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Advancements in machine learning and artificial intelligence are transforming the discovery of materials.

While the vast corpus of scientific literature presents a valuable and rich resource of experimental data

that can be used for training machine learning models, the availability and accessibility of these data

remains a bottleneck. Accessing these data by manual dataset creation is limited due to issues in

maintaining quality and consistency, scalability limitations, and the risk of human error and bias.

Therefore, in this work, we develop a chemist AI agent, powered by large language models (LLMs), to

overcome these limitations by autonomously creating structured datasets from natural language text,

ranging from sentences and paragraphs to extensive scientific research articles and extract guidelines for

designing materials with desired properties. Our chemist AI agent, Eunomia, can plan and execute

actions by leveraging the existing knowledge from decades of scientific research articles, scientists, the

Internet and other tools altogether. We benchmark the performance of our approach in three different

information extraction tasks with various levels of complexity, including solid-state impurity doping,

metal–organic framework (MOF) chemical formula, and property relationships. Our results demonstrate

that our zero-shot agent, with the appropriate tools, is capable of attaining performance that is either

superior or comparable to the state-of-the-art fine-tuned material information extraction methods. This

approach simplifies compilation of machine learning-ready datasets for the applications of discovery of

various materials, and significantly eases the accessibility of advanced natural language processing tools

for novice users in natural language. The methodology in this work is developed as open-source

software on https://github.com/AI4ChemS/Eunomia.
1 Introduction

The past decade's extraordinary achievements in leveraging
machine learning for chemical discovery highlight the power of
accessible knowledge and structured data.1–3 However, a signif-
icant portion of chemical knowledge, particularly the experi-
mental ones, is scattered across the scientic literature in an
unstructured format.4 Researchers face challenges in effectively
utilizing existing knowledge for design of experiments, as well
as in comprehending the entirety of previous studies in a eld.
Thus, the development of methodologies to extract information
from the literature and convert it into structured data will play
a fundamental role in advancing the machine learning for
molecules and materials.

Natural Language Processing (NLP) is a powerful tool for
extracting information from the scientic literature. Conven-
tional NLP methods have been used in materials and chemical
nto, Toronto, Ontario M5S 3E5, Canada.

pplied Chemistry, University of Toronto,

tion (ESI) available. See DOI:

the Royal Society of Chemistry
sciences5–10 for named entity recognition. However, these
methods are limited in other NLP tasks that are needed for
a general-purpose data extraction tool, including co-reference
resolution, relation extraction, template lling, argument
mining, and entity linking. To better understand these NLP
terminologies, let us consider an example taken from an
abstract of a materials paper11 in the eld of metal–organic
frameworks (MOFs):

“An isoreticular series of cobalt-adeninate bio-MOFs (bio-MOFs-
11–14) is reported. The pores of bio-MOFs-11–14 are decorated
with acetate, propionate, butyrate, and valerate, respectively. The
nitrogen (N2) and carbon dioxide (CO2) adsorption properties of
these materials are studied and compared. The isosteric heats of
adsorption for CO2 are calculated, and the CO2 : N2 selectivities for
each material are determined. As the lengths of the aliphatic chains
decorating the pores in bio-MOFs-11–14 increase, the BET surface
areas decrease from 1148 m2 g−1 to 17 m2 g−1 while the CO2 : N2

selectivities predicted from ideal adsorbed solution theory at 1 bar
and 273 K for a 10 : 90 CO2 : N2 mixture range from 73 : 1 for bio-
MOF-11 to 123 : 1 for bio-MOF-12 and nally to 107 : 1 for bio-
MOF-13. At 298 K, the selectivities are 43 : 1 for bio-MOF-11, 52 :
1 for bio-MOF-12, and 40 : 1 for bio-MOF-13. The water stability of
bio-MOFs-11–14 increases with increasing aliphatic chain length.”
Digital Discovery, 2024, 3, 2607–2617 | 2607
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� Named entity recognition involves identifying and classi-
fying the specic entities within the text into predened cate-
gories (i.e., chemical compounds: “bio-MOFs-11–14”, “acetate”,
experimental conditions: “1 bar”, “273 K”, “10 : 90 CO2 : N2

mixture”).
� Co-reference resolution focuses on nding all expressions

that refer to the same entity in the text. As an example, phrases
like “these materials”, “each material” are references that relate
back to the bio-MOFs-11–14 mentioned in the rst sentence.

