Volume 3
Number 12
December 2024
Pages 2387-2638

Digital
Discovery

rsc.li/digitaldiscovery

S

VH v

\V\ ‘g
\ r““‘
| L2 Ry

-

P

ISSN 2635-098X

Pascal Miéville et al.

OF CHEMISTRY GLAS: an open-source easily expandable Git-based

scheduling architecture for integral lab automation

2 ROYAL SOCIETY PAPER
o

Open Access Article. Published on 08 November 2024. Downloaded on 10/28/2025 4:52:23 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital
Discovery

#® ROYAL SOCIETY
PPN OF CHEMISTRY

View Article Online

View Journal | View Issue,

i ") Check for updates ‘

Cite this: Digital Discovery, 2024, 3,
2434

automationt

GLAS: an open-source easily expandable Git-based
scheduling architecture for integral lab

Jean-Charles Cousty,1® Tanguy Cavagna,@j:b Alec Schmidt, 1 Edy Mariano,?
Keyan Villat,? Florian de Nanteuil and Pascal Miéville & *@

This paper presents GLAS (Git-based Lab Automated Scheduler or Get Lab Automation Simplified), an open-
source, robust, and highly expandable Git-based architecture designed for laboratory automation. GLAS
can be deployed in both partially and fully automated experimental science laboratories, enabling the
development of a multi-layer scheduling system while maintaining a systematic architecture grounded in

a Git repository. We demonstrate the applicability of GLAS through case studies from the Swiss Cat+

Received 8th August 2024
Accepted 3rd November 2024

automated chemistry laboratory, showcasing its versatility and potential for widespread applicability in

various laboratory automation contexts. By offering an open-source scheduling environment, our aim is

DOI: 10.1039/d4dd00253a

rsc.li/digitaldiscovery scientific community.

1 Introduction

As evidenced by numerous research papers,'® laboratory auto-
mation is becoming a central aspect of modern chemistry and
more generally of experimental and digital sciences. Automa-
tion enables the generation of data at a faster rate,’ reduces the
likelihood of human error, and introduces automatic sample
control sequences, thereby enhancing the systematicity of data
acquisition.’ Automation is also less prone than humans to
selection bias and frustration,'**> which will help to improve the
variety of available data, particularly in the context of negative
data.™'* The data quality and high-throughput potential of
laboratory automation make it an essential component of the
current closed-loop optimization” and data-driven
chemistry’®*® or formulation?® fast development. Auto-
mating a laboratory involves both the hardware constituted by
scientific equipment and connecting robots,** as well as the IT
system management, including the data management system
and the task management.*>*?

In their respective studies, Flores-Leonar et al.** and Coley
et al.'* identified the essential elements of the task management
chain in automated chemistry laboratories through a platform-

“Swiss Cat+ West Hub, Ecole Polytechnique Fédérale de Lausanne EPFL, 1015
Lausanne, Switzerland. E-mail: pascal. mieville@epfl.ch

*Département Informatique et Systéemes de Communication, Haute Ecole du Paysage,
d'Ingénierie et d'Architecture HEPIA, 1202 Geneva, Switzerland

‘DSM-Firmenich, 1217 Meyrin, Switzerland

T Electronic supplementary information
https://doi.org/10.1039/d4dd00253a

i Authors contributed equally.

(ESI) available. See DOI:

2434 | Digital Discovery, 2024, 3, 2434-2447

to foster the development of accessible and adaptable laboratory automation solutions within the

based approach. Bai et al.*® provided a clear schematic repre-
sentation of this platform-based approach. The aforementioned
schematic representation is reproduced for the sake of
simplicity and adapted for a large and entire laboratory auto-
mation case, as illustrated in Fig. 1. The primary distinctions
between the original Bai et al. scheme and the proposed
modification pertain to the incorporation of additional entities
essential to the operation of large-scale systems, such as the
logistics laboratory management (chemicals ERP, solvent and
waste management) module. This module is complemented by
a dedicated data processor (processor) unit, which oversees the
systematic processing of scientific equipment-generated data
and facilitates their potential utilization for structural
elucidation®** and chemometric analysis.**** A further modi-
fication to the original scheme is the incorporation of sample
transfer and robotics into the Executor section. As previously
described by Thurow and Junginger®** and also discussed by
Wolf et al.,** when considering a complete laboratory automa-
tion system, it is likely that the system will have to be open and
decentralized. This requires the combination of different types
of robotics and automation, including mobile platforms,
SCARA and 6-axis arms, and fluidics.?*¢

The present paper concentrates on the segment of the
automation process that commences with the Coordinator and
concludes with the Executor. In particular, it examines the
scheduling aspect of the process, which is represented by the
scheduler in the Coordinator block. Furthermore, the structure
of the process is considered, including the Equipment Appli-
cation Programming Interface (API) located in the Executor. The
scheduling of tasks is of paramount importance in a global
automation system, as it converts the workflows into a sequence

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d4dd00253a&domain=pdf&date_stamp=2024-11-30
http://orcid.org/0009-0006-0804-3402
http://orcid.org/0009-0007-0864-4600
https://doi.org/10.1039/d4dd00253a
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00253a
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD003012

Open Access Article. Published on 08 November 2024. Downloaded on 10/28/2025 4:52:23 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

View Article Online

Digital Discovery

Receptionist
(Experiment coder)
Human - Computer

interface
4 Tasks lists Reports
Processor Logistician
Data processing, chimiometric ERP manager, consumables
analysis, auto. elucidation solvant and wast manager
Coordinator
Workflow manager
(i Scheduler)
anner
. : Librarian
DoE, synthesis planning
algorithms, BO Database management
Input Output J
4 A
Hardware control Executor High performance
interface (API) Perform experiment computing service
interface
Instructions Data Instructions Results
Equipment Equipment
{ Logistic] [Analytical] [Logistic] [Analytical]
Sample transferl (] []
[Synthesis] Robotics Synthesis Sample transfer
. _J/

Fig. 1 Platform based laboratory automation scheme, adapted and modified from Bai et al.,*® illustrates the fundamental components of
a comprehensive laboratory automation system. The principal distinctions between the original scheme and the revised one are the incorpo-
ration of a logistician actor for the ERP, consumable and waste management system, as well as the introduction of a processor dedicated to
processing data and analyzing the results in a systematic and controlled manner. This is necessary because the diversity of instruments in
a completely automated laboratory makes it challenging to obtain structured results that can be further utilized in data sciences. The incor-
poration of such processors facilitates the standardization of data formats, structures, and quality prior to their incorporation into ML models. The
final modification pertains to the incorporation of a sample transfer and robotics tool to facilitate the transfer of samples over extended distances.
Furthermore, automated actions may be applied directly to the sample, as it is the case in fluidics.

of physical operations, orchestrates the tasks in the appropriate
order and at the optimal timing, taking into account the status
of the different equipment and the completion of previous
tasks. For this, a novel multilayered Git-based®” open-source
laboratory automation scheduling architecture, designated
GLAS for Git-based Lab Automation Scheduler or eventually Get
Lab Automation Simplified is presented here. The global lab
scheduling is based on a multilayered and repetitive container®®
architecture, which is coded in a Git environment. The system
has been designed to be applicable in large, entirely automated
laboratories, which present a significant variety of scientific and
logistic equipment. Furthermore, it can also be implemented
into smaller and localized laboratory automation projects that
combine a limited number of scientific equipment and sample
manipulators.

The primary advantage of this architectural approach is its
adaptability, which enables the automation and the commu-
nication between a wide range of scientific equipment in
a structured manner. This encompasses synthesis stations,
sampling tools, analytical equipment, laboratory robotics, and
all connecting robotics. Each layer is dedicated to a specific level

© 2024 The Author(s). Published by the Royal Society of Chemistry

of operational control. The system can be designed to control
a specific group of tasks, such as all transfer robots, or it can be
optimized to work with automation controllers, such as those
produced by Beckhoff, Siemens, or Arduinos. Alternatively, it
can be employed to integrate external vendor scientific equip-
ment or a group of scientific equipment with its own controlling
software, open-source external controllers such as Chemspyd*
and proprietary sample schedulers (e.g., Agilent Sample
Scheduler from Open Lab CDS). A second advantage is that the
Main Laboratory Scheduler is an independent layer in the GLAS
architecture, allowing for adaptation to any laboratory require-
ment or habit. Scheduling can be executed in a linear manner,
adhering to the First-In First-Out (FIFO) principle.*® Alterna-
tively, it can be more complex, with optimized time allocation of
instruments to minimize the overall time required to complete
experimental procedures. In this context, the GLAS architecture
is inherently parallel, as any groups of instruments can be
controlled independently and can therefore be used to extend
FIFO schedulers to a certain degree of parallelization. To illus-
trate this possibility, we present the use of a REST API-based
scheduler as a main laboratory in our Swiss Cat+ laboratory.

