate (KDE) plots,
compositional heat maps, and compositional bar charts. These
techniques distill information from high-dimensional design
spaces into clear, interpretable gures.

We apply these visualization tools to several MPEA design
case studies, including (1) constraint-satisfaction alloy design
scheme, (2) Bayesian optimization alloy design campaigns, (3)
and various other scenarios that demonstrate how these
methods can be extended to other barycentric design spaces in
the ESI.† Specically we demonstrate an example of quaternary
© 2025 The Author(s). Published by the Royal Society of Chemistry
carbides and an example of polymer design. While not
exhaustive, the methods presented here aim to provide valuable
insights for the MPEA research community.
2 Methods
2.1 Alloy space projections

In binary alloy systems, each composition can be mapped to
a single coordinate {x1}; in ternary alloy systems, each compo-
sition can be mapped to coordinates {x1, x2}. However, alloy
systems with more than three components cannot be mapped
to just two coordinates without using dimensionality reduction
algorithms (DRA). To visualize high-dimensional composition
spaces, we seek a DRA that can project a set of compositional
vectors of size (e,1) onto coordinate vectors of size (2,1). Recall
that e is the order of the alloy system. For example, the chem-
ically complex shape memory alloy (SMA) Ni40Ti20Pd20Au20 can
be represented by the compositional vector {0.4, 0.2, 0.2, 0.2}. It
is necessary to represent this composition, as well as other
compositions in the Ni–Ti–Pd–Au system, using a coordinate
pair {x1, x2} that can be visualized in two dimensions, i.e.,
reducing the dimensionality from a vector of size (4,1) to
a vector of size (2,1). Furthermore, the resulting projection
should retain a level of interpretability to be meaningful in
practice.

Different dimensionality reduction algorithms (DRAs) ach-
ieve different embeddings using injective functions (see ref. 29
for more details). For instance, a given point {x1, x2, x3, x4} in
higher-dimensional space can be mapped onto a 2D point {x1,
x2}. In previous works, we used unsupervised machine-learning
DRAs such as tSNE and UMAP to project barycentric coordinate
systems to 2D. These approaches effectively capture complex
patterns in high-dimensional data but are not specically
tailored for barycentric coordinate systems.

However, the task of projecting a barycentric coordinate
space into a 2D representation within a regular polygonal
domain can be accomplished using affine projections27,30—
a simpler and more interpretable method. An affine combina-
tion is a specic type of weighted combination of points, where
the weights sum to 1. More formally, given points P1, P2, ., Pn
in a vector space and corresponding scalar weights w1, w2, .,
wn, the affine combination is dened as:

P = w1P1 + w2P2 + . + wnPn

This is an affine combination of the vertices, meaning the point
P lies within the polygon, assuming all li are non-negative. The
dot product of barycentric coordinates with the vertices of
a regular polygon is indeed an affine combination, as it adheres
to the key criteria of the weights summing to 1 and ensures that
the resulting point lies within the convex hull of the polygon's
vertices.Thus, affine projections offer a more interpretable and
structured embedding when projecting barycentric coordinates
onto a regular polygon when compared to tSNE and UMAP,
which rely on a nonparametric unsupervised machine learning
approach. A discussion of the differences between tSNE, UMAP,
and affine projections is presented in the ESI.†
Digital Discovery, 2025, 4, 181–194 | 183
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Fig. 1 Utilizing a UMAP embedding: rule of mixtures properties (density, melting point, configurational entropy), plotted in ascending and
descending order.
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Regardless of the projection method used, alloy space maps
can be interpreted similarly. In Fig. 1, each point in the UMAP
projection represents an alloy with a distinct composition.
Alloys positioned closer to a particular vertex are more enriched
in the corresponding element. While this example uses a UMAP
projection to create the alloy space map, the same interpreta-
tion holds for t-SNE and affine projections.

In Fig. 1a, the rule-of-mixtures density is plotted as color on
the UMAP projection. The points are sorted according to
ascending density, meaning the densest alloys are plotted on
top. The densest alloys are represented by the lightest color
(white). From Fig. 1a, it is clear that alloys rich in Ni and Co are
the densest. This observation aligns with the fact that the
densest elements in the Ti–Cr–Fe–Ni–V–Mn–Co set are Ni
(8.91 g cm−3) and Co (8.90 g cm−3). Fig. 1d shows the same
UMAP projection, but this time, the points are sorted by
decreasing density, meaning the least dense alloys are plotted
on top. As expected, alloys rich in Ti and V exhibit the lowest
densities, as shown in Fig. 1d. This is consistent with the
elemental densities, where Ti (4.51 g cm−3) and V (6.11 g cm−3)
have the lowest densities in the alloy system.

In Fig. 1d, the rule-of-mixtures melting temperature is
plotted. Alloys with the highest melting points are represented
by the lightest color (white). In Fig. 1b, the alloys with the
highest melting temperatures are those rich in Cr–V binaries.
This makes sense, as V and Cr have the highest melting points
within this elemental set (1910 °C and 1907 °C, respectively). In
the UMAP, these alloys fall near the line from the Cr-vertex to
the V-vertex. This white line has some thickness because alloys
184 | Digital Discovery, 2025, 4, 181–194
with the highest melting points may also include minor addi-
tions of other elements, which shi their exact positions slightly
from the Cr–V binary line. Similarly, Fig. 1e shows the same
UMAP, but with the alloys with the lowest melting points
plotted on top. Fig. 1e shows that alloys rich in Mn (1246 °C),
followed by Ni (1455 °C) and Co (1495 °C), have the lowest
melting points. This is intuitive, as Mn, Ni, and Co have the
lowest melting points within the elemental set. The plots in
Fig. 1 can be adjusted to further segment the dataset. By
removing the top 10% (or 20%, 30%, etc.) of the data, users can
better observe trends in the middle range of the legend.