� Relation extraction involves extracting semantic relation-
ships from the text, which usually occur between two or more
entities (i.e., the impact of “aliphatic chain lengths” on “BET
surface areas” and “CO2 : N2 selectivities”).

� Template filing is an efficient approach to extract and
structure complex information from text. As an example:
material name: bio-MOFs-11–14.

� Argument mining focuses on the automatic identication
and extracts the reasoning presented within the text. As an
example, the “increase in the water stability” of the mentioned
MOFs is connected to the “increasing length of the aliphatic
chains”.

� Entity linking takes one step further than named entity
recognition and distinguishes between similarly named entities
(i.e., the term “bio-MOFs” would be linked to databases or
literature that describes these materials in detail).

The emergence of Large Language Models (LLMs) or foun-
dation models shows a great promise in tackling these complex
NLP tasks.7,12–15 Huang et al.16 ne-tuned a language model
(BERT) on battery publications to extract device-level informa-
tion from a paragraph that contains one device only. Dunn
et al.7 showed that ne-tuned LLMs using 100–1000 data points
can perform relation extraction as well as template lling,
enabling conversion of the extracted information into user-
dened output formats. Despite these promising results,
these methods require training data, limiting their ease of use
and broad applicability. Moreover, LLM based approaches have
not been explored for more intricate challenges, such as argu-
ment mining and co-reference resolution. These tasks are crit-
ical for practically using NLP for automated database
development. For example, in one article, multiple materials
might be discussed and authors use abbreviations like
“compound 1” or simply “1” in the entire research manuscript
for referencing aer initially dening the chemical compound
in the introduction section. Additionally, description of mate-
rial properties oen comes with various interpretations,
limiting using rigid name entity matching. As implementations
of standalone LLMs fall short in addressing these intricate
tasks, new methods are needed to enable reliable information
extraction. An effective approach is to augment LLMs with
domain-specic toolkits. These specialized tools offer precise
answers, thus addressing the inherent limitations of LLMs in
specic domains, and enhancing their overall performance and
applicability.17–20

In this work, we introduce an autonomous AI agent, Euno-
mia, augmented with chemistry-informed tools, designed to
extract materials science-relevant information from unstruc-
tured text and convert it into structured databases. With an LLM
2608 | Digital Discovery, 2024, 3, 2607–2617
at its core, our AI agent is capable of strategizing and executing
actions by tapping into a wealth of knowledge from academic
publications, domain-specic experts, the Internet, and other
user-dened resources (see Fig. 1). We show that this method
streamlines data extraction, achieving remarkable accuracy and
performance solely with a pre-trained LLM (GPT-4 (ref. 21)),
eliminating the need for ne-tuning. It offers adaptability by
accommodating a variety of information extraction tasks
through natural language text prompts for new output schemas
and reducing the risk of hallucinations through a chain-of-
verication processes. This capability extends beyond what
a standalone LLM can offer. Eunomia simplies the develop-
ment of tailored datasets from the literature for domain experts,
eliminating the need for extensive programming, NLP, or
machine learning expertise.

This manuscript is organized as follows: benchmarking and
evaluating the model performance on three different materials'
NLP tasks with varying level of complexity are represented in
Section 3. This is followed by Section 4, with a discussion on the
implications of our ndings, the advantages and limitations of
our approach, as well as suggested directions for future work.
Finally, in Section 5, we describe our methodology on the
agent's toolkits and evaluation metrics.

2 AI agent

In the realm of articial intelligence, an “agent” is an autono-
mous entity capable of taking action based on its environment.
In this work, we developed a chemist AI agent, Eunomia, to
autonomously extract information from the scientic literature
(Fig. 1). We use an LLM to serve as the brain of our agent.22 The
LLM is equipped with advanced capabilities like planning and
tool use to act beyond just a text generator, and act as
a comprehensive problem solver, enabling effective interactions
with the environment. We use ReAct architecture23 for planning,
enabling both reasoning and action. Our agent can interact with
external sources like knowledge bases or environments to
obtain more information. These knowledge bases are developed
as toolkits (see Methods section for details) allowing the agent
to extract relevant information from research articles, publicly
available datasets, and built-in domain-specic chemical
knowledge, ensuring its prociency in playing the role of an
expert chemist. We use OpenAI's GPT-4 (ref. 21) with a temper-
ature of zero as our LLM and LangChain24 for the application
framework development (note the choice of LLM is only
a hyperparameter and other LLMs can also be used with our
agent). The application of LLMs in developing autonomous
agents is a growing area of research,18,23,25–28 with a detailed
survey available in ref. 29 for further insights.