Digital Discovery, 2024, 3, 2434-2447 | 2435

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00253a

Open Access Article. Published on 08 November 2024. Downloaded on 10/28/2025 4:52:23 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

However, we emphasize that this is merely one potential option
and that the selection of the Main Laboratory Scheduler, despite
being pivotal in terms of scheduling performance, is indepen-
dent of the use of a GLAS architecture. A third advantage of this
architectural approach is its systematicity, which is enabled by
the container approach. Every set of functions and workflows,
can be tailored to a specific equipment or groups of equipment,
is encoded into a conservative architecture and can be called
upon by the upper scheduling layer with higher-level
commands. Finally, the system's Git-based architecture allows
for rapid deployment in a new laboratory setting, with the
capacity to encompass the entire laboratory and to incorporate
new groups of equipment and functions with minimal effort.
This is achieved by only developing the newly needed layer and
referencing it in the upper one.

2 The GLAS architecture for complete
laboratory automation scheduling

The GLAS architecture, as illustrated in Fig. 2 below (for
a hypothetical generic case of 3 layers and 3 groups of equip-
ment with specific sub-groups), is intended to occur within the
segment of Fig. 1 that extends from the Coordinator Tasks
scheduler to the APIs in the Executor. The GLAS architecture is
structured in a multilayered configuration, with the Main
Laboratory Scheduler situated in the Coordinator level, followed
by a variable number of Git-based Group Sub-Schedulers. The
number of groups, sub-groups, and layers of sub-schedulers is
contingent upon the number and type of laboratory equipment
or computer systems in use and the intricacy of the workflows
involving disparate equipment.

View Article Online

Paper

A fundamental tenet of this architectural framework is to
situate complexity in a minimal and proximate manner relative
to the equipment. This can be readily grasped by traversing the
hierarchy from the lowest to the highest level. The Base
Methods (BM), which are defined in terms of specific variables,
are entirely defined at the level of the equipment (Executor) and
can be called through the dedicated Application Programming
Interface (API). In this context, a BM is defined as a series of
standardized operations that are controlled locally by the
equipment control software.

For instance, it could be an HPLC separation method,
a synthesis unitary operation such as filtration or heating, or
a robot simple task such as moving a plate from point A to B. It
is possible for a single piece of equipment to have multiple BMs.
At the next level (level 3 sub-groups in Fig. 2), the BMs are
represented as simple line commands with the appropriate
variables. They can be grouped into more complex workflows
(method level 3, M3) to combine systematically different actions
of grouped equipment. This approach facilitates the systematic
organization of actions and ensures operational integrity. In the
GLAS architecture, BMs and low-level methods M3 are specified
in the configuration of nodes (¢f: Chart 1, snippet code 1). Nodes
may be either instruments of the Executor level or level 3 sub-
schedulers associated with a dedicated group of instruments.
At the upper level (level 2), BMs or M3s are called through
command lines again with the appropriate variables and
parameters and are combined in higher-level methods M2
defined as workflows (¢f. Chart 1, snippet code 2).

At the highest level (Coordinator, level 1), generic task lists
(e.g., JSON) containing the requisite BM, M3, and M2 with their
respective syntax and variables are received by the Main

Receptionist (

Experiment
coder & decoder

Data processor

A

A4 Logistician

Coordinator
Level 1

Workflow manager
Librarian

N

Exp. Planner [

Main Laboratory
Scheduler

7

! '\.

Level 2 [Group 1 Sub-Scheduler

[Group 2 Sub-Scheduler

Group 3 Sub-Scheduler]

J
¢
Level 3 { Sub-Group 1.1)[Sub-Group 12]

Sub-Scheduler Sub-Scheduler

tod
T () (e

juawdinby

Sub-Group 3.1
Sub-Scheduler

juawdinby

Fig. 2 Schematized multilayered GLAS scheduling architecture for a hypothetical laboratory containing 11 different equipment items, with the
Main Laboratory Scheduler located at the top (Coordinator level) and directly connected to the experiment coder & decoder tool at receptionist
level (this tool will be presented in detail in a separate publication). From the Main Laboratory Scheduler, all Git-based Sub-Schedulers
components are connected and organized in groups, with each group corresponding to the functionality of the equipment item represented
here by the associated API. The architecture is composed of as many layers as necessary to ensure a smooth functioning and to place the

appropriate level of complexity at the closest level of the equipment.

2436 | Digital Discovery, 2024, 3, 2434-2447

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00253a

Open Access Article. Published on 08 November 2024. Downloaded on 10/28/2025 4:52:23 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Digital Discovery

Paper
Code snippet 1 : example of GLAS node
{
"nodes": [
{
Id of the node
"id": "urS5-nmr",
Name of the node
"name": "URS5 NMR",
Instance (name within the program) name of the
node
"instance": "URNMR",
Optional arguments used for node
instantiation
"args": {
"ip": "192.168.0.11",
"execution_args": [
{
"src": "nmr",
"dst": "ur5-sfc",
"args": {
"endpoint": "URNMR_SJ_Storage.urp"
¥
s
{
"src": "ur5-sfc",
"dst": "nmr",
"args": {
"endpoint": "URNMR_Storage_SJ.urp"
¥
}
]
}
1
{...}
]
}

Code snippet 2 : example of GLAS workflow

{

"workflows": [

{
Name of the workflow

"name": "omni to nmr",

List of nodes’ ID representing the workflow.
"steps": [

"omni",

"ur5-omni",

"fleet-manager",

"ur5-sfc",

"ur5-nmr",

"nmr"

Chart 1 Two examples of configurations: one for a node (left) and one for a workflow (right). Both are utilized by the Robot Sub-Scheduler,
which is presented in the Experimental use cases section 1 below. A node represents an Executor layer entity with parameterized values and basic
methods that are invoked within a workflow as steps. The code snippet 1 corresponds to a specific implementation of a 6-axis Universal Robot
associated with the NMR spectrometer. A workflow is a higher-level method defined at level 2 and above schedulers (see Fig. 3). Code snippet 2 is
a workflow defined in the level 2 sub-scheduler named Robot Sub-Scheduler defining the transfer of samples from a group of equipment named
OmniFire (omni) to the NMR spectrometer (nmr). The local sample transfer is conducted using two six-axis Universal Robots UR5e, situated at the
OmniFire level (ur5-omni) and NMR (ur5-nmr), respectively. The long-range sample transfer is accomplished via the Swiss Cat+ 2D drone swarm
system, a locally developed swarm of mini-mobile robots operated through its Fleet Manager developed in ROS2 (Fleet-Manager).

Laboratory Scheduler from the Experiment coder and decoder
tool (which will be presented in a separate publication).
Subsequently, the Main Laboratory Scheduler transmits the
pertinent tasks through POST commands with data included in
their bodies to the level-2 sub-scheduler REST API (see below for
details). Thereupon, the sequence of instructions is executed in
its entirety through the various nodes of the workflow, with the
pertinent M and BM being carried out with regard to each
specific experiment.

The Basic Methods (BMs) are therefore executed on the
instruments in accordance with the specified arguments. The
sequence of tasks, workflows, methods and nodes, as well as the
different scheduling functions with respect to the different
GLAS architecture levels, is presented in Fig. 3. This is a generic
example that encompasses an arbitrary number of methods,
layers, and variables per method, and it should be representa-
tive of the majority of cases. Two comprehensive examples are
provided below in the experimental use case sections.

© 2024 The Author(s). Published by the Royal Society of Chemistry

2.1 Execution sequence control

As previously stated, the GLAS architecture is not specific to
a particular Main Laboratory Scheduler type. In contrast, the
latter constitutes a discrete layer that can be tailored to align
with the particular requirements of any given laboratory. This
being established, one of the key advantages of the GLAS
architecture is its ability to facilitate the parallelization of tasks
within a given sub-scheduler, which is associated with a specific
set of equipment, as well as between different sub-schedulers.
The nodes are executed in a First-In, First-Out (FIFO) at the
task level, with nodes being immediately processed in the order
in which they become available. In certain cases, contingent on
the architectural design (multithreaded, as exemplified in the
OmiFire use case 2) and the associated hardware accessibility,
multiple instances of a node may be operational concurrently.
For example, the Fleet Manager node in the Robot Sub-
Scheduler (use case 1) may be one such instance, as it

Digital Discovery, 2024, 3, 2434-2447 | 2437

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00253a

Open Access Article. Published on 08 November 2024. Downloaded on 10/28/2025 4:52:23 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

Scheduling functions

High-level workflows
generation

Experiment
Receptionist coder & decoder

Workflow manager Locally optimized

workflows generation
Coordinator

Level 1 Main Laboratory Global lab scheduling
Scheduler Router to level 2
Group scheduling
Level 2 Sun P B er | Router to level 3 & lower
Inform level 1 on status
Level 3 Sub-Group n.m Sub-Group scheduling
ave Sub-Scheduler Inform level 2 on status
Exectutor

Perform tasks

— & | ' | II

| Tasks / Methods

View Article Online

Paper

GLAS item
High-level tasks lists

Dedicated tasks lists
Example :

1. M2(vars)

2. M3(vars)

3. BM(var)

4. M2(vars)

[J[J[] .
() - o) o fn) .