In plot Fig. 1c, the ideal congurational entropy is plotted.
Alloys with the highest congurational entropy are plotted on
top. Alloys with the highest congurational entropies are colored
white whereas alloys with the lowest congurational entropies
are colored blue. In Fig. 1c, compositions with the highest
congurational entropies are plotted symmetrically in the center
of the UMAP. This is intuitive as elements without a majority
element (i.e. compositionally complex alloys) are plotted in the
central regions of these UMAPs. These compositionally complex
alloys will have a higher congurational entropy by denition.
Likewise, in Fig. 1f, it is clear that alloys with low congurational
entropy appear near the vertices of the UMAP. This is intuitive as
these alloys are rich in a particular element.

With basic knowledge of unary elemental properties, the plot
can illustrate overall trends in data as compositions move
towards or away from any particular vertex.

If desired, phases can be colored similarly, however it is
important to note that a DRA (Dimensionality Reduction
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a1) Affine projection of the CoCrFeMnNi alloy space that
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Algorithm) should not be interpreted as a phase diagram as
these projections are representative of a barycentric design
space and not reective of the topology in the thermodynamic
phase stability space.

It is important to note that projections using UMAP and t-
SNE are non-unique because they depend on random seeds,
which result in slightly different coordinates and vertex
arrangements. In contrast, affine projections are deterministic
once the vertex locations are dened, but they remain non-
unique in how the element vertices are arranged. For
instance, in a 5-element alloy system A–B–C–D–E, positioning
element A next to element E, without sharing an edge with
element C, introduces exibility in how the vertices are laid out.

This variability can be advantageous. When embedding the
entire barycentric design space (with coordinates ranging from
0 to 1), it allows for exible and diverse visualizations. For
example, in the eld of shape memory alloys, Ti and Ni might be
themost signicant elements. If a projection places these vertices
adjacent to each other, the data of interest may cluster in one
region of the graph, leaving much of the visual space underutil-
ized. This issue is easily resolved by replacing and renaming any
column, effectively ‘rewiring’ the projection without requiring
additional embedding time (this is only possible when using
symmetric values from 0 to 1). An example in the ESI† demon-
strates this by intentionally separating these two vertices for
shape memory alloys. As a result, creating such projections does
not require the vertices to align in a specic angular order.
depicts the density constraint. (a2) Affine projection of the CoCr-
FeMnNi alloy space that depicts the solidification range constraint. (a3)
Affine projections of the CoCrFeMnNi alloy space that depicts the yield
strength constraint. (a4) Affine projections of the CoCrFeMnNi alloy
space that depicts the single-phase FCC at 700 °C constraint. (b) The
union of all constraints applied to the CoCrFeMnNi alloy space. The 13
alloys that outperform the equimolar Cantor alloy concerning the 4
aforementioned properties are depicted as blue stars. The equimolar
Cantor alloy is depicted as a red star.
2.2 Compositional box–whisker plots

When working in high-dimensional spaces, it is oen the case
that one wishes to investigate the effect that any alloying
component e has on a property. However, this can be difficult in
MPEA chemistry spaces because: (1) there are other alloying
agents that can confound the effects of the alloying agent of
interest and (2) due to the combinatorial vastness ofMPEA spaces,
2-D scatterplots can appear overcrowded. Consider the simple
example in Section 3.1 where the density of the CoCrFeMnNi
alloys space is represented in an affine projection. In the projec-
tion in Fig. 2a it is evident that alloys that are rich in Cr have the
lowest density; however, it is difficult to make any quantitative
inference about how Cr affects density from this projection.

Another way to show the effect of Cr-content on the density
of alloys is in Fig. 3 and 2.b. This plot shows all alloys within the
CoCrFeMnNi alloy space plotted against Cr-content. From this
plot it is evident that Cr addition lowers the density of alloys,
and that as Cr content increases, the density of all alloys
converges to the density of Cr. Plotting different box–whiskers
as a function of chemistry is advantageous to a scatter plot as it
allows the summary statistics to be viewed.

Each box–whisker plot shows the density distribution of all
alloys that contain a particular amount of Cr. The rst quartile is
the bottom portion of the box while the third quartile is the top
limit of the box. The interquartile range (IQR) is the length of the
box. The ends of the box extend to the maximum and minimum
values in the distribution. The diamond-shaped points beyond
the whiskers are outliers. With such a plot it is possible to see
© 2025 The Author(s). Published by the Royal Society of Chemistry
how measures of center and spread related to a certain property
distribution change with composition. This can be achieved in
Seaborn using the boxplot function.31 In this way, the effect of
alloying agents on properties can be probed quantitatively. The
code associated with this toy problem is available at the following
repository: https://doi.org/10.24433/CO.7775216.v1.

2.3 Compositional heatmaps

Perhaps the simplest method to visualize composition–property
relationships within MPEA spaces is compositional heatmaps.
When compositions are presented in tabular formats, it is helpful
to add color to each cell to help the viewer recognize a sense of
magnitude and scale. This can be achieved with functions as
simple as conditional formatting in spreadsheet soware such as
Microso Excel.32 A similar technique is implemented in the
visualization soware Vital by Kauwe et al.33,34 In this visualization,
the relative amounts of constituent elements in an alloy space are
depicted as color intensity on the cells of a periodic table. An
example of a simple compositional heatmap in a spreadsheet can
be seen in Fig. 5b. Details on gure are provided in Section 3.1.
Digital Discovery, 2025, 4, 181–194 | 185
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Fig. 3 These plots summarize the property distributions using box–whisker plots as a function of individual alloying element concentrations.
Each box–whisker plot shows a property distribution when a particular alloying agent is at a certain concentration. Column a shows how the
solidification range varies with respect to each alloying agent. Column b shows how the density varies with respect to each alloying agent.
Column c shows how the yield strength varies with respect to each alloying agent. Column d shows how the FCC phase stability varies with
respect to each alloying agent.