In addition to the standard search and text manipulation
tools, we have implemented a Chain-of-Verication (CoV) tool
to enhance the robustness of our AI agent against hallucination.
Hallucination in an LLM refers to the generation of content that
strays from factual reality or includes fabricated information.30

In the CoV approach, the agent iteratively assesses its responses
to ensure they remain logically consistent and coherent (see
Methods section 5.1.2 for details). This addition helps
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Agent-based learning framework overview. The AI agent equipped with various tools (online dataset search, document search, etc.) is
tasked to extract information. The example shows the task of identifying all MOFs from a given research article, and predicting their properties
(e.g., water stability) by providing the reasoning for its decision. This reasoning is the exact in-context sentence from the paper, which is
autonomously re-evaluated via the chain-of-verification tool of the agent to ensure its actual logical connection to the water stability property
and reduce likelihood of hallucinations. The agent outputs a customized dataset that can be used to develop supervised or unsupervised
machine learning methods.
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View Article Online
particularly with eliminating mistakenly extracted data related
to semantically similar properties. An illustrative example is the
case of stability of materials, where thermal, mechanical, and
chemical stabilities might be confused by the agent. Fig. 2
illustrates how CoV process works in action: the agent is tasked
to identify MOFs and the corresponding water stability data in
a paper. The agent initially misclassies a thermally stable MOF
as water-stable, but then it corrects this mistake by a compre-
hensive review using the CoV tool. This tool improves the
performance of the agent and ensures robust data extraction.
3 Case studies

We evaluate the performance of our AI agent by benchmarking
it across three different materials' NLP tasks, with increasing
task complexity (Table 1). In our assessment, we evaluate
a broad range of text lengths, including sentences, paragraphs,
and entire manuscripts, along with various NLP tasks outlined
in the Introduction, which form the basis for dening
complexity. The rst case study focuses on assessing the agent's
performance on NLP tasks of lower complexity, specically
named entity recognition and relation extraction. For this, we
use our agent to extract the relationships of host-to-many
dopants from a single sentence. The second case study, with
medium NLP complexity, involves obtaining MOFs' chemical
formula and their corresponding guest species from a para-
graph with multiple sentences. Finally, the third case study
centers on predicting a given property of MOFs based on the
© 2024 The Author(s). Published by the Royal Society of Chemistry
context coming from a materials research paper. The property
of interest in our work is water stability. This case study aims to,
in addition to named entity recognition and relation extraction,
evaluate the co-reference resolution and argument mining
prociency of our AI agent, tailored for chemists, which involves
a high level of NLP complexity. In all case studies, our chemist
AI agent, Eunomia, is a zero-shot learner that is equipped with
the Doc Search tool (see Section 5.1.1). We have also conducted
additional experiments by equipping Eunomia with the chain-
of-verication (CoV) tool, as described in Section 5.1.2. This is
referred to as Eunomia + CoV from here on.

To fairly compare the performance of our agent with the
state-of-the-art ne-tuned LLM methods, the evaluation meth-
odology for the rst two case studies mirrors precisely that of
ref. 7 (see Section 5.2 for details), serving as a benchmark
reference. In the following section, ref. 7 is referred to as LLM-
NERRE, which involves ne-tuning a pre-trained LLM (GPT-3
(ref. 31)) on 100–1000 sets of manually annotated examples,
and then using the model to extract information from
unstructured text.

