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rial graphs using the electron-ion
potential: application to material fracture†

Sherif Abdulkader Tawfik, ‡*ab Tri Minh Nguyen, ‡a Salvy P. Russo, c

Truyen Tran, a Sunil Gupta a and Svetha Venkatesh a

At the heart of the flourishing field of machine learning potentials are graph neural networks, where deep

learning is interwoven with physics-informed machine learning (PIML) architectures. Various PIML models,

upon training with density functional theory (DFT) material structure–property datasets, have achieved

unprecedented prediction accuracy for a range of molecular and material properties. A critical

component in the learned graph representation of crystal structures in PIMLs is how the various

fragments of the structure's graph are embedded in a neural network. Several of the state-of-art PIML

models apply spherical harmonic functions. Such functions are based on the assumption that DFT

computes the Coulomb potential of atom–atom interactions. However, DFT does not directly compute

such potentials, but integrates the electron–atom potentials. We introduce the direct integration of the

external potential (DIEP) methods which more faithfully reflects that actual computational workflow in

DFT. DIEP integrates the external (electron–atom) potential and uses these quantities to embed the

structure graph into a deep learning model. We demonstrate the enhanced accuracy of the DIEP model

in predicting the energies of pristine and defective materials. By training DIEP to predict the potential

energy surface, we show the ability of the model in predicting the onset of fracture of pristine and

defective carbon nanotubes.
1 Introduction

In the last few years, machine learning (ML) potential models
have been amassing an unprecedented number of contribu-
tions from interdisciplinary research teams worldwide. The
capabilities of these models rapidly expanded into various
material science applications, promising a future where highly
accurate quantum material science computations can be per-
formed at the cost of classical molecular dynamics, if not at
a lower cost. The accuracy and generalisability of the models
have been empowered by two key factors: the emergence of
graph neutral network (GNN)1 models that superseded standard
ML models in accuracy and complexity,2 and the abundance of
a massive amount of quantum mechanically-computed
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material data in online databases. Over the last few years, the
online databases, such as Materials Project (MP),3 JARVIS,4

AFLOW,5 Open Quantum Mechanical Database (OQMD),6 and
others, have availed more than 3 million DFT-computed struc-
tures, and have been part of a standard benchmarking workow
for new ML models. GNNs have further been improved by the
introduction of physical laws within the fabric of the neural
network, establishing what is commonly known as physics-
informed machine learning (PIML) models, as was demon-
strated in DimeNet,7 its derivative M3GNET8 and MACE9 for
property prediction and structure discovery. These models have
explicitly incorporated physics-based representations for the
atomic structure by transforming doublets (atom–atom pairs)
using a radial basis function (RBF), and triplets (groups of three
atoms within a sphere of a given radius) using spherical
harmonics. The utilization of spherical harmonics stemmed
from the analytical structure of the wave function, which is the
solution of the Schrödinger equation that DFT aims to
approximate. Trained on over 133k samples, the M3GNET
achieved a mean absolute error (MAE) of 20 meV per atom for
predicting the formation energy (Ef) of the test set samples.
However, as will be shown in this work, the model struggles
with the prediction of the properties of defective crystals, and in
predicting the onset of carbon nanotube fracture.

We propose a novel physics-informed ML framework for
accurate prediction of both pristine and imperfect crystal
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 The types of crystal deformation that are examined in this work: strain deformation, where the crystal lattice size if modified to reflect the
application of either a stretching or compressive force on the structure; substitutional defect, where one of the atoms is substitutedwith another;
vacancy defect, where an atom is removed from the crystal leaving a vacancy; interstitial defect, where an atom is introduced into a void in the
crystal; swapping of atoms, where atoms within the crystal exchange positions; swapping vacancies, where vacancies, rather than atoms, are
exchanged.
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materials. Called DIEP, it directly integrates the external
potential of a structure, and it was implemented on the code-
base of M3GNET. This direct integration is a critical correction
to the physics in M3GNET, and we show its value in discerning
the impact of material defects. In particular, DIEP is able to
more accurately predict the total energy per atom of a defective
system, as well as the structural changes that result from the
presence of a defect in a material. We demonstrate these two
merits of the DIEP model by conducting two learning tasks
using datasets of crystalline systems: in task 1, we train the
models to predict the total energy per atom and demonstrate
the accuracy of DIEP in predicting the total energy per atom for
6 classes of material imperfections, which are displayed in
Fig. 1. We further interrogate the models on common defects of
diamond, and show that the accuracy of DIEP exceeds that of
the trained M3GNET model in most of the test cases. In task 2,
we train a potential model that predicts both the energy per
atom and the atomic forces, which amount to the prediction of
the potential energy surface (PES). We show the ability of DIEP
in (1) reproducing the ground state crystal structure of
a number of binary materials, and (2) in computing the fracture
strain of a large carbon nanotube structure due to the presence
of carbon vacancy defects, while the M3GNET model does not
predict rupture of the CNT at excessive elongation strains.