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
D

ec
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 7

/9
/2

02
5 

2:
13

:2
2 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
2.4 Chemical signatures

While compositional heatmaps are an effective way to
summarize small datasets oen it is desired to briey summa-
rize the compositions of many alloys without reporting
a cumbersome list of compositions. For example, during Batch
Bayesian optimization,35 it may be desired to know if candidate
alloys converge to a single composition as iterations progress
(see Section 3.2). The chemical signature in essence is a histo-
gram that depicts the frequency at which certain elements
appear at certain concentrations in a given subset of alloys. For
ease of viewing, the underlying histograms are typically omitted
and replaced with kernel density estimates (KDEs) that
approximate the histograms. These KDEs create unique signa-
ture that describe the chemistry of a subset of alloys. These KDE
plots can be achieved in Seaborn using the KDE function.31

Consider the constraint-satisfaction MPEA design scheme
presented in Section 3.1. Fig. 5b presents the compositions and
properties of 13 selected alloys within the Cantor alloy space.
While 13 is a manageable number of alloys to report in
a compositional heatmap, if the number of alloys were in the
hundreds, this would be cumbersome to visualize in a tabular
format. Instead, the composition of these alloys can be
summarized in a chemical signature. See Section 3.2 for
a detailed interpretation of this graph.
2.5 Compositional color barcharts

Compositon heatmaps are appropriate for summarizing small
datasets and chemical signatures are appropriate for summa-
rizing the chemistries of larger datasets, however there is also
186 | Digital Discovery, 2025, 4, 181–194
a need to summarize chemistry-property relationships in an
efficient way. A simple way to summarize composition vs. prop-
erty relationships within MPEA spaces is compositional color
barcharts. We took inspiration from ref. 36 in creating and
utilizing thismethod inMPEAs. In compositional color barcharts
a colored segment of the bar represents the mole fraction of each
element in a particular alloy. Compositional color barcharts are
similar to pie charts, showing the relative proportions of various
elements within the alloy. However, compositional color barch-
arts are more interpretable than pie charts as the linear layout of
compositional color barcharts allows for straightforward
comparison between elements. This linear layout also makes it
easy to compare the compositions of a set of alloys. Composi-
tional color barcharts may be stacked and ordered according to
a quantity of interest such as MPEA properties. In this way the
effect chemistry-property relationships can be visualized.

Fig. 7 shows the compositions and predicted yield strength of
the rst 50 alloys tested during a Bayesian optimization
campaign detailed in Section 3.2. These charts are particularly
useful when probing the effect of 2 alloying agents on a property
of interest. For better interpretability, the Cr segment is plotted
on the far most le and the W segment is plotted on the far most
right. In this way we see how Cr and W increase and decrease as
a function of iteration in a BO scheme (Fig. 7a) or as a function of
yield strength (Fig. 7b). For more details see Section 3.2.
2.6 Pairwise property plots

The aforementioned methods are useful for visualizing chem-
istry vs. property relationships, however techniques are also
needed to visualize property–property relationships in high
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Pairwise property plot showing the chemistry-property–property relationships for this 4-constraint alloy design scheme.
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dimensional chemical spaces. Pairwise plots consist of a matrix
of panels, each combination of which shows a different prop-
erty–property plot. Pairwise plots have been used extensively in
alloy design to show property–property relationships25,37–40

however these plots typically do not provide any insight about
which compositions have good/bad combinations of properties.
To address this we propose modifying pairwise scatter plots by
coloring alloys according to their majority element. With this
modication, pairwise property plots show both property–
property relationships and chemistry-property–property rela-
tionships. One such pairwise plot is shown in Fig. 4 where the
relationship between 2 properties receives a panel in a 4 × 4
matrix. Alloy chemistry is denoted on the color-axis.
3 Results

These techniques can be used to visualize structure–property
relationships across high-dimensional spaces in an intuitive
way. While the tools in Methods are not comprehensive, we
believe this suite of visualization techniques is extremely useful
© 2025 The Author(s). Published by the Royal Society of Chemistry
when analyzing MPEA design spaces. This section provides
a series of case studies utilizing these techniques which show-
case a unique material class and property of interest.
3.1 Constraint-satisfaction in MPEA designs spaces

Abu-Odeh et al.41 showed that the design of high entropy alloys
can be framed as a constraint-satisfaction problem. In
constraint-satisfaction design schemes, constraints are applied
to an alloy space. The set of alloys that satisfy all constraints is
deemed ‘feasible.’ When applying constraints to high-
dimensional alloy design spaces it is difficult to visualize
which alloys pass/fail certain constraints. In previous work42 we
addressed this visualization challenge by using alloy space
projections. Specically, we designed RHEAs for various appli-
cations by framing HEA design as a constraint-satisfaction
problem. We plot which alloys pass/fail certain constraints on
UMAP projections of the design space. In this way, we have
a visual summary of the effect of various constraints on the nal
downselected chemistries. Furthermore we plot the feasible
Digital Discovery, 2025, 4, 181–194 | 187
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Fig. 5 (a) Chemical heatmap summarizing the composition and
properties of the 13 alloys that outperform the equimolar Cantor alloy
with respect to density, yield strength, solidification range, and FCC
phase stability. It is evident from the compositional heatmap that the
feasible alloys are rich in Mn and Cr to a lesser extent. (b) Chemical
signature summarizing the composition of the 13 alloys. The Mn
signature is shifted to the right indicating that these alloys are rich in
Mn. The Mn signature has a large degree of spread, indicating that
these 13 alloys have a range of Mn contents. The Co peak is localized
around 30 at% indicating that all of the feasible alloys have Co contents
near 30 at%. The other elemental signatures are shifted to the left
indicating that these alloys are not rich in these elements.
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space on UMAPs to show where the ‘feasible’ region lies in the
HEA design space. This section will demonstrate how alloy
space affine projections (and several other visualization tools)
can be used during constraint-satisfaction HEA design
schemes.