3.1 Case study 1: relationship of host-to-many dopants
(Easy)

This case study aims to extract structured information about
solid-state impurity doping from a single sentence. The objec-
tive is to identify the two entities “host” and “dopant”. “Host”
refers to the foundational crystal, sample, or category of mate-
rial characterized by essential descriptors in its proximate
Digital Discovery, 2024, 3, 2607–2617 | 2609
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Fig. 2 Iterative Chain of Verification (CoV). The agent is tasked with reading a materials research article and predicting the water stability of any
mentioned MOFs by providing reasoning. In the initial run, the agent confuses water stability with thermal stability and mistakenly predicts the
secondMOF as water-stable. The CoV tool evaluates the agent's decisions in its precious step by validating the reasoning against the pre-defined
water stability criteria and disregards this prediction.
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View Article Online
context, such as “ZnO2 nanoparticles”, “LiNbO3”, or “half-
Heuslers”. “Dopant” means the elements or ions that represent
a minority component, deliberately introduced impurities, or
specic atomic-scale defects or carriers of electric charge like
“hole-doped” or “S vacancies”. A single host can be combined
with multiple dopants, through individual doping or simulta-
neous doping with different species, and one dopant can
associate with various host materials. The text may contain
numerous dopant–host pairings within the same sentence, and
also instances of dopants and hosts that do not interact.
2610 | Digital Discovery, 2024, 3, 2607–2617
Eunomia shows an excellent performance in this task,
demonstrating the effectiveness of our approach in named
entity recognition and relation extraction. Performance
comparison between our chemist AI agent (Eunomia), and LLM-
NERRE can be found in Table 2. In this setting, the same de-
nition of hosts and dopants given above is passed to Eunomia
via the input prompt, while LLM-NERRE is ne-tuned on 413
sentences. The testing set contains 77 sentences. Notably, in
both tasks, Eunomia + CoV exceeds the performance of LLM-
NERRE in terms of the F1 score. This clearly demonstrates the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Overview of the three case studies based on their context from which data are extracted, NLP tasks and complexity

Case study Context NLP tasks Task complexity

(1) Relationship of host-to-many
dopants

Sentence Named entity recognition, relation
extraction

Easy

(2) MOF formula and guest species
relationship

Paragraph Named entity recognition, relation
extraction

Medium

(3) MOF property relationship Research paper Named entity recognition, relation
extraction, template ling,
argument mining, entity linking

Hard

Table 2 Performance comparison between LLM-NERRE, Eunomia, and Eunomia + CoV on hosts and dopants' relation extraction (case study 1).
Eunomia embeddings are generated using OpenAI's text-ada-002. Best scores for each entity are highlighted in bold text

Model Entity Precision (exact match) Recall (exact match) F1 score (exact match)

LLM-NERRE7 Hosts 0.892 0.874 0.883
Eunomia Hosts 0.753 0.768 0.760
Eunomia + CoV Hosts 0.964 0.853 0.905
LLM-NERRE7 Dopants 0.831 0.812 0.821
Eunomia Dopants 0.859 0.788 0.822
Eunomia + CoV Dopants 0.962 0.882 0.920
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View Article Online
effectiveness of our approach compared to ne-tuning, which
can be labor-intensive and error-prone. We instruct Eunomia
not to make up answers, which lead to a more cautious
outcome, wherein uncertain or unclear inputs yield no output.
As an example, in the sentence “An anomalous behavior of the
emission properties of alkali halides doped with heavy impu-
rities, stimulated new efforts for its interpretation, invoking
delicate and sophisticated mechanisms whose interest tran-
scends the considered specic case.”, the ground-truth host
materials is “alkali halides”. However, due to the nature of
exact-word matching metric implemented in ref. 7 a cautious
agent with no predictions for the host entity will be penalized
with two false negatives, one for each word in the ground-truth,
leading to lower recall score.
3.2 Case study 2: MOF formula and guest species
relationship (Medium)

The goal of this case study is to identify MOF formula and guest
species from unstructured text, as a paragraph with multiple
sentences. The MOF formula refers to the chemical formula of
a MOF, which is an important piece of information for charac-
terizing and identifying MOFs. The guest species, on the other
hand, are chemical species that have been incorporated, stored, or
adsorbed in the MOF. These species are of interest because MOFs
are oen used for ion and gas separation, and the presence of
specic guest species can affect the performance of the MOF. We
limit our method to stand-alone Eunomia without CoV due to the
complexity of dening a chemistry-informed CoV verication tool
for this specic task. It should be noted that ref. 7 also included
results on the identication of synthesis descriptions and appli-
cations pertaining to MOFs. However, as the metric of exact-word
matching reported in ref. 7 does not fairly and adequately reect
© 2024 The Author(s). Published by the Royal Society of Chemistry
the model performance for the multi-word (>2 words) nature of
these outputs, we have limited our benchmarking to the MOF
formula and guest species identication only.