Task

Workflow

b Node

S

Fig. 3 Detailed GLAS architecture, as previously defined in Fig. 2. The first column outlines the levels, the second column provides a general
description of the main scheduling elements, and the third column offers a schematic description of the Basic Methods (BM), Methods (M), and
task lists organization. Finally, the last column defines the GLAS items corresponding to the previously described elements.

comprises multiple sub-instruments (mobile robots), and is
therefore immediately available as soon as one of them is
available. The number of parallel tasks that can be controlled is
constrained only by the computing power of the laboratory
architecture and the availability of the requested workflow.
Consequently, even in the event of the utilization of a basic
FIFO-based Main Lab Scheduler, GLAS enables the attainment
of a substantial degree of operation parallelization. An experi-
mental example of task execution time is provided in Experi-
mental use case 1 below. Further study will present more
detailed results regarding parallelization strategies in the
context of laboratory automation.

2.2 Installation and use

One of the fundamental characteristics of GLAS is its capacity
for expansion and customization, enabling alignment with the
specific requirements of the user. Moreover, it is possible to
integrate any existing equipment control flow with a minimum
of complexity. GLAS is designed with a highly expandable
architecture that enables the implementation of any commu-
nication scheme or behavior when running tasks. This includes
the initiation of HTTP requests or low-level communication via
serial or DLL interfaces. GLAS is consistently based on an open-
source Git architecture written in Python, which underscores its
collaborative aspect. The Git system allows new laboratories to
develop their implementation of GLAS with minimal effort and
at no cost by importing the Git package directly. Git is a ver-
sioning software that enables the safe development of code and
the saving of files to a repository, typically in the cloud (e.g,
GitHub), facilitating collaboration with other developers. In the

2438 | Digital Discovery, 2024, 3, 2434-2447

case of GLAS, it has been developed in a way that allows for
seamless integration into a project as a submodule. This
enables the continuous development of GLAS while maintain-
ing the ability to utilize the imported version without the
necessity of updating (pull) to obtain the latest GLAS version. All
pertinent documentation and installation instructions are
readily available on the GLAS wiki.** In order to adapt GLAS to
any laboratory layout, it is necessary to include certain minimal
required information in the configurations. This information
includes an ID as a string, a name for the nodes, as well as
a name and steps as node IDs for the workflows. The following
code snippets (Chart 1) illustrate possible types of nodes and
workflows. In these examples, optional arguments may be
provided through the use of the “args” key for a node.

Regarding the tasks, GLAS employs a REpresentational State
Transfer REST-API** to receive new tasks with optional argu-
ments, thereby enabling for the addition of specific information
to be utilized during the execution. The submission of new
tasks is accomplished via the POST method at the following
URL: https://<glas-url>/task. The JSON body must adhere to the
following structure (Table 1):

In GLAS, a task is a self-managed entity that runs as an
isolated thread. The task is responsible for validating node
execution and handling errors without interrupting the execu-
tion of the scheduler. This behavior ensures that access and
control over the scheduler is maintained, allowing different
clients to retrieve system health diagnostics to perform main-
tenance if necessary. At the node level, fault management
essentially consists of reporting the status of the associated
equipment after a BM has been executed. Errors are defined
within the BM, are specific to each device and can have different

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00253a

Open Access Article. Published on 08 November 2024. Downloaded on 10/28/2025 4:52:23 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

View Article Online

Digital Discovery

Table 1 Structure of the JSON body required by the route POST https://<glas-url>/task

Field Type Description Required
workflow_name String The name of the workflow to execute Yes
args Dict The arguments given to the task No

forms (string, code...). They are converted to an integer in the
node. A successful BM returns a 0 and any failure corresponds
to a non 0. At the scheduler level, the error management must
control the execution of the tasks according to the status
returned by the nodes defined in the workflows. If a BM returns
an error to the scheduler through a node, the task is suspended
and the node is set to a “global” error state, prohibiting its use
by any other potential task. This is necessary to ensure
predictable results when running a task, and allows the error to
be manually resolved and the task to be resumed via the PATCH
route, https://<glas-url>/task/continue/{uuid}, where the uuid is
the ID of the task to be resumed. It is also possible to manually
pause a task via the PATCH https://<glas-url>/task/pause/{uuid}
route. A MySQL database is integrated into GLAS inside
a Docker container and stores all runtime information about
the program (including error states, messages, timestamps, and
more). It contains tables for nodes, tasks, workflows, and their
corresponding properties, states, and logs. Finally, a web client
is available to help laboratories visualize what is happening in
GLAS.” The web client presents a page that displays all tasks,
including information such as the previous, current, and future
node to be executed. Fig. 4 below provides a screenshot of the
web client view for the Robot Sub-Scheduler (see Experimental

Tasks 3

sealer to Ic2
-
Synthesis Collecto Y urs synth

Panic Button

9

use cases hereafter), which depicts three different tasks running
in parallel.

To facilitate the collection of execution times and enable
interested laboratories to perform execution time optimization,
a task timing tracker have been integrated into the GLAS web
interface as well as a highly detailed, in-terminal logging
system. In addition, the GLAS Github repository can be forked
(a safe cloning strategy) to extend any laboratory GLAS based
architecture functionalities and add custom views to its web
interface.

3 Experimental use cases

This section presents two different case studies that have been
implemented within the Swiss CAT+** West Hub laboratory at
EPFL. It provides an overview of the potential applications of the
GLAS scheduling architecture.

3.1 Robot Sub-Scheduler

In accordance with Fig. 2, the Robot Sub-Scheduler is classified
as a level 2 entity. The primary functions of the Robot Sub-
Scheduler are to oversee all laboratory robot operations,
including the transfer of samples between stations and the

Fig. 4 GLAS web client screenshot. The provided example is related to the Robot Sub-Scheduler fully described in the Experimental use cases
section. The screenshot depicts 3 different tasks runs in parallel (sealer to lc2, omni to nmr and synth to omni) that are defined as workflows

containing 7,6 and 5 nodes respectively.

© 2024 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2024, 3, 2434-2447 | 2439

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00253a

Open Access Article. Published on 08 November 2024. Downloaded on 10/28/2025 4:52:23 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

performance of robotized operations on samples (manipu-
lator®). The transfer of samples is carried out by both mobile
robots (presented in a separate publication) and a combination
of fixed six-axis and SCARA robots. On their side, the majority of
sample manipulations are carried out by 6-axis collaborative
robots with dynamically adapted grippers connected to tool-
changers. The Robot Sub-Scheduler receives task lists, with
arguments defining the target positions/stations or the
manipulation to be performed on a specific sample from the
Coordinator level. As illustrated in Fig. 5, the level 2 Robot Sub-
Scheduler oversees a level 3 Sub-Scheduler named Fleet
Manager. The latter is responsible for selecting the most
appropriate mobile robot, among the available ones within the
fleet, for a specific action. It then transfers the final location in
the laboratory that the mobile robot (EMs) has to reach to its
dedicated trajectory controller coded into the ROS environ-
ment. The level 2 Robot Sub-Scheduler also interacts directly
with node’s APIs for 6-axis and SCARA arms in charge of sample
transfers from the mobile robots to the scientific equipment,
intra-scientific equipment transfers and sample manipulations.
For these operations, the 6-axis (UR#) and SCARA arms (KX2)

Coordinator

View Article Online

Paper

operations are entirely defined within the respective controller
as an internal program, run by the Robot Sub-Scheduler
through dedicated in-house APIs. Multiple sub-schedulers can
cohabit at the same level and interact with each other. In Fig. 5,
this is symbolized at level 2 by the dashed line between the
Robot Sub-Scheduler and the OmniFire.

The following Table 2 provides a comprehensive overview of
all nodes that are piloted by the Robot Sub-Scheduler, along
with their respective control systems (API). The table enumer-
ates various types of API, including a level 3 GLAS Sub-Scheduler
named Fleet Manager, which will be presented in a separate
publication. The Real Time Data Exchange (RTDE)** is
a dedicated protocol for piloting Universal Robots 6-axis arms.
Some in-house REST APIs are also used and visible in this table.

The practical application of the Robot Sub-Scheduler is
demonstrated by the workflow “omni to nmr,” depicted in
Scheme 1. This workflow corresponds to code snippet 2 from
Chart 1 and to one of the visible running workflows in the GUI
screenshot in Fig. 4. This workflow is invoked by the Main
Laboratory Scheduler, which calls upon the Robot Sub-
Scheduler, with the intention of transferring a rack of samples

Level1 [

Main Laboratory
Scheduler

| | Web Client Iq- s
Level 2 ' ->[Robot Sub-Scheduler] T S ST LR > [Omnifire]Q[Web ClientJ
| :
' cLl < :
| I :
v H
) '
Level 3 I | FleetManager | ——F——----oo; ;
i
-— :
c v l l l l l l E
Executor s D) E
| @ RTDE u API TwinCAT | [opus api | | sDK :
L L
Yo atem — :
| o] = ® 3 2 » = £ .
; o & 3 e 8 B T2 -3 :
) o : 3 3 8 33 23 -
s 2 e ® Y - - R :
| 3 £ a) S 3o S o
g & o 2 3 e = So :
Y — o x i 23 s c '
— N g @ g5 s< .
[s || e g 3 - = :
' o o c z (=] ~0n .
d 7] = N] :
[£(l5]]l® 8 L :
H 0 ___/ . :
‘ PiSeemr e e s s s s ;
| () |
‘ < i
I o |
; .