Consider a simple in silico constraint-satisfaction design
scheme to identify a set of alloys within the Cantor alloy space
that exhibit superior properties compared to a benchmark alloy.
In this example, the benchmark alloy is the equimolar Cantor
alloy, CoCrFeMnNi. The alloy space is grid-sampled at 5 at%
intervals, considering unary to quinary alloys, resulting in 10
621 candidate alloys in total. This design scheme aims to
identify a set of alloys that meet the following criteria: (1) single-
phase FCC crystal structures at room temperature (RT) for high-
temperature operation, (2) low density, (3) narrow solidication
range to avoid processing issues, and (4) high yield strength at
RT for high-temperature performance. Specically, feasible
alloys must have a predicted single FCC phase fraction of$0.99,
a density less than 8.02 g cm−3, a solidication range less than
38 K, and a room temperature yield strength greater than
230 MPa.

The density, phase stability, and solidication range of
candidate alloys are predicted using Thermo-Calc's equilibrium
CALPHAD simulation.43 The simulation is conducted using the
TCHEA6 database which is appropriate for HEA design spaces,
such as the Cantor alloy space. The RT yield strength was pre-
dicted using the analytical Varvenne–Curtin model.44 The
Varvenne–Curtin model has been widely used by the HEA
community to predict the temperature-dependent yield
188 | Digital Discovery, 2025, 4, 181–194
strength of FCC HEAs.45–49 The model is a modication of the
theory put forth by Leyson et al.50 Specically, the Varvenne–
Curtin model assumes that the rugged energy landscape (at the
atomic scale) in HEAs will attract/pin edge-dislocation,
hindering their movement through the matrix. The glide of
these edge dislocations (and thus soening of the alloy) is
facilitated by higher temperatures.

Fig. 2 shows the results of this constraint-satisfaction design
scheme. The equimolar CoCrFeMnNi alloy (benchmark) is
depicted as a dark red star in each affine projection. Its location
in the affine projection is intuitive as this equimolar composi-
tion lies at the center of the Gibbs hyper-tetrahedron created by
this alloy space. Fig. 2a.1 shows the density constraint plotted
on a affine projection of the CoCrFeMnNi alloy space. Alloys
that nearly fail/barely pass the density constraint are colored in
red while alloys with low density are colored in blue. In this
gure it is clear that Co- and Ni-rich alloys fail this constraint.
This makes sense as Co and Ni have the highest densities in the
elemental pallet. Fig. 2a.2 shows the solidication range
constraint. Cr-rich alloys fail this constraint frequently, as re-
ected in the alloy space map where the Cr-rich region is grey.
This makes sense as Cr has a signicantly higher melting
temperature than the other elements in the pallet. Furthermore,
it is evident that compositional complex alloys plotted in the
central regions of the affine projection have wider solidication
ranges than compositionally simple alloys plotted near the
edges and vertices of the affine projection. Fig. 2a.3 shows the
RT yield strength constraint. In this projection, compositionally
complex alloys have a higher predicted yield strength than
compositionally simple alloys. This makes sense as the Varv-
enne–Curtin model is a solid solution strengthening model.
Furthermore, alloys rich in Ni and Cr have higher predicted
yield strengths. Fig. 2a.4 shows the RT single-phase FCC
constraint. Alloys that pass this binary constraint are colored in
blue whereas alloys that fail are colored in grey. Alloys rich in
Mn and Cr tend to fail this phase constraint, and this is re-
ected in Fig. 2a.4. This makes sense as Mn and Cr are BCC
formers.

Fig. 2b shows the union of these constraints applied to the
CoCrFeMnNi design space. When the union of constraints is
considered, only 13 alloys are feasible. That is to say, only 13
alloys outperform the equimolar Cantor alloy with respect to the
4 properties of interest. These feasible alloys are composition-
ally complex and lie in the Fe and Mn-rich region of the design
space. In this way, projections can provide a summary of how
certain constraints affect the resultant feasible chemistry space.
However, affine projections alone are not sufficient to visualize
chemistry-property relationships in HEA design spaces.As
a reminder, overcrowding during affine projection occurs when
certain alloys are mapped so closely together that they overlap,
obscuring other alloys that may have been ltered. This limi-
tation is further discussed in the ESI.† This makes it difficult to
obtain a quantitative summary of composition–property rela-
tionships, limiting the analysis to a more qualitative under-
standing. As a result, relying solely on UMAP projections is
insufficient for effectively visualizing the correlation between
alloy chemistry and properties.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Visualization of in silico Bayesian optimization campaign of the Maresca–Curtin model within the Cr–Nb–Mo–Ta–V–W alloy design
space. In ITR 11 the GPR surrogate model is a poor emulator of the ground-truth (the Maresca–Curtin YS model). The uncertainty from the GPR
model at ITR 11 is also high, as indicated by the dark coloring on the affine projection. The acquisition function at ITR 11 indicates that many
candidate alloys still merit investigation. At ITR 25 the GPR surrogate has improved. Furthermore, the uncertainty in the GPR model has
decreased. Likewise, in ITR 25 the acquisition function indicates that Mo–Cr-rich alloys and Cr–W-rich alloysmerit investigation. By ITR 42, there
is little improvement to the GPR surrogate and the uncertainty has been decreasing over the entire design space. The acquisition function
indicates that there are no longer alloys that merit investigation. ITR: iteration. YS: yield strength. 1s: One standard deviation. EI: expected
improvement.
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Another method of visualizing chemistry-property relation-
ships is compositional box–whisker plots (as described in
Section 2.2). These plots probe the effect of individual alloying
agents on property. The x-axis of each panel in Fig. 3 is the mole
fraction of a particular element. When the alloy space is
uniformly grid sampled, elements appear at discrete concen-
tration intervals e.g. at 5 at% intervals in the case of Fig. 3. A
box–whisker graph is plotted over each interval. These box–
whisker plots summarize the property distribution of all alloys
that have an element at that specic mole fraction. For example,
Fig. 31.b shows the effect of varying Co on the density. The box–
whisker plot centered over 0 at% in Fig. 31.b shows the density
distribution of all alloys that do not contain Co. Likewise, the
box–whisker plot centered over 95 at% shows the distribution of
all alloys that contain 95 at% Co. As chemistry varies along the
x-axis the property distribution will vary. In this way we can
visually summarize trends between properties and chemistry
using simple statistical visualization.
© 2025 The Author(s). Published by the Royal Society of Chemistry
In Fig. 3 Column A the solidication range distributions are
shown. From Column A it is evident that Co, Fe, and Ni slightly
decrease the solidication range of the alloy system. Conversely,
Cr and Mn additions increase the solidication range at certain
concentrations. However, Cr causes the largest increase in the
solidication range by far. This observation is in agreement
with Fig. 2a.2 where the Cr-rich region of the affine projection is
colored in grey, indicating that class of alloys frequently fails the
solidication range constraint.