Table 3 shows the performance comparison between Euno-
mia and LLM-NERRE on the MOF formula and guest species
relationship extraction task. While Eunomia shows a superior
performance on the MOF formula compared to LLM-NERRE,
the relatively low performance of both approaches is related
to the nature of the exact word matching. Using semantic
similarity would be amore appropriate indicator in this context.
On the guest species entity, while Eunomia shows a high recall
(0.923), precision is relatively poor (0.429). This can be attrib-
uted to how the exact-word matching metrics have been dened
in ref. 7, where precision is majorly lowered by the presence of
the extra unmatched predicted words (false positives), while
recall remains high because all ground truth items were found
in the predicted words.
3.3 Case study 3: MOF property relationship (Hard)

This case study aims to mimic a practical scenario of developing
datasets from the scientic literature, where we evaluate the
agent's performance on extracting MOF's water stability. To
excel in this goal, the agent must identify all MOFs mentioned
within the research paper, evaluate their water stability, and
support these evaluations using exact sentences derived from
the document. Such tasks are inherently linked to the NLP
functions of named entity recognition, co-reference resolution,
relation extraction, and argument mining. This is particularly
a challenging task as researchers report the water stability in
various ways, using phrases ranging from “the material remains
crystalline in humid conditions” to “the MOF is stable in wide
range of pH”, or “the material is not soluble in water”.
Digital Discovery, 2024, 3, 2607–2617 | 2611
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Table 3 Performance comparison between LLM-NERRE and Eunomia on MOF formula and guest species relation extraction (case study 2).
Eunomia embeddings are generated using OpenAI text-ada-002. Best scores for each entity are highlighted in bold text

Model Entity Precision (exact match) Recall (exact match) F1 score (exact match)

LLM-NERRE7 MOF formula 0.409 0.455 0.424
Eunomia MOF formula 0.623 0.589 0.606
LLM-NERRE7 Guest species 0.588 0.665 0.606
Eunomia Guest species 0.429 0.923 0.585
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For this case study, we created a hand-labeled dataset based
on a selection of 101 materials research papers, which contain
a selection of 371 MOFs. Three expert chemists manually read
through and review each paper, pinpointing the MOFs refer-
enced within. In the 3-way redundancy for data labeling, we
carefully considered all three perspectives and insights, and
nalized the dataset by averaging the outcomes. A portion of
these articles are selected considering the original work by
Burtch et al.,32 where they developed a dataset of MOF names
and their water stability by manually reading 111 research
articles. To mimic the practical data extraction scenario, in
which the agent is passed many articles, many of which do not
contain the desired information, we included articles with no
information about water stability. Each MOF in our set is
assigned to one of the three classes of “Stable”, “Unstable”, and
“Not provided”. Fig. 3a presents the distribution of the classes
within this dataset.

For this case study, we have established criteria to charac-
terize water-stable MOFs, drawing from the study by Burtch
Fig. 3 Performance of the AI agent in information retrieval. (a) Class dist
371 MOFs based on 101 research articles. (b) Confusion matrix for terna
text-ada-002 embeddings. It is apparent that our agent exercises cau
predictions, when matched against their actual ground-truth categori
instances where making an accurate prediction is not feasible, rather tha
The ternary accuracy is found to be 0.91 with a yield of 86.20%.

2612 | Digital Discovery, 2024, 3, 2607–2617
et al.32 and our own chemical intuition. A water-stable MOF
should meet the following criteria:

� No alteration in properties aer being subjected to mois-
ture or steam, or when soaked or boiled in water or an aqueous
solution.

� Preservation of its porous architecture in liquid (water)
environments.

� Sustained crystallinity without loss of structural integrity in
aqueous environments.

� Insoluble in water or aqueous solutions.
� Exhibiting a pronounced rise in its water adsorption

isotherm.
These water stability guidelines are dened as rules to

Eunomia within the input prompt, as well as in its equipped
CoV tool.

