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Large Language Models (LLMs) have revolutionized numerous industries as well as accelerated scientific

research. However, their application in planning and conducting experimental science, has been limited.

In this study, we introduce an adaptable prompt-set with GPT-4, converting literature experimental

procedures into actionable experimental steps for a Mettler Toledo EasyMax automated laboratory

reactor. Through prompt engineering, we developed a 2-step sequential prompt: the first prompt

converts literature synthesis procedures into step-by-step instructions for reaction planning; the second

prompt generates an XML script to communicate these instructions to the EasyMax reactor, automating

experimental design and execution. We successfully automated the reproduction of three distinct

literature-based synthetic procedures and validated the reactions by monitoring and characterizing the

products. This approach bridges the gap between text-to-procedure transcription and automated

execution, and streamlines literature procedure reproduction.
Introduction

Self-Driving Labs (SDLs) integrate robotic automation with
machine learning (ML) to explore chemical space. SDLs accel-
erate research and discovery across various disciplines,
including organic synthesis,1–3 materials chemistry,4–6 photo-7,8

and electrochemistry.9–11 Automation liberates human
researchers from time-consuming and repetitive tasks, while
closed-loop optimization algorithms and/or computer vision
further reduce the need for human oversight.7,12–14 However, the
broader adoption of SDLs remains challenging because the
required expertise in engineering and programming are beyond
the scope of many chemistry laboratories. For example,
programming an established automation system to execute
a single, well-known chemical reaction can be a laborious
exercise.14,15 Additionally, SDLs still require signicant human
involvement, skill, and time in the design of experiments and in
mapping simple chemical actions to complex robot move-
ments.16 The lack of standardization also poses a barrier in
adaptability and transferability of SDLs development.
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Recognizant of this, the Cronin group introduced ,17

a tool that transforms common procedures written in natural
language to a domain-specic chemical descriptive language
(cDL).18,19 This approach generalized the vast majority of
chemistry related tasks, with the goal of facilitating standardi-
zation and transfer of chemical procedures for SDLs. This
translation used a Natural Language Processing (NLP) algo-
rithm, called SynthReader, to link text to their action entities
and extract action details using pattern recognition. To support
standardization, cDL is hardware-agnostic, and depends on
SDLs to have a layer that expands the high-level cDL actions to
basic hardware instructions or map these actions to program-
ming functions. For example, cDL has enabled the successful
transfer of synthetic protocols between different hardware
platforms in different countries, and applied to the discovery of
organic solid-state laser gain materials.20,21

IBM's RXN for Chemistry (RXN) is a cloud-based SDL plat-
form, supporting remote execution of a designed procedure on
the automation lab.22 The platform also supports text-to-RXN
procedure, a translation tool using the transformer model
that promotes user-friendly experimental design and reaction
planning.23 Despite the executable commands varying from
ChemIDE/cDL in task names and arguments, both platforms
support transcription of natural language to their executable
languages, demonstrating that experimental design through
natural language is more intuitive and enabling better trans-
ferability between SDLs.

Articial Intelligence (AI) and Large Language Models
(LLMs) have attracted signicant public attention since the
Digital Discovery, 2024, 3, 2367–2376 | 2367
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Fig. 1 Workflow of calculation, transcription and execution of a literature procedure on off-the-shelf synthesis workstation; and a comparison of
this work with conventional tools or open-source software.
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release of chat Generative Pre-trained Transformer (GPT) 3.5
from OpenAI.24 LLMs, trained on extensive datasets, provide
comprehensive text responses to user requests upon various
tasks. In chemistry particularly, LLMs have shown promise in
reaction and molecular structure prediction owing to their
expansive knowledge bases and complex pattern recognition
capabilities.25–27 Embedding a chemistry-specic knowledge
base into LLMs can noticeably improve the general perfor-
mance in chemistry-specic queries.28–30 For example,
is a LLM chemistry agent used to predict organic molecule
structures with desirable properties and assist with the plan-
ning and execution of their synthesis.29