In Fig. 3 Column B the density distributions are shown. The
trends in this column are linear and easy to interpret as density
is known to be accurately predicted using the rule of mixtures.
Ni and Co tend to increase the density of Cantor alloys whereas
Cr and Mn tend to decrease the density of Cantor alloys. Fe only
has a slight effect on density. The IQRs of the density distri-
butions become more narrow as the alloys become richer in
a particular element. The density distributions at 95 at% are the
most narrow because there are only 4 alloys in each distribution
Digital Discovery, 2025, 4, 181–194 | 189
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Fig. 7 Compositional color bar map of compositions in Fig. 6, orga-
nized by test order and by property order. The maximum is noted with
a ‘+’. It is evident from the left panel that the BO scheme first inves-
tigates Cr-rich alloys, then alloys that are rich in Cr and W, and finally
begins exploring the space in later iterations. Specifically, the BO
scheme investigates alloys that are more rich in Mo. In the right panel
where alloys are sorted by objective it is evident that Cr–Ta–W
ternaries have the highest yield strength according to the Maresca–
Curtin model.
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and they are all rich in a particular element and thus have
similar densities.

In Fig. 3 Column C the RT yield strength distributions are
shown. From Column C it is evident that some elements
contribute to solid solution strengthening (e.g. Co, Cr, Mn, Ni)
and some elements do not (e.g. Fe). Regarding the elements that
do contribute to SSS, these distributions can help us determine
the optimal content of each element to achieve SSS. For
example, regarding Co, the median yield strength of alloys is
maximized when Co content is at 45 at%. Similarly, for Cr this
occurs at 35 at%. Furthermore, we can see which element has
the greatest strengthening effect. From Figure Fig. 3 1.c, it is
evident that Co is the most potent strengthener. This is because
in the range of 30 to 55 at% Co content, the median yield
strength is greater than 230 MPa. This is the only element in the
design space whose addition causes the median yield strength
to exceed 230 MPa over such a wide window of compositions.
This is also reected in Fig. 2a.3 as there are some Co-rich alloys
in the feasible region in the affine projection.

In Fig. 3 Column D, the RT single FCC phase fraction
distributions are shown. From this gure we see Ni is the most
potent FCC stabilizer in the elemental pallet. This is because
beyond a Ni content of 55 at% all alloys are predicted to have
a single FCC phase at RT. Co also promotes a single FCC phase
at concentrations between 40 and 65 at%. Likewise, Fe
promotes a single FCC phase at concentrations between 60 and
80 at%. Cr and Mn destabilize the FCC phase. These results are
in agreement with the affine projection in Fig. 2a.4.
190 | Digital Discovery, 2025, 4, 181–194
We have visualized the chemistry property relationships
using affine projections and compositional box–whisker plots.
In this section we will use pairwise property plots to visualize
property–property relationships. Fig. 4 shows the pairwise
property plot for the CoCrFeMnNi alloy space. Alloys that have
50 at% or more of a particular element are colored according to
the legend in the margin of Fig. 4. The diagonal panels in Fig. 4
depict individual property distributions. The off-diagonal
panels depict property–property relationships. Constraints on
the properties are depicted with a dashed line.

Regarding individual property distributions, Fig. 4a.1 shows
the mole fractions distributions of the largest FCC phases
present in the candidate alloys i.e. if the mole fraction of the
largest FCC phase present in a candidate alloy is 100 at%, the
alloy has a single FCC phase. The distribution in Fig. 4a is
bimodal with peaks at 0 at% FCC phase and 100 at% FCC
phase. The strong peak of alloys that have >50 at% Ni around
100 at% FCC phase indicates that Ni-rich alloys are likely to be
FCC. This is in agreement with Fig. 2 and 3 where it was
determined that Ni was the most potent FCC promoter in the
elemental pallet. Cr (and to a lesser extent Mn) destabilize the
FCC phase and thus Cr- and Ni-rich alloys have peaks at 0 at%
FCC phase.