Eunomia with CoV tool retrieves most (yield of 86.20%) of
the reported MOFs and shows an excellent performance (accu-
racy of 0.91) in inferring their water stability. This high yield
and accuracy demonstrates the capability of our approach in
ribution for water stability in the hand-labeled ground-truth dataset of
ry classification of water stability property with CoV tool using OpenAI
tion in its judgments. In particular, the abundance of “Not provided”
es, suggests that the agent prefers to concede some uncertainty in
n incorrectly assigning samples to the “Stable” or “Unstable” categories.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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extracting desired knowledge from the natural text. As expected,
in the absence of CoV, there is a marginal decrease in accuracy
to 0.86, along with a yield reduction to 82.70%. Note that with
the CoV in place, and upon further review of the paper for better
reasoning sentences, the agent tends to discover additional
MOFs that were initially missed during the rst retrieval
attempt. Thus, this leads to an increased yield compared to
running the model without CoV. Taking into account the
confusion matrix in Fig. 3b, it is evident that our agent adopts
a cautious approach in its predictions. This is reected in the
substantial number of “Not provided” predictions which, upon
comparison with the actual ground-truth class, indicates
a propensity of the agent to acknowledge the insufficiency of
information for making a denitive prediction, rather than
mistakenly categorizing samples into the incorrect “Stable” or
“Unstable” classes, and contaminating the agent's resulting
dataset with unwanted noise.

It is interesting to leverage our AI agent to extract informa-
tion that goes beyond mere categorical and numerical labels.
One practical case is to retrieve design guidelines for enhancing
the properties of materials from research papers. To demon-
strate this, we tasked Eunomia to extract material design rules
for developing more water-stable MOFs using information from
a research paper.33 By inputting domain-specic knowledge in
natural language, the AI agent planned and executed actions,
and provided a summary of the information contained in the
scientic paper (see Fig. 4). This example showcases Eunomia's
capability in various information retrieval tasks, which are
Fig. 4 Extracting guidelines for designing materials with desired prope
identify design guidelines for water-stable MOFs by obtaining context f
water-stability is also provided to the agent as natural language input w
research paper, Eunomia suggests incorporating ethyl ester groups and
protection against water-induced degradation.

© 2024 The Author(s). Published by the Royal Society of Chemistry
inaccessible using other NLP methods. We envision that this
approach can ease data retrieval from lengthy texts, enabling
researchers to access and process information more efficiently.

4 Discussion

We presented a high performing and robust method for
extracting domain specic information from complex,
unstructured text – ranging from sentences and paragraphs to
extensive research articles – using AI agents. Scientists and
researchers can use our open-source application to effortlessly
develop tailored datasets for their specic areas and use them
for downstream predictive tasks. It is important to note that
given the zero-shot learning setting of our approach, the
model's performance heavily relies on the quality of the input
query. For complex problems involving iterative reasoning
tasks, it is oen crucial to generate explicit chain-of-thought
(CoT) steps to achieve high accuracy in the nal outputs.
Therefore, the input query should include detailed, compre-
hensive step-by-step instructions.

Our method shows close to perfect performance on the
benchmarks we developed. Given that LLMs are continually
improving, we believe that the reported performance represents
the minimum expected from this workow. As the performance
of the model is already quite high (almost saturates the
benchmarks), experimenting with newer models could poten-
tially yield slightly better results. However, we note that at the
current stage of open-source LLMs, the limited context window
rties. The AI agent is tasked to play the role of an expert chemist and
rom a research paper.33 Additional chemistry-informed knowledge on
ithin the query. Utilizing this knowledge along with insights from the
phosphonate ester linkers, and adding organic tethers for enhanced

Digital Discovery, 2024, 3, 2607–2617 | 2613
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size restricts the use of detailed queries. Furthermore, agents
powered by open-source LLMs oen struggle with task planning
and following a given set of instructions accurately. With the
recent efforts on training LLMs to internalize these CoT
steps,34,35 we expect that our approach will be even more feasible
with open-source LLMs. While currently the cost of querying
large datasets may become expensive, we expect the rapid
advancements in LLMs will also diminish this cost.

Unlike other methods that follow a pipeline-based or end-to-
end approach, our agent-based method could appeal to domain
experts due to its minimal demand for programming skills, NLP
and machine learning knowledge. Users are not required to
rigidly dene an output schema or engage in the meticulous
task of creating manual annotations for the purpose of ne-
tuning. Rather, they can simply prompt the agent with more
context and describe how their desired output should be
formatted in natural language. Moreover, the agent can easily
be extended and equipped with other tools (e.g., Dataset Search,
CSV Generator, etc.) to be adapted to other problems. For
example, we showed that, by equipping the agent with the
chain-of-verication tool (CoV), we canminimize hallucinations
and improve the agent's performance. Similarly, by including
reasoning tools, we can ask the agent to explain its reasoning
based on the provided context to develop more transparent
workows for the LLM-based methods, and reduce their known
“black-box” nature. This, simultaneously, offers a great oppor-
tunity for human-in-the-loop oversight, especially for tasks of
critical importance.