Fig. 5 Schematic representation of the interactions between the Main Laboratory Scheduler and two important components within the Swiss
Cat+ laboratory, built upon the GLAS architecture. As previously stated, the Robot Sub-Scheduler (depicted by a dashed and dotted blue rounded
rectangle on the left) is responsible for piloting all mobile and static robots utilized for sample transfer between distinct groups of equipment (for
further details, please refer to Table 2). The OmniFire (right short-dashed red rounded rectangle) is dedicated to the collection of samples from
a Prep-LC and the preparation and transfer of samples for different analytical chemistry methods, including optical spectroscopy, mass spec-
trometry, and NMR. The dashed arrow between the Robot Sub-Scheduler and the OmniFire indicates a communication inter-system that does
not involve the Main Laboratory Scheduler. The dashed arrow connecting the Agilent VWorks executor suggests that not all scientific equipment
is shown for the sake of diagram readability. The URs executors employ abbreviated names to enhance readability. The Fleet Manager executor
will be addressed in a forthcoming publication.

2440 | Digital Discovery, 2024, 3, 2434-2447 © 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00253a

Open Access Article. Published on 08 November 2024. Downloaded on 10/28/2025 4:52:23 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

View Article Online

Digital Discovery

Table 2 Tools with their respective APl and protocols as integrated in the Robot Sub-Scheduler GLAS architecture. Some equipment is missing
to improve readability. The REST API control systems are all made in-house and map a selection of actions given by the interfaced equipment to

restrain external access

Tool Type of equipment

Control system

Fleet-Manager

Universal Robots

PAA KX2

Bruker 400 MHz NEO NMR spectrometer
Agilent Bravo liquid handler

Agilent plate sealer

Agilent centrifuge

6-Axis robotic arms
Scara robot

Liquid handler
SBS plate sealer
Centrifuge

that have been prepared in the OmniFire and are ready to be
introduced into the Bruker NEO/Ascend 400 MHz NMR spec-
trometer. To execute the workflow, the Robot Sub-Scheduler
converts each step into a series of tasks, traversing the entire
network of nodes to execute the BM with the requisite argu-
ments for each step. Firstly, the UR5-OMNI retrieves the plate
from the OmniFire (step 1) and places it on an EM (mobile
robot) dispatched by the Fleet Manager to the designated
station (step 2 and 3). Subsequently, the EM proceeds to the
URS5-SFC station (step 4), which is associated with the NMR/IM-
Q-TOF station. At this point in the process, the UR5-SFC
retrieves the plate from the EM (step 5) and transfers it to
a buffer station where the UR5-NMR subsequently transfers the
samples to the NMR's selection of an empty storage input into
the Bruker Sample Jet (step 6). This concludes the transfer of the
samples to the NMR spectrometer, where they are now ready to
be analyzed.

3.1.1 Execution time analysis. In the present experimental
use case, the Robot Sub-Scheduler has been developed within
the context of the Swiss Cat+ laboratory, where the principal
laboratory scheduler is a REST API-based scheduler that
employs a FIFO scheduling methodology. As stated previously,
the integration of this elementary scheduling methodology with
the layered and multithreaded architecture of GLAS enables the
attainment of a certain degree of parallelization. As illustrated
in the Flame execution chart (Fig. 6), in GLAS, the FIFO prin-
ciple is observed at the task level, with nodes within tasks
started in accordance with their respective workflows upon
availability. As illustrated in the chart, three parallel tasks are

NMR samples Step 1: UR5-OMNI

In-house mobile robots' controller

Analysis tool to measure NMR spectra

v

Level 3 GLAS Sub-Scheduler

RTDE46,47

REST API

REST API

REST API on top of VWorks automation control software
REST API on top of VWorks automation control software
REST API on top of VWorks automation control software

running and are independently managed. A video of the
minimal execution (only robotic operations) of the task OMNI to
NMR is provided as a ESL.} Fig. 6, displayed below, has been
generated using actual scheduling and robotic tasks and
communication times extracted from a simulation in which all
chemical method times have been reduced to zero to prevent
any impact on the measured values due to scheduling inde-
pendent operations.

Fig. 6 exhibits an approximate activation time of 2 seconds
upon restarting the UR5-OMNI node in the “Synth to OMNI”
task following the conclusion of the same node in the “OMNI to
NMR” task. This delay is attributed to the requisite time for the
system to update the node status, thereby enabling its reuse for
new assignments. The alignment between the two tasks is
illustrated by the vertical dotted line. Furthermore, a shift of
approximately 5 seconds at the inception of the three distinct
tasks is also observable. This discrepancy can be attributed to
the FIFO methodology employed by the Swiss Cat+ REST-API-
based Main Laboratory Scheduler, which invokes the work-
flows at the level of the Robot Sub-Scheduler. It is evident from
this figure that the GLAS parallelization substantially acceler-
ates task execution in comparison to a pure FIFO approach,
wherein all tasks are managed sequentially by a single main lab
scheduler. In such a case, the total execution time would be the
sum of the three workflows presented, with the addition of the
same initial 5 second average shift between each node, resulting
in a total of approximately 173 seconds instead of the 42
seconds shown in Fig. 6. It seems reasonable to posit that the
ratio of 173/42 (approximately 4.2 times faster) between

omni to nmr N

Step 2: order a

mobile robot for the Step 3: URS-OMNI

A 4

ready for transfer
in the OmniFire

retrieves the samples
from the OmniFire

load the mobile robot

OmniFire station to with the samples

the FLEET-MANAGER

v

Step 6: UR5-NMR
transfer the samples

NMR samples

Step 5: UR5-SFC

located at NMR/ Step 4: the mobile

robot moves the

A

from the buffer zone
to the Sample Jet.

ready for analysis 1

.- -
.

IM-Q-TOF station |«
transfer samples to

samples to the
NMR/IM-Q-TOF station

N e, —————-

the buffer zone

Scheme 1 A workflow showing in detail the steps corresponding to the main tasks of the “omni to nmr” workflow coded in the Robot Sub-
Scheduler, associated with code snippet 2 from Chart 1 and corresponding to one of the three running workflows shown in the GLAS GUI

screenshot in Fig. 4.

© 2024 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2024, 3, 2434-2447 | 2441

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00253a

Open Access Article. Published on 08 November 2024. Downloaded on 10/28/2025 4:52:23 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Digital Discovery Paper

Execution Concurrency Flame Chart
T

((OMNI }(UR5-OMNI)| UR5-NMRJBMNMR] _

Fleet-Manag

URS5-SFC

OMNI to NMR

000
DOOO
J UR3

WAWAW AW
o 4000
DOOO

,
>2<,
o
(o]
(o]
o

—\
0
m
>
r

__J

Fleet-Manager

Sealer to LC2 -

Tasks

) K

SYNTHJ(UR5-SYNTH)(Fleet-Manager)

AN

URS5-OMNIJ OMNI) 1

Synth to Omni [

1 L 1

20 30 40
Time (seconds)

Fig. 6 Illustrates the execution times of three parallel tasks called by the Swiss Cat+ Main Laboratory Scheduler (level 1) and coded into the level 2
Robot Sub-Scheduler based on a first-in, first-out (FIFO) strategy, as depicted in a flame chart. Each task (vertical scale), corresponding to
a specific workflow, within the Robot Sub-Scheduler is conducted independently based on the availability of nodes. The execution times of the
nodes are represented on the flame chart with different patterns for identification purposes and are named directly inside the chart. The nodes
correspond primarily to the various types of hardware utilized by the workflows, including six-axis collaborative robots (UR...) and mobile robots
(Fleet-Manager). It also mentions transfer times from or to the scientific equipment (NMR, SYNTH, LC2) and sample preparation equipment (SEAL
& OMNI). The depicted times were obtained directly through the use of the execution time tracker accessible within the GLAS web interface. To
ensure the accuracy of the measurements, a simulation was conducted in which all chemical operations were set to zero seconds, thereby
isolating the communication and scheduling times. The vertical dotted line indicates the alignment with the operational delay of approximately
two seconds, which is hecessary to change the status and allow the UR5-OMNI node to restart the “Synth to Omni” task after the conclusion of

the same node in the "OMNI to NMR" task.

a centralized FIFO scheduling approach and the GLAS paral-
lelized architecture would be maintained when chemical oper-
ation times are taken into account. Indeed, this ratio would
likely be increased, given that these operations typically span
a range of minutes to hours. The parallelization of these
processes therefore has a significant impact. It could therefore
be of great interest to extend the number of layers in order to
increase the potential of parallelization. A detailed analysis of
GLAS execution time in comparison with different scheduling
methodologies as the Main Laboratory Scheduler is planned for
future study.