Fig. 4b.2 shows the density distributions of candidate alloys.
These distributions are all approximately normal. For alloys
with a majority element, these density distributions have
a mean centered around the density of the pure element. For
alloys without a majority element (colored in grey) the density
distribution is centered around the density of the equimolar
Cantor alloy. The Co-rich density distribution is shied the
farthest to the right indicating that Co-rich alloys are denser
whereas the Cr-rich density distribution is shied the farthest
to the le, indicating that Cr-rich alloys are less dense. Few Co-
rich alloys pass the density constraint. Alloys on the right side of
the Fe-rich distribution fail the constraint. The tail of the Mn
distributions fails the constraint. Most of the alloys in the Cr-
rich distribution pass the constraint.

Fig. 4c.3 shows the RT yield strength distributions of
candidate alloys. These distributions appear to be le-skewed
and log-normal. This constraint lters alloys that have
amajority alloying element (e < 50 at%). For example, themeans
of the Ni-, Fe-, Mn-, and Cr-rich yield strength distributions fall
below the 230 MPa yield strength constraint. The Co-rich
distribution has the most area that falls on the right of the
230 MPa yield strength constraint, indicating that Co-rich alloys
have higher yield strengths (according to the Varvenne–Curtin
model).

Fig. 4d.4 shows the solidication range distributions of
candidate alloys. These distributions appear to be approxi-
mately log-normal. For example, the Mn-rich solidication
range distribution appears to be log-normal. Likewise, the no-
majority-element solidication range has a log-normal distri-
bution. The distributions of Co, Fe, and Ni, however, have
slightly asymmetric tails which might suggest log-normality
however these distributions are multi-modal and, therefore
cannot be truly log-normal. Cr-rich and no-majority-element
alloys fail this constraint frequently. The alloys in the right-
© 2025 The Author(s). Published by the Royal Society of Chemistry
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side tails of the Mn- and Ni-rich distributions also tend to fail
this constraint.

Row 4 shows the relationship between the solidication
range and the remaining 3 properties. According to Fig. 4a.4,
there is a synergy between the solidication range and FCC
phase fraction in candidate alloys i.e. as the mole fraction of the
largest FCC phase increases the solidication range decreases.
Regarding the relationship between solidication range and
density in Fig. 4b.4 there is a slight trade-off i.e. as density
decreases, the solidication range will tend to increase. Despite
this trade-off, Cr- and Mn-rich alloys (and to a lesser extent Fe-
rich alloys) have an optimal combination of solidication range
and density. Regarding the relationship between solidication
range and RT yield strength in Fig. 4c.4, a trade-off exists i.e. as
the yield strength prediction from the Varvenne–Curtin model
increases the solidication range will also increase. This is
because the Varvenne–Curtin model is a solid solution
strengthening model. As the chemical complexity increases the
yield strength will increase, but to the detriment of the solidi-
cation range.

Row 3 shows the relationship between the RT yield strength
and the other properties of interest. There does not appear to be
any correlation between the yield strength prediction from the
Varvenne–Curtin model and the mole fraction of single FCC
phases present in the alloys in Fig. 4a.3. This lack of correlation
may be because the Varvenne–Curtin model is only suitable for
single phase FCC solid solutions. The relationship between
yield strength and density follows a negative parabolic rela-
tionship in Fig. 4b.3. This parabolic relationship is likely
because the Varvenne–Curtin model is a solid solution
strengthening model. The yield strength will increase for
compositionally complex alloys. These compositionally
complex alloys have densities that fall between the densities of
their constituent elements, thus the yield strength is maximized
when the density is the average density (r = 8.02 g cm−3). The
relationship between yield strength and solidication range is
described in the previous paragraph.

Row 2 shows the relationship between the density and the
other properties of interest. As shown in Fig. 4a.2, there exists
a slight positive correlation between density and the mole
fraction of single FCC phases present in the alloys. The rela-
tionships between density and strength and density and solid-
ication range are described in the previous paragraphs.

Once the effects of the lters have been probed, the chem-
istry of the downselected space can be analyzed. Fig. 5 shows
different visualizations that summarize the compositions of
alloys that pass all the constraints applied in this case study i.e.
the set of alloys that outperform the equimolar Cantor alloy
with respect to all properties of interest. While 13 alloys is
manageable to consider, in many alloy design scenarios the
feasible space can be 214 alloys (see ref. 42). Therefore tech-
niques that summarize a set of compositions are relevant for
alloy design.

Fig. 5a is a compositional heatmap. Specically, the 13 alloys
that outperform the cantor alloy with respect to the 4 properties
of interest are summarized in tabular form. The cells that
contain the composition of each element in the alloy are colored
© 2025 The Author(s). Published by the Royal Society of Chemistry
according to their relative amount in the alloy i.e. cells with 60
at% are assigned dark orange and cells containing 0 at% are
colored white. The 4 properties of interest are also tabulated i.e.
the density, yield strength, solidication range, and 700 °C FCC
phase fraction. Each cell in the property column is colored
according to its property value. Good values are colored blue
and bad values are colored red. For example, in the density
column, alloys with the highest density are colored red and
alloys with the lowest density are colored blue. In Fig. 5a it is
evident that the 13 alloys that outperform the equimolar cantor
alloy are rich in Mn and to a lesser extent Co. This is in agree-
ment with the affine projection in Fig. 2.