While LLMs can assist with interpreting experimental data
and providing theoretical insights, they are traditionally inca-
pable of conducting physical laboratory tasks, such as mixing
reagents or operating lab equipment. This limitation can be
overcome with their ability to assist in this text-to-procedure
transcription with comprehensive understanding. For
example, a comparable accuracy to transformer models can be
achieved using GPT-3.5 with few-shot learning, by including
several ground-truth instances in the prompt.31,32 Yoshikawa
et al. proposed , which generates cDL code from
descriptive instructions using zero-shot GPT coupled with
a verier that iteratively prompts error messages in the chat.33

This LLM-based planning tool was later implemented to
, an AI voice assistant system on an electrochemistry-

specialized SDL conguration, allowing interaction with the
SDL in natural language.11 Additionally, Coscientist, a multi-
LLM intelligent agent (GPT-4), used function calling with an
embedded function pool. The system selects the most appro-
priate function according to the prompt to generate scripts in
Emerald Cloud Lab (ECL) Symbolic Lab Language (SLL) and
Opentrons Python application programming interface (API).34

Nonetheless, the implementation of LLMs in SDLs remains
inaccessible for most chemists due to the lack of available and
readily useable prompt methodologies for experimental design,
and/or the labor-intensive development involved in using open-
source LLM models. Platforms like and , while
2368 | Digital Discovery, 2024, 3, 2367–2376
available for text-to-procedure translation, require specic SDL
congurations to execute the generated code locally due to their
hardware-agnostic nature. Moreover, some general procedures
oen lack exact mass or volume quantities, limiting the efficacy
of current machine-readable transcription techniques or
services. Indeed, this is also a laborious and time-consuming
practice for human researchers.

Recognizing these current limitations in text-to-procedure
transcription and challenges in local SDLs execution, we aim
to create an easy-to-use LLM prompt set for literature-to-
procedure execution on an off-the-shelf automated laboratory
reactor (ALR; Fig. 1). We selected the Mettler Toledo (MT)
EasyMax because its soware provides a user-friendly experi-
mental design interface (iControl) and automatic design import
from Extensible Markup Language (XML) (iC Data Center). We
used ChatGPT-4 web-version to facilitate a no-code chemical
protocol-to-procedure transcription, making it easy to be
adopted by chemists with no coding expertise. We demon-
strated the capability of this approach with three synthetic
methods from the literature: (1) a detailed nucleophilic
aromatic substitution reaction (SNAr) protocol; (2) a general
hydrazine synthesis procedure and (3) an autonomous Curtius
rearrangement monitoring protocol, showcasing different use
case scenarios. Our two-prompt approach rst transforms the
literature protocol into a detailed stepwise procedure and
subsequently to machine-executable XML scripts that commu-
nicated with MT EasyMax reactor. We further examined the
generation robustness in length limits and accuracy as well as
the code generation transferability in Python-based SDLs.
Methods
Selection of LLM

We chose GPT-4 over other generative AI platforms or other
open-source models due to public accessibility, calculation
accuracy, task-driven performance and token limit. First,
OpenAI's ChatGPT family is one of the most accessible gener-
ative AI systems. The interaction with a GPT model through
© 2024 The Author(s). Published by the Royal Society of Chemistry
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a web User Interface (UI) has no installation or hardware
requirements (unlike options that require an API). GPT-4 also
exhibits superior performance in chemistry-related tasks,
including its enhanced accuracy in reaction prediction and
structure elucidation.25 Furthermore, GPT-4's web browsing
capability and integrated Python code interpreter35 enabled us
to leverage its analytical capabilities for chemical phase lookup
and advanced calculation tasks. Previous GPT models like GPT-
3.5-turbo or out-of-the-box open-source models might result
incorrect or missing output when there is a need of information
lookup.
Prompt engineering

We developed a two-step sequential prompt to convert literature
text into a machine-readable format using ChatGPT-4. The rst
prompt transformed general experimental procedures/
protocols from the literature to detailed, structured, and step-
by-step procedures. The second prompt transcribed the
output from the rst prompt to machine readable tailored XML
scripts that can communicate with iControl. This sequential
prompt approach also allows for the integration of additional
prompts in either step for potential correction in molecular
weight lookup and syntax error xing.
Fig. 2 Abstracted prompts and GPT-4 outputs for generating iControl
XML scripts from literature.