Our results reveal an important observation: while large
language models are few-shot learners,31 AI agents with appro-
priate tools and instructions are capable of being zero-shot
learners. This brings an excellent opportunity to boost the
performance of standalone LLMs across various domain-
specic tasks without having to go through labor-intensive
ne-tuning processes. A future thorough and systematic anal-
ysis of prompt sensitivity can provide valuable insights into this
observation.

5 Methods
5.1 Agent toolkits

5.1.1 Doc search. This tool allows for extracting relevant
knowledge in the properties of materials from the text, ranging
from a single sentence and paragraph to a scientic research
paper. The research papers are obtained from various chemistry
journals including Royal Society of Chemistry (RSC), American
Chemical Society (ACS), Elsevier, Inorganic Chemistry, Struc-
tural Chemistry, Coordination Chemistry, Wiley, and Crystal-
lographic Communications as a PDF or in XML format (the XML
les are obtained through a legal agreement between University
of Toronto and ACS). Inspired by the paper-qa Python package
(https://github.com/whitead/paper-qa), this tool aims at
obtaining the most relevant context (sentences) from the
papers to a given input query. This involves embedding the
paper and queries into numerical vectors and identifying top
k passages within the document that either mention or can
somehow imply the property of interest for a MOF. k is set to
2614 | Digital Discovery, 2024, 3, 2607–2617
9 in our case studies, and is dynamically adjusted depending
on the length of the paper to avoid OpenAI's token limitation
error. We use OpenAI's text-ada-002 embeddings36 to repre-
sent texts as high dimensional vectors, which are stored as
a vector database using FAISS.37 Note that the choice of
embedding is another hyperparameter that can be changed in
future studies. For benchmarking purposes, we have also con-
ducted all case studies with the newly released Cohere embed-
english-v3.0 embeddings (see the ESI†).

The semantic similarity search is ranked using Maximum
Marginal Relevance (MMR)38 based on cosine similarity, dened
as

MMR ¼ arg max
di˛R\S

�
l� cosðdi; qÞ � ð1� lÞ �max

dj˛S
cos

�
di; dj

��

(1)

where di is a document from the set of retrieved documents R, S
is the set of already selected documents, q is the query. l is
a parameter between 0 and 1 that balances the trade-off
between relevance (to the query) and diversity (or novelty with
respect to already selected documents). In this work, we use the
default value of 0.5. The idea behindMMR is to retrieve or select
documents that are not just relevant to the query (or topic of
interest), but are also diverse among themselves, thus mini-
mizing redundancy. In this setting, in-context learning refers to
the model's ability to use the examples provided within the
prompt to inform its decision-making and reasoning, allowing
it to generalize and adapt without further explicit training. This
ensures that the agent draws conclusions based on the patterns
and reasoning outlined in the given context, reinforcing more
reliable outputs and minimizing errors like hallucinations.

It is important to note that in some unsuccessful experi-
ments, we observed that the AI agent repeatedly referred back to
the document, even aer pinpointing the correct answer.
Although this minor issue remained unresolved, we introduced
an iteration limit for the agent to avoid unnecessary model
running costs.

5.1.2 Chain-of-verication. Inspired by the Chain-of-
Verication (CoV)39 methodology, this tool entails the
following steps: initially, the agent provides a preliminary reply,
which is followed by iterative verication queries to authenti-
cate the initial dra. The agent independently responds to these
queries to ensure the answers remain impartial and unaffected
by other responses, and nally it produces its conclusive, veri-
ed response. Our implementation of CoV stands apart from
the method described in ref. 39, specically in how the veri-
cation queries are generated. While in the ref. 39's approach,
the LLM produces task-specic queries, our method allows for
user customization. This adaptability not only enables broader,
more tailored domain-specic fact-checking across various
tasks, but also opens up opportunities for human-in-the-loop
verication, enhancing the accuracy and relevance of the
results. This tool substantially boosts agent efficacy and miti-
gates the likelihood of hallucinations, especially in the events of
completing complex tasks (see Fig. 2 for more details). It is
worth noting that, for unknown reasons, the agent occasionally
© 2024 The Author(s). Published by the Royal Society of Chemistry
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skipped using the CoV tool in certain instances. Unlike LLM
hallucinations, where the model can still generate incorrect
outputs, errors in an agent's logical reasoning can prevent it
from interacting properly with external systems. Given that
external tools and functions are more rigid and operate under
stricter constraints, any disruption in logical processes can
prevent the agent from accessing the necessary information to
complete its tasks.40 In our case, describing detailed instruc-
tions of the task was found to be effective in reducing the
chances of this situation. In our case, providing detailed
instructions for the task proved effective in minimizing the
likelihood of this issue occurring (see Used prompts section in
the ESI†).