Another method of summarizing the composition of these
alloys is the chemical signature shown in Fig. 5b. In this gure
the frequency at which elements appear at certain concentrations
in an alloy is plotted. For example, in this plot we see that if Co
appears in the feasible set of alloys, it will appear at concentra-
tions between 15 at% and 40 at%. Likewise it is evident thatmany
of these 13 feasible alloys are rich in Mn. Cr is the least repre-
sented element in the feasible space because the Cr KDE is
shied the farthest to the le, toward lower concentrations.
3.2 Optimization in MPEA designs spaces

Oen in optimization problems, the dimensionality of the
design space makes visualization difficult. In 1D optimization
problems Bayesian optimization can be visualized by plotting
the output of a surrogate function (typically a Gaussian Process
Regressor). Uncertainties associated with these GPR predictions
are typically plotted as shaded regions above and below the
prediction from the surrogate model. Typically in the case of
GPRs, a 2s credible interval is created around the mean
prediction from the GPR.51 For ternary systems, the surrogate
prediction and the uncertainty in the prediction can be plotted
on ternary diagrams. Visualization beyond ternary systems
becomes cumbersome. As previously shown, affine projections
offer a method to visualize properties over high dimensional
alloy spaces. In the same way, we can visualize the progress of
Bayesian optimization schemes in high dimensional alloy
spaces using affine projections. In addition to projections, in
this section we will showcase other visualization techniques
that are pertinent to alloy design and Bayesian optimization.

Consider a simple sequential Bayesian optimization scheme
with the goal of identifying a set of alloys within the CrNbMo-
TaVW chemistry space with the highest yield strength as pre-
dicted by the Maresca–Curtin model.52 The Maresca–Curtin
model has been widely used by the MPEA community to predict
yield strength. The Maresca–Curtin model relies on the fact that
the random strain elds inherent to MPEAs create a rugged
energy landscape that edge dislocations must overcome via
thermally activated edge glide. A full derivation of the model is
provided in ref. 52.

In this optimization scheme, we grid sample the CrNbMo-
TaVW alloy space at 5 at% considering unary to quinary alloys.
This sampling results in a grid of 53 130 candidate alloys. The
goal of the optimization scheme is to locate the alloy with the
highest predicted yield strength while minimizing the number
Digital Discovery, 2025, 4, 181–194 | 191
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of times the Maresca–Curtin model is queried. The GPR
surrogate model in this BO scheme is equipped with an additive
kernel composed of the anisotropic Radial Basis Function (RBF)
kernel and the white noise kernel. The RBF kernel is employed
as it is the most common kernel used in GPRs when no prior
physics is assumed during modeling. The length scales of the
RBF kernel are tuned based on the maximum likelihood as
more data is acquired however the length scales are bounded
between 2 at% and 100 at%. The white kernel is added to
account for any uncorrelated noise in the data. This kernel is
shown in eqn (1). The acquisition function used in the BO
scheme is the commonly used expected improvement (EI)
metric.3 This metric quanties the expected positive difference
in yield strength between any candidate alloy (as predicted with
the GPR surrogate) and the alloy with the current highest yield
strength (as predicted with the Maresca–Curtin model).

k
�
x; x

0
�
¼ exp

0
B@�

�
x� x

0�2
2l2

1
CAþ s2

nd
�
x; x

0
�

(1)

Fig. 6 demonstrates the progression of the BO scheme. The
rst column of affine projections represent the objective (yield
strength) as predicted using the surrogate function. This
represents the current belief about how yield strength varies
with chemistry, given the current set of observed data. Green
regions represent alloys whose yield strengths are predicted to
be higher while red regions represent alloys whose yield
strengths are predicted to be lower. In the 11th iteration, the
GPR is insufficiently trained and provides a poor approximation
of the Maresca–Curtin yield strength. By the 25th iteration the
model has improved its model of the Maresca–Curtin yield
strength and has found the global optimum (represented by the
pink star). The GPR predicts that alloys rich in W and Cr have
the highest yield strength. Furthermore, the GPR predicts that
pure elements have the lowest yield strength, represented by the
red vertices and edges on the affine projection. This is reason-
able as the Maresca–Curtin is a solid solution strengthening
model. By the 42nd iteration there is little change to the
objective model and the BO scheme focuses the majority of its
queries on the W- and Cr-rich regions of the alloy space.

The second column represents the uncertainty associated
with the prediction from the GPR. Dark regions in the affine
projection represent sets of alloys where the GPR is uncertain in
its predictions of yield strength. Brighter regions represent sets
of alloys where the GPR is less uncertain in its predictions of
yield strength. Regions in the alloy space where observations are
sparse are thus darker. This is because there is no training data
that is compositionally similar to those alloys and the GPR is
more uncertain in its predictions. Regions in the alloy space
where there are sufficient observations are colored lighter as
there is sufficient training data available for these alloys. In the
11th iteration the model is uncertain about its predictions in
this design space, and thus the affine projection is colored
darker. In the 25th iteration the model is less uncertain about
its predictions in the regions near the optimum. This is
192 | Digital Discovery, 2025, 4, 181–194
because, by design, the BO scheme will attempt to focus its
queries on the region near the optimum. Fewer queries are
made in the V-, Mo-, and Cr-rich regions, indicating that the BO
scheme has not sufficiently explored these alloy families. By the
42nd iteration the GPR is more condent in its prediction. Most
of the design space has been explored, and the region near the
optimum has been exploited.

The third column represents the acquisition function (the
EI) at the current iteration. The alloy with the highest EI in the
current iteration is then queried at the start of the next iteration.
In iteration 11 the EI is high for many alloys within the
compositionally complex regions of the design space. The EI is
low near the vertices and edges of the affine projection, indi-
cating that the GPR is learning the solid solution strengthening
trend in the design space. In the 25th iteration, the EI indicates
that the BO scheme is interested in 2 regions in the alloy space.
One region is rich in Cr and Mo while the other region is rich in
Cr and W. These regions are denoted by bright red colors in the
affine projection. It is worth noting that in the 25th iteration,
the BO scheme has found the global optimum. Therefore no
improvement in the yield strength can be made. However, the
BO scheme still ‘expects’ that some alloys have a higher yield
strength than the current optimum. Therefore, the optimization
scheme will continue querying alloys that are expected to have
a higher yield strength than the optimal. By the 42nd iteration,
the EI has been decreased signicantly. It is evident that there is
no incentive to continue the optimization scheme as the ex-
pected yield strength improvement for all alloys is on the order
of 1 MPa. These diminishing returns for subsequent experi-
ments indicate the convergence of the BO scheme.