© 2024 The Author(s). Published by the Royal Society of Chemistry
The rst prompt in Fig. 2 (“prompt 1 – input” box) focused on
breaking the translation task into three subtasks, called
“instructions” in the prompt. This was inspired by how human
researchers replicate a literature procedure, specically con-
textualization, calculation and step organization as the “prelab”
exercises. The rst instruction requires the LLM to retrieve
information to comprehensively understand the reaction before
performing calculations. The second instruction specically asks
to nd the reagent phase and calculate the actual addition mass
or volume, signicantly improving the mathematical accuracy of
the chemical amounts in the stepwise procedure. Lastly, the third
subtask is to rewrite the protocol to a step-by-step procedure with
detailed chemical quantities, breaking down an unstructured
procedure into modular and explicit steps. This prompt is cus-
tomizable and can be adjusted to provide additional details, such
as scale adjustments, chemical properties like liquid densities, or
vendor information for reagents. An example of requesting
a density search and formatting results in a markdown table can
be found in ESI S3.2.†

The focus of the second prompt (Fig. 2 “prompt 2 – input”
box) is to teach GPT-4 the EasyMax domain-specic XML
structure. Although XML format in general can be familiar to
LLMs, this iControl tailored structure and hierarchy are unseen
to GPT-4. A minimal experimental design over iControl can be
divided into two elements: an operation sequence

and a chemicals list
. The XML template includes the schema and

contains necessary operations (heat, stir, add, dose, wait and
end) organized in the container. It
also includes sample entries for solid and liquid chemicals in
the element, showcasing the iControl domain-
specic XML's structure and hierarchy. The instructions in this
prompt aim to map the operation names to the experimental
operations, especially to differentiate solvent dosing from other
reagent additions (solid or liquid) as the operation name may
not be self-explanatory. The instruction also requests the
generation of a 128 bit Universally Unique IDentier (UUID) for
every operation to replace the placeholder in the
XML template. This step is important for iControl experiments,
as it ensures each chemical or operation is distinctly identi-
able and traceable during execution. For example, the add
operation identies the chemical to be added from the chemical
list by referencing its . Lastly, the instruction
indicates that all chemicals used in the experiment should be
dened in to ensure correct reference in
reagent addition operations. Detailed prompts used can be
found in ESI Table S2.†
ALR conguration

Our experimental setup incorporated a Mettler Toledo EasyMax
102 synthesis workstation, equipped with an overhead stirrer
and a SP-50 dosing unit for liquid handling. We opted for this
commercialized ALR over custom or prototype SDL modules for
its reliability, availability, and well-maintained user-friendly
soware families. We utilized the MT AutoChem soware
iControl 6.2 complemented by the iC Data Center 6.2 with
Digital Discovery, 2024, 3, 2367–2376 | 2369
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Fig. 3 Literature procedure of SNAr aminolysis, stepwise procedure and iControl operations generated by GPT-4.
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Electronic Laboratory Notebook (ELN)-enabled capacity
(detailed setup in ESI Section S4.2†) to allow experiment design
and automatic XML import from a designated folder. Once the
LLM-generated XML le was moved to the folder, it should
appear to the iControl ELN session if there was no syntax error
(ESI Fig. S13†). The experimental design interface in iControl
can help visualize scripted operations, allowing easy ne-
tuning. In case of any syntax error, the iC Data Center would
create an error message le in the same folder that can be used
to prompt the LLM for correction in the same dialogue (ESI
Fig. S6†). This error correction approach is similar that of

, enabling GPT to correct the syntax error by
understanding the error message.33

Execution and monitoring

The imported iControl experiment was then started without any
modications. Reagent addition operations were completed
according to the pop-up window manually. Three reactions
taken from literature were monitored using online high-
performance liquid chromatography (HPLC) previously
demonstrated with high reproducibility.3,36 The products were
then characterized using nuclear magnetic resonance (NMR)
spectroscopy. Detailed experiment and monitoring information
are in ESI S1.†
2370 | Digital Discovery, 2024, 3, 2367–2376
Results and discussion
Case study 1: SNAr aminolysis