3.1.2 Error management. In GLAS, error handling is
implemented within and is specific to each node. Each node is
associated with a specific device, such as a robot, and is
equipped with its own error handling logic, which is designed to
ensure precise error management. To illustrate, when a UR
robot is managed within the Robot Sub-Scheduler, the system is
designed to capture and respond to a variety of runtime error
conditions, including instances where a connection to
a controller is unsuccessful or where it is determined that the
robot is not powered on. In such instances, a runtime error is
generated, and the node's state is updated to NodeState. ERROR,
thereby preventing further operations until the issue is
resolved. To illustrate, in the event of a failure to establish
a connection with a controller, the system generates an error

2442 | Digital Discovery, 2024, 3, 2434-2447

message indicating that the connection is unsuccessful. The
message “Failed to connect to the arm” can then be used to
initiate the recovery procedures. In addition to monitoring
runtime errors, the system also monitors safety conditions (for
instance, with EMERGENCY_STOPPED or PROTECTIVE_STOP-
PED). This allows the system to track specific safety states and
react accordingly. A clear error message, such as “Emergency
stop,” is logged to indicate a critical halt. In instances where
a protective stop is initiated due to safety concerns, such as the
potential for collisions or limit violations, the system transi-
tions the node to the NodeState. RECOVERY, terminates any
active program, and displays a message indicating the protec-
tive stop. The provision of detailed feedback through the use of
specific error messages, such as “Arm not placed on the first teach
point” or “Robot is not in remote mode”, facilitates the rapid
diagnosis and recovery of errors, thereby ensuring the robust-
ness and customizability of the error management process for
each device. By integrating both runtime error handling and
safety status monitoring, the system is capable of managing
faults at multiple levels, enabling operators to address the issue
and resume safe operations.

3.2 OmniFire

3.2.1 Functionalities and machine description. The
OmniFire is a Swiss Cat+ in-house development based on the

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00253a

Open Access Article. Published on 08 November 2024. Downloaded on 10/28/2025 4:52:23 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

View Article Online

Digital Discovery

Fig. 7 Description of the OmniFire system, including an illustration of its various components. In the CAO illustration on the left, item 1 depicts
the UR5e 6-axis arm, item 2 represents the mobile robot (EM) utilized for long-range sample transfer (2D drone swarm, a subject of further
elaboration in a forthcoming publication), item 3 portrays the Brooks Scara Robot PreciseFlex 3400, item 4 illustrates the intermediate plate
employed for sample transfer between the Scara and the 6-axis, and item 5. The left valve system (Dispatcher) is mounted on a Cartesian axis and
is dedicated to sample preparation and sealing for Agilent SFC-IM-Q-TOF (not visible) and Bruker HR-NMR (not visible). It also serves as a conduit
for direct injection into the Agilent Cary 60 UV spectrophotometer (8) and into the Bruker Invenio FT-IR spectrophotometer (9). The right valve
system is mounted on a dedicated Cartesian axis (7) and is used to collect the fractions into SBS plates directly from the Prep-LC (6). Finally, the
track dedicated to the 2D drone swarm system (presented in a separate publication) is shown with number (10). The image on the right depicts

the operational system as it is existing in the Swiss Cat+ laboratory.

Agilent RapidFire. This equipment (Fig. 7) is designed to serve
a number of functions. Initially, it is intended to act as a high-
throughput fraction collector in conjunction with an Agilent
1260 Preparative HPLC. Subsequently, it is to be employed as
a sample preparator, filler, and sealer for NMR 96 x 1.7 mm
tubes racks. Finally, it is to be utilized as a sample injector for
in-line Agilent UV Cary 60 and Bruker FT-IR Invenio. In addi-
tion, the apparatus serves as a sample Dispatcher for an Agilent
6550 IM-Q-TOF coupled to an Agilent 1260 SFC and the NMR
racks. Moreover, the instrument must interact with a series of
Agilent Bravo liquid handlers used for sample preparation and
solvent exchanges. This equipment plays a pivotal role in the

global Swiss Cat+ automation scheme, particularly in the
automated high-resolution characterization of compounds. The
functions of the instrument are described in the functional
high-level workflow presented in Scheme 2.

As illustrated in Fig. 7, the OmniFire consists of two
ensembles of valves associated with Cartesian positioning
systems (5 and 7), two previously mentioned spectrophotome-
ters Agilent Cary 60 UV-vis (8) and Bruker Invenio FT-IR (9).
Additionally, the apparatus comprises an ensemble of sample
management devices, including a six-axis Universal Robot 5e
(1), a Brooks Scara robot PreciseFlex 3400 (3), an Agilent SBS
plate sealer (not visible), and a 3D printer head utilized for

Transfer SBS plates Waste SBS Transfer NMR racks
to SFC-IM-Q-TOF FT-IR plate to NMR
A A A

................ i i o s oo o Simim i = e g

\

.' Fraction collection 1

! triggered according :

: to MS spectra on SBS '

; plates | Seal SBS plates Seal NMR tubes |,

1 7'\ b i
|}

] 1

: Y . :

Inject and measure Inject and measure " 1

: |—| Seal SBS plates | e e and me Fill NMR tubes :

/| Manage sBs 4 4 4 1

! plates :

: Y "

1 Send SBS plates Receive diluted SBS '

! > to the Agilent »| plates from Agilent :

X Bravo liquid handler Bravo liquid handler .

~ & ’

Scheme 2

© 2024 The Author(s). Published by the Royal Society of Chemistry

High-level functional workflow of the OmniFire as it is operated in the Swiss Cat+ West Hub laboratory.

Digital Discovery, 2024, 3, 2434-2447 | 2443

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00253a

Open Access Article. Published on 08 November 2024. Downloaded on 10/28/2025 4:52:23 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

sealing the NMR tubes (included in 5). All valves and Cartesian
positioning systems are operated via a Beckhoff controller,
which is not visible and forms the entirety of the “Dispatcher”
system. Furthermore, the mobile robot (EM) utilized for sample
transfer is visible on top, identified as number 2. The prepara-
tive LC (6) and the intermediate plate for sample transfer
between the Scara and the 6-axis (4) are also present.

The entirety of the OmniFire, with the exception of the UR5e,
which is overseen by the level 2 Robot Sub-Scheduler (use case 1
above, through horizontal dashed arrow in Fig. 5), is managed
by a singular and dedicated sub-scheduler of level 2 as visible in
Fig. 5 (red shot-dashed rounded square). This section provides
a detailed description of the OmniFire level 2 sub-scheduler.

3.2.2 The OmniFire level 2 sub-scheduler. The various
machines present in the OmniFire utilize distinct APIs or
protocols that must be incorporated into the GLAS architecture
to achieve the requisite level 2 sub-scheduler functionality.
These APIs and protocols along with their respective tools are
listed in the Table 3 below.

As GLAS is developed in Python, the utilization of wrappers is
imperative to facilitate communication. For TCP communica-
tion over telnet and Twin CATs ADS, existing wrappers are
available in the public domain and are open source.”*®
Regarding the Agilent ADL scripting language, ADL scripts had
to be specifically written in order to be executed from GLAS. A
new version in SDK will soon be implemented. In ESI S1,T two
configuration examples specialized to the OmniFire are
presented.

3.2.3 Comments on the OmniFire level 2 sub-scheduler.
When implementing GLAS, various issues may arise. The
following are examples of concrete issues met during the
development of the OmniFire GLAS architecture at Swiss Cat+.
Possible solutions are also mentioned.

3.2.3.1 Traffic jam. A SBS plate sent from the OmniFire to an
Agilent BRAVO liquid handler for dilution operations produces
up to 10 new plates that will be reimported simultaneously into
the OmniFire. This exceeds the capacity of the Dispatcher,
which is unable to handle such a volume of plates at once. To
avoid such issues, a storage bay is implemented, accessible by
the Scara Brooks PreciseFlex 3400, to store plates while the
Dispatcher is in use. In terms of GLAS, it is necessary for the
node associated with the Scara to be able to behave in accor-
dance with the status of the Dispatcher, i.e. orienting the plates
correctly either towards the Dispatcher or towards the storage.

View Article Online

Paper

In order to perform this, the Python script for this node must be
written in multithreading. A code snippet for a GLAS workflow
including multithreading is available in ESI S2.t

3.2.3.2 SBS plates collisions. As described above, GLAS is
designed so that a node's status is set to 0 (available) when all of
its Basic Methods (BMs) have been completed. When the
implementation of GLAS consists of robotic arms that move
plates around, the final physical position of the plate is directly
correlated to the node status. This is not necessarily the case
with the OmniFire or other nodes that have BMs not related to
plate movement (e.g., chemical analyzers). The problem is that
if the physical state of a plate is not properly defined, there is
a risk of collision when two different tasks call the same node.
To overcome this, the status of the plate's physical position
must be systematically updated as the plates leave the node, not
just when the BM is completed. This can be done by creating
a new class that inherits the GLAS class “BaseNode” and over-
rides the execute() method so that the code is the same minus
the state updates. Any subsequent node implementation can
then inherit this new class. Their state updates can then be
managed by the node that actually moves the plates, in this case
the Scara Brooks Precise Flex 3400. A code snippet demon-
strating how to create a custom node class is provided in ESI
S3.t

4 Potential of use in various
experimental laboratory types

The GLAS architecture, which is based on a multilayered Git
system and is protocol agnostic, can be adapted to a wide range
of laboratory types. As it is based on Basic Methods (BM)
defined in proprietary software and can accommodate the
majority of traditional communication protocols, it can be used
to interface with the majority of existing laboratory equipment
without the need for any specific API development. Subse-
quently, the sequences of operations (workflows) are defined in
accordance with the requirements of the laboratory and can be
presented as a list of steps. The overarching principle is to
maintain the intelligence as close as possible at the Executor
level. This approach facilitates the development and design of
high-level schedulers with a relatively straightforward method-
ology. As previously outlined, GLAS is currently employed
within the Swiss Cat+ framework to directly control laboratory
instruments utilizing over six distinct protocols and application