The affine projections in Fig. 6 provide an ‘aerial’ perspective
of the multidimensional compositional space as time prog-
resses, providing the viewer with immediate recognition of
trends as optimization progresses. A more direct plot of
compositions can be paired alongside these affine projections
to provide quantitative information, without having to resort to
a table of numbers that need signicant interpretation. In
Fig. 7, the compositions tested in Fig. 6 are plotted as color bars.
This type of plot is particularly advantageous for systems of
varying subsystems of elements, as entire degradation mecha-
nisms may differ with the addition or subtraction of a single
element. In the right half of Fig. 7, the tests are sorted by the
objective. One can easily see that a particular set of elements,
Cr–Ta–W, was more effective than any other combination. The
le half of Fig. 7 provides some insight into the candidacy
suggestion process of the Bayesian script used. Unary or binary
tests 21, 23, 28, 29, 33, 34, 35, etc. show how oen the optimi-
zation algorithm is willing to ‘explore’ untested regions of the
phase space with its given set of hyperparameters. Test 26
reveals the highest objective value ever found; the optimization
scheme obviously does not ‘know’ this, and continues to locally
test the Cr–Ta–W region. It can be difficult to visualize how far
away a composition is from another (in Euclidean distance)
when the elements proceed to differ, which is another salient
feature of the animation associated with Fig. 6, which can be
found in the code repository associated with this work: https://
doi.org/10.24433/CO.7775216.v1.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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4 Conclusion

Visualizing high-dimensional composition spaces has been
a challenge for the MPEA community. Higher-order MPEA
systems cannot be represented on conventional diagrams and
require more sophisticated visualization techniques. Some
visualization techniques, such as pseudo ternary diagrams are
helpful, but cannot probe the effect of individual alloy agents on
properties. Other visualization techniques such as Schlegel
diagrams and graph networks can be difficult to interpret.
Therefore, a suite of intuitive visualization tools are needed for
design in compositionally complex alloy spaces.

In this work, we address this challenge by curating a toolkit
of visualization techniques that we have found useful during
MPEA design. In this work we present a comprehensive tutorial
for this toolkit, detailing the best practices for these visualiza-
tion techniques. Our unique contribution to this suite of visu-
alization techniques are the many in which we use projections
of alloy spaces for the purposes of design. We provide code
demonstrating the utilization of various projections to visualize
high dimensional barycentric design spaces (e.g. alloy spaces).
We explain how these projections can be used to visualize MPEA
composition–property relationships. We believe alloy space
projections are signicant in the context of human-in-the-loop
optimization53 within chemically complex design spaces. Their
intuitive nature can enable designers to effectively visualize and
navigate complex decision spaces, facilitating more informed
and efficient alloy design processes.

In addition to projections of barycentric design spaces, we
demonstrated a suite of other visualization tools that have been
used successfully to visualization chemistry-property and
property–property relationships in HEA design spaces. We show
cased these visualization tools in 5 unique case studies:

(1) We showed how affine projections, compositional box–
whisker plots, pairwise property plots, chemical signatures, and
compositional heatmaps can be used to visualize and explain
constraint-satisfaction alloy design schemes from start to
nish. In this way, chemistry-property, and chemistry-property–
property relationships can be visualized.

(2) We showed how affine projections and compositional
colorbar maps can visualize the progression of iterative Bayesian
optimization schemes. To our knowledge this is the rst time
a Bayesian optimization scheme in 5D barycentric design space
has been visualized in thismanner. We believe UMAP projections
of barycentric design spaces can offer useful insights into opti-
mization in high-dimensional spaces. The evolution of surrogate
model prediction, uncertainty and the acquisition function can
provide designers with information about why the optimization
scheme has made certain decisions. This is important for
humans-in-the-loop optimization schemes.

While no single visualization technique is appropriate for all
scenarios in alloy design, we believe the visualization tools
presented in this work are applicable to many scenarios in alloy
design and elds beyond metallurgy. We encourage the MPEA
community to consider the best and most impactful ways to
present their own high-dimensional data.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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and R. Arróyave, arXiv preprint arXiv:2409.15391, 2024.

27 C. T. Loop and T. D. DeRose, ACM Trans. Graph, 1989, 8, 204–
234.

28 M. Meyer, A. Barr, H. Lee and M. Desbrun, J. Graph. Tools.,
2002, 7, 13–22.

29 Y. Wang, H. Huang, C. Rudin and Y. Shaposhnik, J. Mach.
Learn. Res., 2021, 22, 1–73.

30 S. Waldron, Jaen J. Approx., 2011, 3, 209–226.
31 M. L. Waskom, J. Open Source Sow., 2021, 6, 3021.
32 Use Conditional Formatting to Highlight Information in

Excel, 2021, https://bit.ly/3X2kjAt, Accessed: 2024-05-01.
33 S. Kauwe, Y. Yang and T. Sparks, Visualization Tool for

Atomic Models (VITAL): A Simple Visualization Tool for
Materials Predictions, ChemRxiv, 2019.
194 | Digital Discovery, 2025, 4, 181–194
34 F. Belviso, V. E. Claerbout, A. Comas-Vives, N. S. Dalal,
F.-R. Fan, A. Filippetti, V. Fiorentini, L. Foppa,
C. Franchini, B. Geisler, et al., Inorg. Chem., 2019, 58(22),
14939–14980.

35 T. T. Joy, S. Rana, S. Gupta and S. Venkatesh, Knowl.-Based
Syst., 2020, 187, 104818.

36 T. Erps, M. Foshey, M. K. Luković, W. Shou, H. H. Goetzke,
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