The transcription capabilities of GPT-4 was rstly evaluated
with a SNAr reaction that was also done on a EasyMax 102
synthesis workstation.37 In this case, the literature protocol
provided stir rate, temperature ramping detail and the mass
and/or volume of the necessary reagent to carry out the reaction.
We purposely let GPT-4 carry out the calculations using the
standard prompt (ESI Table S2†), which matched the informa-
tion from the literature. Following the output of the detailed
stepwise procedure, each step is successfully mapped to iCon-
trol operations according to the given rules, see Fig. 3. The
reaction was executed without modication and was monitored
with online-HPLC (Fig. 4). We then conrmed the identity of 1-
methyl-4-(4-nitrophenyl)piperazine via 1H NMR spectroscopy
(ESI Fig. S14†). The complete prompt and response generated
by GPT-4 are in ESI Table S3.†
Case study 2: hydrazone synthesis

Although the detailed experimental protocol with exact reagent
amounts is sometimes required by the journals, which ease the
preparation and calculation in reproducing the method, this is
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Online HPLC monitoring of 1-methylpiperazine and 1-methyl-
4-(4-nitrophenyl)piperazine.
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not invariably the case, especially in general procedure.
Conventional tools, such as and , are not
capable of performing calculations of masses from mole or
equivalence. The synthesis of hydrazone is a simple and
straightforward reaction that we used to demonstrate the use
case of performing calculation using GPT-4. In the general
procedure of hydrazone synthesis,38 the amount of aldehyde is
given in moles and equivalent to accommodate the various
aldehyde species. Using 4-uorobenzaldehyde as a test case,
GPT-4 successfully outputted the correct molecular weight and
calculated the correct mass of 4-uorobenzaldehyde, see Fig. 5.
Note that the identied step 3 involves both temperature and
stirring information as these two steps are described in one
Fig. 5 Detailed textual procedure of synthesis of hydrazone and stepwi

© 2024 The Author(s). Published by the Royal Society of Chemistry
sentence with no additional ramping instruction, like case
study 1. Despite the identied single-step action, the output
from second prompt successfully converted this step to

and operations. The complete response
generated by GPT-4 and the experiment design XML are in ESI
Table S4.†

Following creation of the iControl protocol, the reaction was
executed and monitored using online-HPLC and by plotting the
peak areas of 4-uorobenzaldehyde and (4-uorobenzylidene)
hydrazine over time (Fig. 6). The addition of the hydrazine
hydrate was delayed to determine the pre-reaction composition
of the benzaldehyde solution. A signicant (4-uo-
robenzylidene)hydrazine formation is presented at the rst
sampling point aer the addition of hydrazine hydrate at 17
minutes. Formation of the intended product, (4-uo-
robenzylidene)hydrazine, was also conrmed by 1H NMR
spectroscopy. Acetal (1-dimethoxymethyl)-4-uorobenzene is
also present as an expected by-product (ESI Fig. S15†).

Case study 3: Curtius rearrangement

In this example of autonomous monitoring of Curtius rear-
rangement using NMR spectroscopy,39 the experimental
protocol includes detailed documentation of monitoring tech-
niques. Notably, the timing of reagent addition was determined
by referencing the number of spectra collected. The complexity
of the sampling technique may pose a barrier to proof-of-
concept experimentations without autonomous monitoring
tools. However, by prompting for calculation of actual reagent
addition time using the sampling time interval, GPT-4 can
comprehensively interpret the protocol and effectively generate
a stepwise procedure as well as an iControl XML script with
estimated reaction time (Fig. 7). The iControl design was
executed, and the reaction was monitored with online-HPLC
(Fig. 8, zoomed initial 7 hours data in ESI Fig. S2†). Note that
se procedure and iControl operations generated by GPT-4.