Table 3 Tools with their respective APl and protocols as integrated in the OmniFire level 2 Sub-Scheduler GLAS architecture

Role Control system

Tool Type of equipment

Brooks PreciseFlex 3400 Scara

Cary 60 UV-vis spectrophotometer Analysis tool for ultraviolet
wavelengths

Invenio FT-IR spectrometer Analysis tool for infrared
wavelengths

Dispatcher In-house valve system

2444 | Digital Discovery, 2024, 3, 2434-2447

TCP communication

Agilent's ADL scripting language
(will become SDK)

Opus Python library

Move plates internally
Analyze products from the plates

Analyze products from the plates
Sips and dispatches products from

plates to analytical instrument and
to external instruments

Beckhoff Twin CATs ADS library

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00253a

Open Access Article. Published on 08 November 2024. Downloaded on 10/28/2025 4:52:23 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

programming interfaces (APIs). Furthermore, the REST-API
Level 1 Main Laboratory Scheduler oversees a level 2 Agilent
Sample Scheduler environment and a level 2 Agilent VWorks
environment. Furthermore, a level-2 Bruker Topspin-IconNMR
environment is operational, as is another dedicated level-2
sub-scheduler for an ensemble of equipment comprising two
Chemspeed Swing XL stations controlled by Autosuite and
Arksuite, along with a group of five interconnected DEC/
Jacomex glove boxes with robotic sample preparation func-
tions. The aforementioned variety of interfaces and instruments
provides compelling evidence in favor of a high degree of
adaptability to a diverse range of laboratory settings. Another
notable strength of the GLAS architecture is its adaptive web
client (Fig. 4). Indeed, the web interface is fully customizable to
any laboratory with minimal configuration. By modifying the
configuration slightly to suit the laboratory environment, the
user can readily display the status of ongoing tasks and the
progress made in near real-time.

5 Limitations

One of the few limitations of GLAS is the lack of sample tracking
at the node level. Currently, this is managed at the global level
by the Main Laboratory Scheduler, which is sufficient for the
purposes of Swiss Cat+. A forthcoming version of GLAS will
include sample tracking functionality at the node level. In the
majority of laboratories, sample tracking is a mandatory
requirement for compliance with regulatory standards. Such
a feature would facilitate data integrity and consistency for
samples handled by GLAS. Moreover, GLAS lacks the function-
ality to optimize workflows. At present, GLAS receives and
launches tasks in a sequential manner (FIFO), but the task itself
is executed on a different thread, allowing for the concurrent
execution of multiple threads. The initiation of nodes within
a task is contingent upon their designated workflow, occurring
as soon as they become available. Consequently, operations on
disparate nodes of disparate instruments may be conducted in
parallel, unless a specific node is incorporated into multiple
workflows. In this particular instance, the execution of a task
based on one of these workflows may impede the operation of
another task that utilizes the same node. It may, therefore, be of
interest to consider optimizing the order in which workflows are
called at the level of the Main Laboratory Scheduler, with a view
to avoiding such interferences. To consider global scheduling
optimization, the integration of algorithms such as those
described by Itoh T. D. et al.*® and Arai Y. et al.*® at the level of
the Main Laboratory Scheduler would undoubtedly facilitate
this process. This would require the ability to escalate all
equipment status updates via the nodes and experiment prog-
ress data in order to facilitate truly optimized dynamic sched-
uling. The retrieval of experimental progress information is not
currently a standard feature of scientific equipment. However,
the optimization of workflows, particularly in the context of
chemistry, can become a highly complex undertaking due to the
intrinsic uncertainty associated with the timing of chemical
operations. Indeed, the precise timing of reactions and analyses
is frequently uncertain, thereby rendering the prediction and

© 2024 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

optimization of BM or workflows a challenging endeavor. In
addition, given the time required for operations at the various
stations, several minutes per sample for spectroscopy and
chromatography, i.e. hours for hundreds of samples, and also
hours for synthesis steps, compared to transfer times of
seconds to minutes, it becomes clear that most of the optimi-
zation effort must be done at the instrument level and then at
the BM level. In the case of Swiss Cat+, the initial reduction in
BM times has led to a significant reduction in overall workflow
times.

6 Summary and outlook

The Git-based GLAS environment is a novel and simple way to
install a large-scale scheduling architecture in an automated
laboratory with minimal configuration. The generated archi-
tecture can be easily extended and adapted to almost any type of
scientific equipment and sample manipulation tools. This
article defines the basic concepts used in GLAS, such as Basic
Methods (BM), nodes, workflows, and tasks, and explains how
to install and implement this solution. It also describes how the
GLAS architecture naturally parallelize tasks. The description is
illustrated with concrete use cases to give the reader enough
confidence to implement this solution. In addition, the article
presents the GLAS web client, which is able to display the tasks
running in the lab and the status of the equipment.

Data availability

The code for GLAS can be found at https://github.com/
swisscatplus/glas/. The version of the code employed for this
study is revision 11. A wiki is available at https://github.com/
swisscatplus/glas/wiki as well as the code for the web-client
https://github.com/swisscatplus/glas-web-client. Specific
examples of multi-threaded workflows snippet codes
corresponding to the presented workflows are given in ESL

Author contributions

Conceptualization: J.-C. C., T. C.,A. S., E. M., K. V., F.d. N, P. M.
Funding acquisition: P. M. Investigation: J.-C. C., T. C., A. S,,
K. V., F. d. N. Methodology: J.-C. C., T. C., A. S., E. M., K. V.
Project administration: J.-C. C., K. V., P. M. Resources: E. M.,
K. V. Software: J.-C. C., T. C., A. S. Supervision: J.-C. C., E. M.,
P. M. Validation: J.-C. C., E. M., P. M. Visualization: J.-C. C.,
E. M., P. M. Writing (original draft): J.-C. C., T. C., A. S., P. M.
Writing (review and editing): J.-C. C., T. C., A. S., P. M.

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

The authors acknowledge the ETH Domain for its support
through the Forschungsinfrastrukturen Program. The authors
would like to extend their gratitude to the EPFL, SB, and ISIC

Digital Discovery, 2024, 3, 2434-2447 | 2445

https://github.com/swisscatplus/glas/
https://github.com/swisscatplus/glas/
https://github.com/swisscatplus/glas/wiki
https://github.com/swisscatplus/glas/wiki
https://github.com/swisscatplus/glas-web-client
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00253a

Open Access Article. Published on 08 November 2024. Downloaded on 10/28/2025 4:52:23 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

administrations for their assistance. Furthermore, they would
like to acknowledge the invaluable collaboration and guidance
provided by Prof. F. Gliick and Dr G. Chanel from HEPIA in
Geneva in the supervision of Tanguy Cavagna and Alec Schmidt
in the context of their Bachelor's thesis program. The text was
enhanced through the use of Deepl Write Pro.

References

1 R. J. Spinrad, Automation in the Laboratory. On-Line
Computers Are Providing New Freedom in the Design and
Conduct of Experiments, Science, 1967, 158(3797), 55-60,
DOI: 10.1126/science.158.3797.55.

2 J. Boyd, Robotic Laboratory Automation, Science, 2002,
295(5554), 517-518, DOI: 10.1126/science.295.5554.517.

3 R. D. King, J. Rowland, S. G. Oliver, M. Young, W. Aubrey,
E. Byrne, M. Liakata, M. Markham, P. Pir, L. N. Soldatova,
A. Sparkes, K. E. Whelan and A. Clare, The Automation of
Science, Science, 2009, 324(5923), 85-89, DOIL 10.1126/
science.1165620.

4 M. Christensen, L. P. E. Yunker, F. Adedeji, F. Hise,
L. M. Roch, T. Gensch, G. dos Passos Gomes, T. Zepel,
M. S. Sigman, A. Aspuru-Guzik and J. E. Hein, Data-Science
Driven Autonomous Process Optimization, Commun.
Chem., 2021, 4(1), 112, DOI: 10.1038/s42004-021-00550-X.

5 R. L. Greenaway, K. E. Jelfs, A. C. Spivey and S. N. Yaliraki,
From Alchemist to Al Chemist, Nat. Rev. Chem, 2023, 7(8),
527-528, DOI: 10.1038/5s41570-023-00522-w.

6 K. Thurow and S. Junginger, Devices and Systems for
Laboratory Automation, Wiley, 1st edn, 2022, DOIL: 10.1002/
9783527829446.

7 F. de Nanteuil and P. Miéville, Modern Automation in
Organic Synthesis Laboratories, in Comprehensive Organic
Synthesis, Elsevier, 2024.

8 G. Tom, S. P. Schmid, S. G. Baird, Y. Cao, K. Darvish, H. Hao,
S. Lo, S. Pablo-Garcia, E. M. Rajaonson, M. Skreta,
N. Yoshikawa, S. Corapi, G. D. Akkoc, F. Strieth-Kalthoff,
M. Seifrid and A. Aspuru-Guzik, Self-Driving Laboratories
for Chemistry and Materials Science, Chem. Rev., 2024,
124(16), 9633-9732, DOI: 10.1021/acs.chemrev.4c00055.