5.1.3 Dataset search. This tool allows for obtaining the
chemical structure of MOFs from publicly available datasets,
including the Materials Projects,41 Crystallography Open Data-
base (COD),42–49 Cambridge Structural Database (CSD),50 and
QMOF.51,52 This tool uses web scraping techniques to extract
crystallographic information les (CIFs) for structures such as
metal–organic frameworks (MOFs) based on their Digital Object
Identier (DOI), simplifying the process of accessing the
mentioned large datasets of crystal structures. This allows
researchers to retrieve high-quality, standardized structural
data directly from online repositories without manual
downloading.

5.1.4 CSV Generator. This tool stores the output of the
agent into a CSV or JSON le.
5.2 Evaluation metrics

Multiple metrics have been dened to assess the agent's
performance across different case studies. Precision, recall and
F1 score are dened as

Precision ¼ TP

TPþ FP
; (2)

Recall ¼ TP

TPþ FN
; (3)

F1 score ¼ 2� precision� recall

precisionþ recall
; (4)

where TP represents true positives, FP stands for false positives,
and FN denotes false negatives. Precision measures the accu-
racy of the positive predictions, recall measures the fraction of
actual positives that were correctly identied, and the F1 score is
the harmonic mean of precision and recall. Binary classication
accuracy is dened as

Binary accuracy ¼ TPþ TN

N
; (5)

In case studies 1 and 2 (Sections 3.1 and 3.2), the evaluation
metrics used are precisely those dened in the work of ref. 7. In
particular, they assessed named entity relationships on a word-
to-word matching basis by initially decomposing an entity E
into a collection of k words separated by whitespace, denoted as
E = {w1, w2, w3, ., wk}. For evaluating entities in named entity
© 2024 The Author(s). Published by the Royal Society of Chemistry
recognition exclusively, they enumerated the words that are
identical in both the true entity set Etrue and the test entity set
Etest as true positives (Etrue X Etest), and the distinct elements in
each set as false positives (Etest\Etrue) or false negatives (Etrue\-
Etest). For instance, if the true entity is “Bi2Te3 thin lm” and the
predicted entity is “Bi2Te3 lm sample”, they noted two true
positive matches (“Bi2Te3”, “lm”), one false negative (“thin”),
and one false positive (“sample”). An exceptional case arises for
formula-type entities critical to material identication, whereby
Etest must encompass all wi interpreted as stoichiometries to
consider any wi ˛ Etest as correct. For example, with “Bi2Te3 thin
lm” as Etrue and “thin lm” as Etest, three false negatives would
be registered. For more details on the scoring metrics and the
case studies, readers are encouraged to refer to ref. 7.

For our last case study in Section 3.3 (predicting the water
stability of MOFs), the ternary accuracy is dened as

Ternary accuracy ¼ TPS þ TPU þ TPNP

N
; (6)

where N shows the total number of predictions and S, U, and NP
denote the three classes “Stable”, “Unstable”, and “Not
provided”, respectively. TPi shows then the number of instances
correctly predicted as class i. Additionally, we evaluate the
information recovery capabilities of the agent by dening
yield as

Yield ¼ N

NGT

; (7)

where NGT is the ground-truth number of MOFs mentioned in
the research papers, regardless of whether the paper discusses
water stability or not. Due to the diverse nomenclature used for
MOFs, such as IUPAC names, chemical formulae, or specic
MOF names, we consider all variations of a MOF name as
equivalent. This approach ensures that different references to
the same MOF within a paper do not negatively impact the yield
metric, recognizing the variability in naming conventions and
the LLM's potential to output only one variation per instance.
Data availability

All data (including the dataset used for case study 3) and code
used to produce results in this study, and examples on how to
use our approach, are publicly available in the following GitHub
repository: https://github.com/AI4ChemS/Eunomia. The
methodology in this work is also developed as an open-source
application on https://eunomia.streamlit.app.
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