Digital Discovery, 2024, 3, 2367–2376 | 2371
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Fig. 6 Online HPLC monitoring of product formation with hydrazine
hydrate addition at 17 min.
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the time course data had separate signals for 4-uorobenzoyl
azide formation that was not reected in 19F NMR in the liter-
ature.39 The addition of hexauoroisopropanol was delayed to
31 hours aer an observed plateau of nitrene consumption. The
carbamate formation aer Curtius rearrangement was not
observed with online-HPLC, but was characterized by 19F NMR
spectroscopy with sampling before and aer the addition of
hexauoroisopropanol (HFIPA) (ESI Fig. S16†). The complete
prompt and response generated by GPT-4 are in ESI Table S5.†
Fig. 7 Literature procedure of Curtius rearrangement, stepwise procedu

2372 | Digital Discovery, 2024, 3, 2367–2376
Robustness evaluation

The generation length limit were evaluated using the recently
published metal-free C–N cross-coupling procedure.40 This
method, including 9 reagent additions, 4 temperature changes
and 3 reaction time settings, leading to a total of 18 iControl
operations (including stir and end operations). Depending on
the operation type, the token usage of one additional operation
is 100 to 240.41 All solid reagents in this procedure were given in
moles or equivalence, which may increase token usage during
calculation steps in the rst output. Assuming no additional
prompt was used other than the base example, the resulting
XML with the structured prompt would result in an estimated
usage of 5140 tokens, which is beyond the ∼4000 limits in
recent GPT models. This means that lengthy protocols need to
be broken down into smaller portions, which could impact
reliability of the translation. In 10 conversations during late
April to June, 2024, we observed a higher occasion of multiple
missing steps or unnished scripting. For cases where opera-
tions or chemical elements are missing, the x rate is promising
when prompting for full procedure or full chemical list (ESI
Table S11†). Due to the token limit, the maximum length of
procedure is ideally within ∼120 words or 15 steps.

The occurrence of syntax error is generally low because of the
provided XML template, and they are oen resolved effectively
with the systematic error messages from iC Data Center.
However, exceptions occur with missing element-ending tag (‘>’)
(example in ESI Fig. S8†). In these instances, manual correction
in text/code editor is more effective because this issue pertains
more to text markup formatting than to scripting performance.
re and iControl operations generated by GPT-4.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Online HPLC monitoring of 4-fluorophenyl isocyanate
formation with DPPA addition at 42.5 min, and heat at 169.5 min.

Fig. 9 Example prompt 2 and GPT-4 output using Python SDL
template.
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Using the same experimental protocol, the density lookup
ability of GPT-4 shows 100% accuracy in 5 conversations that
specically requested density lookups. Although GPT-4 was
demonstrated to have great understand of chemical informa-
tion including molecular weight,27 the lookup results in prompt
1 cannot output the correct molecular weight for 5,6-
dichloropyrazine-2,3-dicarbonitrile in all 10 conversations,
resulting the incorrect mass output even though using the
correct equation (ESI Table S12†). This error may stem from
incorrect formula identication and a lack of chemistry
knowledge, as GPT-4 did not activate web browsing feature,
possibly related to recent cases of web searching reluctancy.42

However, this can be xed by prompting “search the molecular
weight” and/or providing the chemical formula to leverage
general chemistry knowledge. Additionally, an external chem-
ical database embedding can also enhance the lookup accuracy.

Aside from the molecular weight discrepancy, GPT-4 accu-
rately converted chemical amounts from mole to mass in all 10
conversations (ESI Table S12†). Importantly, the code inter-
preter feature was not activated in any of those instances,
highlighting that these calculations were performed based on
the model's capabilities. Recent evaluations have demonstrated
GPT-4's near human-level accuracy in more complex calculus
problems, suggesting that its performance in basic chemical
mass calculations should be reliably accurate.43,44 The generated
iControl operations remains consistent across conversations,
ensuring correct sequence of steps and parameters despite
variations in unit and decimal places (ESI Table S13†).
Scalability and transferability

The EasyMax domain-specic XML schema adheres to the S88
format, a standardization of the control philosophy in hardware
control. While hierarchy and operation parameters may vary
between manufacturers, the fundamental philosophy remains
consistent, aligning with the S88 baseline. Therefore, this
© 2024 The Author(s). Published by the Royal Society of Chemistry
prompt engineering approach should be transferable as long as
the prompt can map experimental actions (e.g., heating, stir-
ring, dosing) to operation names. Beyond the XML format, this
approach should support scripting experimental procedures in
any general-purpose programming languages. With more
familiarity to the language and its function calling ability,45 the
LLM can script series of functions to effectively plan and execute
sequential tasks.