9 A. Nandy, C. Duan and H. J. Kulik, Audacity of Huge:
Overcoming Challenges of Data Scarcity and Data Quality
for Machine Learning in Computational Materials
Discovery, Curr. Opin. Chem. Eng., 2022, 36, 100778, DOLI:
10.1016/j.coche.2021.100778.

10 A. Thakkar, T. Kogej, J.-L. Reymond, O. Engkvist and
E. Jannik Bjerrum, Datasets and Their Influence on the
Development of Computer Assisted Synthesis Planning
Tools in the Pharmaceutical Domain, Chem. Sci., 2020,
11(1), 154-168, DOI: 10.1039/C9SC04944D.

11 C. W. Coley, N. S. Eyke and K. F. Jensen, Autonomous
Discovery in the Chemical Sciences Part I: Progress, Angew.
Chem., Int. Ed., 2020, 59(51), 22858-22893, DOIL: 10.1002/
anie.201909987.

12 C. W. Coley, N. S. Eyke and K. F. Jensen, Autonomous
Discovery in the Chemical Sciences Part II: Outlook, Angew.

2446 | Digital Discovery, 2024, 3, 2434-2447

View Article Online

Paper

Chem., Int. Ed., 2020, 59(52), 23414-23436, DOI: 10.1002/
anie.201909989.

13 M. P. Maloney, C. W. Coley, S. Genheden, N. Carson,
P. Helquist, P.-O. Norrby and O. Wiest, Negative Data in
Data Sets for Machine Learning Training, Org. Lett., 2023,
25(17), 2945-2947, DOI: 10.1021/acs.orglett.3¢01282.

14 T. Taniike and K. Takahashi, The Value of Negative Results
in Data-Driven Catalysis Research, Nat. Catal., 2023, 6(2),
108-111, DOI: 10.1038/s41929-023-00920-9.

15 D. Caramelli, D. Salley, A. Henson, G. A. Camarasa,
S. Sharabi, G. Keenan and L. Cronin, Networking Chemical
Robots for Reaction Multitasking, Nat. Commun., 2018,
9(1), 3406, DOI: 10.1038/s41467-018-05828-8.

16 D. T. Ahneman, J. G. Estrada, S. Lin, S. D. Dreher and
A. G. Doyle, Predicting Reaction Performance in C-N
Cross-Coupling Using Machine Learning, Science, 2018,
360(6385), 186-190, DOI: 10.1126/science.aar5169.

17 S. Kariofillis, S. Jiang, A. Zuranski, S. Gandhi, J. Martinez
Alvarado and A. Doyle, Using Data Science to Guide Aryl
Bromide Substrate Scope Analysis in a Ni/Photoredox-
Catalyzed Cross-Coupling with Acetals as Alcohol-Derived
Radical Sources, ChemRxiv, 2021, preprint, DOIL: 10.33774/
chemrxiv-2021-6kdot.

18 P. Schwaller, A. C. Vaucher, R. Laplaza, C. Bunne, A. Krause,
C. Corminboeuf and T. Laino, Machine Intelligence for
Chemical Reaction Space, WIREs Computational Molecular
Science, 2022, 12(5), 1604, DOI: 10.1002/wcms.1604.

19 J. H. Montoya, K. T. Winther, R. A. Flores, T. Bligaard,
J. S. Hummelshgj and M. Aykol, Autonomous Intelligent
Agents for Accelerated Materials Discovery, Chem. Sci.,
2020, 11(32), 8517-8532, DOI: 10.1039/D0SC01101K.

20 J. H. Montoya, M. Aykol, A. Anapolsky, C. Gopal,
P. K. Herring, J. Hummelshgj, L. Hung, H.-K. Kwon,
D. Schweigert, S. Sun, S. Suram, S. B. Torrisi, A. Trewartha
and B. Storey, Toward Autonomous Materials Research:
Recent Progress and Future Challenges, Appl. Phys. Rev.,
2022, 9, 011405, DOI: 10.1063/5.0076324.

21 K. Thurow, System Concepts for Robots in Life Science
Applications, Appl. Sci., 2022, 12(7), 3257, DOL 10.3390/
app12073257.

22 T. Kranjc, Introduction to Laboratory Software Solutions and
Differences Between Them, in Digital Transformation of the
Laboratory, John Wiley & Sons, Ltd, 2021, pp. 75-84, DOI:
10.1002/9783527825042.ch3.

23 L. Cao, D. Russo and A. A. Lapkin, Automated Robotic
Platforms in Design and Development of Formulations,
AIChE J., 2021, 67(5), 17248, DOI: 10.1002/aic.17248.

24 M. M. Flores-Leonar, L. M. Mejia-Mendoza, A. Aguilar-
Granda, B. Sanchez-Lengeling, H. Tribukait, C. Amador-
Bedolla and A. Aspuru-Guzik, Materials Acceleration
Platforms: On the Way to Autonomous Experimentation,
Curr. Opin. Green Sustainable Chem., 2020, 25, 100370, DOI:
10.1016/j.cogsc.2020.100370.

25 J. Bai, L. Cao, S. Mosbach, J. Akroyd, A. Lapkin and M. Kraft,
From Platform to Knowledge Graph: Evolution of Laboratory
Automation, JACS Au, 2022, 2, 292-309, DOI: 10.1021/
jacsau.1c00438.

© 2024 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.1126/science.158.3797.55
https://doi.org/10.1126/science.295.5554.517
https://doi.org/10.1126/science.1165620
https://doi.org/10.1126/science.1165620
https://doi.org/10.1038/s42004-021-00550-x
https://doi.org/10.1038/s41570-023-00522-w
https://doi.org/10.1002/9783527829446
https://doi.org/10.1002/9783527829446
https://doi.org/10.1021/acs.chemrev.4c00055
https://doi.org/10.1016/j.coche.2021.100778
https://doi.org/10.1039/C9SC04944D
https://doi.org/10.1002/anie.201909987
https://doi.org/10.1002/anie.201909987
https://doi.org/10.1002/anie.201909989
https://doi.org/10.1002/anie.201909989
https://doi.org/10.1021/acs.orglett.3c01282
https://doi.org/10.1038/s41929-023-00920-9
https://doi.org/10.1038/s41467-018-05828-8
https://doi.org/10.1126/science.aar5169
https://doi.org/10.33774/chemrxiv-2021-6kd0t
https://doi.org/10.33774/chemrxiv-2021-6kd0t
https://doi.org/10.1002/wcms.1604
https://doi.org/10.1039/D0SC01101K
https://doi.org/10.1063/5.0076324
https://doi.org/10.3390/app12073257
https://doi.org/10.3390/app12073257
https://doi.org/10.1002/9783527825042.ch3
https://doi.org/10.1002/aic.17248
https://doi.org/10.1016/j.cogsc.2020.100370
https://doi.org/10.1021/jacsau.1c00438
https://doi.org/10.1021/jacsau.1c00438
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00253a

Open Access Article. Published on 08 November 2024. Downloaded on 10/28/2025 4:52:23 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

26 Z. Huang, M. S. Chen, C. P. Woroch, T. E. Markland and
M. W. Kanan, A Framework for Automated Structure
Elucidation from Routine NMR Spectra, Chem. Sci., 2021,
12(46), 15329-15338, DOI: 10.1039/D1SC04105C.

27 T. Kind and O. Fiehn, Advances in Structure Elucidation of
Small Molecules Using Mass Spectrometry, Bioanalytical
Reviews, 2010, 2(1-4), 23-60, DOIL 10.1007/s12566-010-
0015-9.

28 M. Pesek, A. Juvan, J. Jakos, J. Kosmrlj, M. Marolt and
M. Gazvoda, Database Independent Automated Structure
Elucidation of Organic Molecules Based on IR, 1H NMR,
13C NMR, and MS Data, J. Chem. Inf. Model., 2021, 61(2),
756-763, DOI: 10.1021/acs.jcim.0c01332.

29 M. O. Marcarino, S. Cicetti, M. M. Zanardi and A. M. Sarotti,
A Critical Review on the Use of DP4+ in the Structural
Elucidation of Natural Products: The Good, the Bad and
the Ugly. A Practical Guide, Nat. Prod. Rep., 2022, 39(1),
58-76, DOI: 10.1039/D1NP00030F.

30J. S. Lindsey, A Retrospective on the Automation of
Laboratory Synthetic Chemistry, Chemom. Intell. Lab. Syst.,
1992, 17(1), 15-45, DOI: 10.1016/0169-7439(92)90025-B.

31 T. M. Alam and M. K. Alam, Chemometric Analysis of NMR
Spectroscopy Data: A Review, Annu. Rep. NMR Spectrosc.,
2004, 54, 41-80, DOI: 10.1016/S0066-4103(04)54002-4.

32 R. G. Brereton, J. Jansen, J. Lopes, F. Marini, A. Pomerantsev,
O. Rodionova, J. M. Roger, B. Walczak and R. Tauler,
Chemometrics in Analytical Chemistry—Part I: History,
Experimental Design and Data Analysis Tools, Anal
Bioanal. Chem., 2017, 409(25), 5891-5899, DOIL: 10.1007/
$00216-017-0517-1.

33 T. S. Bos,]J. Boelrijk, S. R. A. Molenaar, B. van ’t Veer,
L. E. Niezen, D. van Herwerden, S. Samanipour, D. R. Stoll,
P. Forré, B. Ensing, G. W. Somsen and B. W.]J. Pirok,
Chemometric Strategies for Fully Automated Interpretive
Method Development in Liquid Chromatography, Anal.
Chem., 2022, 94(46), 16060-16068, DOI: 10.1021/
acs.analchem.2c03160.

34 A. Wolf, D. Wolton, J. Trapl, J. Janda, S. Romeder-Finger,
T. Gatternig, J.-B. Farcet, P. Galambos and K. Széll,
Towards Robotic Laboratory Automation Plug & Play: The
“LAPP” Framework, SLAS Technol., 2022, 27(1), 18-25, DOLI:
10.1016/j.slast.2021.11.003.

35 K. F. Jensen, Flow Chemistry—Microreaction Technology
Comes of Age, AIChE J., 2017, 63(3), 858-869, DOI: 10.1002/
aic.15642.

36 A. Slattery, Z. Wen, P. Tenblad,]. Sanjosé-Orduna,
D. Pintossi, T. den Hartog and T. Noé€l, Automated Self-
Optimization, Intensification, and Scale-up of
Photocatalysis in Flow, Science, 2024, 383(6681), eadj1817,
DOI: 10.1126/science.adj1817.

37 S. P. Gilroy and B. A. Kaplan, Furthering Open Science in
Behavior Analysis: An Introduction and Tutorial for Using

© 2024 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

GitHub in Research, Perspectives on Behavior Science, 2019,
42(3), 565-581, DOI: 10.1007/s40614-019-00202-5.

38 D. Moreau, K. Wiebels and C. Boettiger, Containers for
Computational Reproducibility, Nat. Rev. Methods Primers,
2023, 3(1), 1-16, DOI: 10.1038/s43586-023-00236-9.

39 M. Seifrid, F. Strieth-Kalthoff, M. Haddadnia, T. Wu, E. Alca,
L. Bodo, S. Arellano-Rubach, N. Yoshikawa, M. Skreta,
R. Keunen and A. Aspuru-Guzik, Chemspyd: An Open-
Source Python Interface for Chemspeed Robotic Chemistry
and Materials Platforms, ChemRxiv, 2024, preprint, DOI:
10.26434/chemrxiv-2024-33sfl.

40 W. Cedefio and P. A. Laplante, An Overview of Real-Time
Operating Systems, JALA, 2007, 12(1), 40-45, DOI: 10.1016/
j.jala.2006.10.016.

41 GLAS Github wiki, GitHub, https://github.com/swisscatplus/
glas/wiki/Home, accessed 2024-06-18.

42 M. D. Hanwell, W. A. de Jong and C. J. Harris, Open
Chemistry: RESTful Web APIs, JSON, NWChem and the
Modern Web Application, J. Cheminf., 2017, 9(1), 55, DOIL:
10.1186/s13321-017-0241-7.

43 Swisscatplus/Glas-Web-Client, 2024, https://github.com/
swisscatplus/glas-web-client, accessed 2024-06-19.

44 P. Laveille, P. Miéville, S. Chatterjee, E. Clerc, J.-C. Cousty,
F. de Nanteuil, E. Lam, E. Mariano, A. Ramirez,
U. Randrianarisoa, K. Villat, C. Copéret and N. Cramer,
Swiss CAT+, a Data-Driven Infrastructure for Accelerated
Catalysts Discovery and Optimization, Chimia, 2023, 77(3),
154-158, DOI: 10.2533/chimia.2023.154.

45 Universal Robots RTDE C++ Interface — ur_rtde 1.5.8
documentation, https://sdurobotics.gitlab.io/ur_rtde/,
accessed 2024-07-08.

46 Real-Time Data Exchange (RTDE) Guide - 22229, https://
www.universal-robots.com/articles/ur/interface-
communication/real-time-data-exchange-rtde-guide/,
accessed 2024-07-08.

47 S. Lehmann, Stlehmann/Pyads, 2024, https://github.com/
stlehmann/pyads, accessed 2024-07-08.

48 cpython/Lib/telnetlib.py at 3.12 - python/cpython, GitHub,
https://github.com/python/cpython/blob/3.12/Lib/
telnetlib.py, accessed 2024-07-08.

49 T. D. Itoh, T. Horinouchi, H. Uchida, K. Takahashi and
H. Ozaki, Optimal Scheduling for Laboratory Automation
of Life Science Experiments with Time Constraints, SLAS
Technol., 2021, 26(6), 650-659, DOL 10.1177/
24726303211021790.

50 Y. Arai, K. Takahashi, T. Horinouchi, K. Takahashi and
H. Ozaki, SAGAS: Simulated Annealing and Greedy
Algorithm Scheduler for Laboratory Automation, SLAS
Technol.,, 2023, 28(4), 264-277, DOIL 10.1016/
j-slast.2023.03.001.

Digital Discovery, 2024, 3, 2434-2447 | 2447

https://doi.org/10.1039/D1SC04105C
https://doi.org/10.1007/s12566-010-0015-9
https://doi.org/10.1007/s12566-010-0015-9
https://doi.org/10.1021/acs.jcim.0c01332
https://doi.org/10.1039/D1NP00030F
https://doi.org/10.1016/0169-7439(92)90025-B
https://doi.org/10.1016/S0066-4103(04)54002-4
https://doi.org/10.1007/s00216-017-0517-1
https://doi.org/10.1007/s00216-017-0517-1
https://doi.org/10.1021/acs.analchem.2c03160
https://doi.org/10.1021/acs.analchem.2c03160
https://doi.org/10.1016/j.slast.2021.11.003
https://doi.org/10.1002/aic.15642
https://doi.org/10.1002/aic.15642
https://doi.org/10.1126/science.adj1817
https://doi.org/10.1007/s40614-019-00202-5
https://doi.org/10.1038/s43586-023-00236-9
https://doi.org/10.26434/chemrxiv-2024-33sfl
https://doi.org/10.1016/j.jala.2006.10.016
https://doi.org/10.1016/j.jala.2006.10.016
https://github.com/swisscatplus/glas/wiki/Home
https://github.com/swisscatplus/glas/wiki/Home
https://doi.org/10.1186/s13321-017-0241-z
https://github.com/swisscatplus/glas-web-client
https://github.com/swisscatplus/glas-web-client
https://doi.org/10.2533/chimia.2023.154
https://sdurobotics.gitlab.io/ur_rtde/
https://www.universal-robots.com/articles/ur/interface-communication/real-time-data-exchange-rtde-guide/
https://www.universal-robots.com/articles/ur/interface-communication/real-time-data-exchange-rtde-guide/
https://www.universal-robots.com/articles/ur/interface-communication/real-time-data-exchange-rtde-guide/
https://github.com/stlehmann/pyads
https://github.com/stlehmann/pyads
https://github.com/python/cpython/blob/3.12/Lib/telnetlib.py
https://github.com/python/cpython/blob/3.12/Lib/telnetlib.py
https://doi.org/10.1177/24726303211021790
https://doi.org/10.1177/24726303211021790
https://doi.org/10.1016/j.slast.2023.03.001
https://doi.org/10.1016/j.slast.2023.03.001
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00253a

	GLAS: an open-source easily expandable Git-based scheduling architecture for integral lab automationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00253a
	GLAS: an open-source easily expandable Git-based scheduling architecture for integral lab automationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00253a
	GLAS: an open-source easily expandable Git-based scheduling architecture for integral lab automationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00253a
	GLAS: an open-source easily expandable Git-based scheduling architecture for integral lab automationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00253a
	GLAS: an open-source easily expandable Git-based scheduling architecture for integral lab automationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00253a

	GLAS: an open-source easily expandable Git-based scheduling architecture for integral lab automationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00253a
	GLAS: an open-source easily expandable Git-based scheduling architecture for integral lab automationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00253a
	GLAS: an open-source easily expandable Git-based scheduling architecture for integral lab automationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00253a
	GLAS: an open-source easily expandable Git-based scheduling architecture for integral lab automationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00253a
	GLAS: an open-source easily expandable Git-based scheduling architecture for integral lab automationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00253a
	GLAS: an open-source easily expandable Git-based scheduling architecture for integral lab automationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00253a
	GLAS: an open-source easily expandable Git-based scheduling architecture for integral lab automationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00253a
	GLAS: an open-source easily expandable Git-based scheduling architecture for integral lab automationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00253a
	GLAS: an open-source easily expandable Git-based scheduling architecture for integral lab automationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00253a
	GLAS: an open-source easily expandable Git-based scheduling architecture for integral lab automationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00253a

	GLAS: an open-source easily expandable Git-based scheduling architecture for integral lab automationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00253a
	GLAS: an open-source easily expandable Git-based scheduling architecture for integral lab automationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00253a
	GLAS: an open-source easily expandable Git-based scheduling architecture for integral lab automationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00253a
	GLAS: an open-source easily expandable Git-based scheduling architecture for integral lab automationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00253a
	GLAS: an open-source easily expandable Git-based scheduling architecture for integral lab automationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00253a
	GLAS: an open-source easily expandable Git-based scheduling architecture for integral lab automationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00253a
	GLAS: an open-source easily expandable Git-based scheduling architecture for integral lab automationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00253a