As a proof of concept, we demonstrate the translation of
hydrazone synthesis (case study 2) on Python-based SDLs.46,47

Methods such as heating, stirring and dosing were tailored to
resemble the conguration of an ALR setup, with manual
addition of reagents other than solvents. The second prompt
was adapted using the Python method denitions with updated
mapping instructions (Fig. 9). The resulting Python script
accurately mapped functions for all the steps in hydrazine
synthesis, showcasing the transferability of the prompt engi-
neering approach across different instruments and program-
ming languages (full conversation in ESI Table S7 and 8†).
Beside direct execution with Python-based SDLs, the functions
can also serve as a backend for scripting operations in domain-
specic XML (ESI Table S9†). This permits the potential tran-
scription of more complex procedures with fewer token usages,
as Python function calls do not require hierarchical templates
like XML. With more sophisticated SDLs, potentially designed
for material synthesis, there is the prospect of fully autonomous
pipelines bridging the gap between literature and product.
Digital Discovery, 2024, 3, 2367–2376 | 2373
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Limitations

Although this solution can streamline the calculation and
scripting process for replicating a literature method, it relies on
human intervention for prompt engineering, XML le saving,
error correction and manual reagent addition during experi-
ment. Some key parameters, such as stirring rate and ramping
rate are sometimes not addressed in the literature and may
require users' judgement to edit default values in XML
template, or generated XML les before or aer importing to
iControl. The XML generation accuracy also depends on the
operation mapping rules in prompt 2, where new rules need to
be established for the addition of new workups or operations.
Due to the hardware constraints, such as temperature range,
stirring rate limit and vessel capacity, it's important yet chal-
lenging for LLMs to design experiments that strictly adhere to
these rules. Additionally, the response may encounter an
unexpected pause due to high server load or token limit,
potentially requiring a “continue” prompt to resume the
generation. It's worth noting that GPT performance can vary
across different releases, and its behaviour may evolve over
time.

Lastly, although this approach is designed to reproduce
literature methods, concerns around the safety and ethics of
using LLMs remain, particularly when it comes to generating
scripts for dangerous or unethical reactions. Most instrumental
constraints (e.g., temperature) are managed by the safety
protections of the ALR. has proposed a warning
system to ag dangerous reactions, enhancing lab safety.29

However, when utilizing ChatGPT with prompt engineering,
preventing the generation or interpretation of hazardous scripts
largely depends on the pre-training safeguards implemented by
the generative AI provider (e.g., OpenAI).
Conclusions

In this study, we have developed a prompt engineering solution
to translate technical methodologies to stepwise procedures
and machine-readable scripts in one dialogue. In the rst
prompt, GPT-4 demonstrates its prociency in performing
calculations, chemical phase lookup and generating steps with
precise quantities in the procedure. With the XML template and
mapping rules that associate solid, liquid dosing, heat and stir
actions to the operation names in XML, GPT-4 can generate
a complete XML script with reasonable accuracy and minimal
human intervention. We demonstrated the execution of the
XML script utilizing an EasyMax 102 workstation and conrmed
the successful product formation using online HPLC and NMR.
Overall, this approach streamlines the fundamental research
necessity in reproducing literature methods with accessible
hardware and services. While showcasing the possibility of
using LLMs, there are still challenges in applying LLMs to more
complex procedures or SDLs. To deal with less common or
complicated reagents, Retrieval Augmented Generation (RAG)48

approach can be utilized, with an LLM such as ,29

which can aid in increasing chemical accuracy and correctness.
Finally, future work can also focus on developing a fully
2374 | Digital Discovery, 2024, 3, 2367–2376
autonomous literature to product pipeline across various
disciplines and SDLs congurations.

Data availability
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