2 Improving the physics

The PIML in M3GNET is based on embedding the graph nodes
(including the atom–atom pairs, or bonds, and the three-atom
structures, or triplets) into the neural network through a layer
that calculates DFT-related properties, as was initially proposed
in the DimeNETmodel. The DFT-related properties assume that
the atoms in the structure are directly coupled by a Coulomb
potential in a simplied Schrödinger equation, and embed the
nodes by using the solutions of that equation as functions of the
bonds and triplets in the structure. However, the direct atom–

atom interaction emulated by the M3GNET is in fact neglected
© 2024 The Author(s). Published by the Royal Society of Chemistry
in typical DFT calculations. This is because, based on the Born–
Oppenheimer approximation, the positions of atoms are treated
as xed. In this work, we introduce an alternative PIML
approach that is based on the numerical integration of the
external potential which is directly relevant to DFT. We embed
the graph nodes using an integration layer, in which the atom–

electron potential, rather than the atom–atom potential, is
computed. Computing an integration for atom–electron inter-
action is advantageous because the atom–electron interaction
uniquely determines the ground state DFT electron density r(r)
(a direct implication of the Honenberg–Kohn theorem10), where
r(r) is the function that enables the determination of the ground
state total energy. Our method computes a simplied form for
this term for the graph's bonds and triplets on a two-
dimensional mesh, and passes these atom–electron interac-
tion messages into the GNN.

The total DFT energy is calculated by summing the kinetic
energy T[r(r)], atom–electron energy (or external energy)
Eext[r(r)], the Hartree energy EH[r(r)], and the exchange corre-
lation energy EXC[r(r)], which are all functionals of the electron
density r(r):

ET[r(r)] = T[r(r)] + Eext[r(r)] + EH[r(r)] + EXC[r(r)] (1)

where the terms are given by

T ½rðrÞ� ¼ � 1

2

XN
nk

ð
drf*ðrÞV2fðrÞ

Eext½rðrÞ� ¼
ð
dr

Xn

N

rðrÞZn

jr� Rnj

EH½rðrÞ� ¼ 1

2

ðð
drdr

0 rðrÞr
�
r
0
�

��r� r
0 ��

(2)

The value of ET must be minimized with respect to the given
atomic structure, and therefore one must nd a density func-
tion r(r) that will yield such minimum energy. Given the
Digital Discovery, 2024, 3, 2618–2627 | 2619
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denition of the electron density in terms of the ctitious
electronic orbital functions fi(r)

rðrÞ ¼
XNe

i

f*
i ðrÞfiðrÞ

where f*
i ðrÞ is the complex conjugate of fi(r), the minimization

problem is solved by applying the variational principle to ET
with respect to the orbital functions fi(r). This yields the Kohn–
Sham equations,

HKSfi(r) = Eifi(r) (3)

where the Kohn–Sham Hamiltonian HKS is given by

HKS ¼ � 1

2
V2 þ VextðrÞ þ VHðrÞ

VextðrÞ ¼
Xn

N

Zn

jr� Rnj

VHðrÞ ¼ 1

2

ð
dr

0 r
�
r
0
�

��r� r
0 ��

(4)

The only term in HKS that is directly dependent on the positions
of the atoms is Vext(r). Likewise, the only term in ET[r(r)] that is
directly dependent on the positions of the atoms is Eext[r(r)].
These terms, however, do not use direct atom–atom distances,
contrary to the assumption made in the M3GNET and DimeNet
models.
Fig. 2 Outline of the DIEPmethod and characteristics of the TinyUnitCell
bonds dij and triplets tijk. Then, each bond is transformed into a line tha
a triangle with ordered side lengths, and is also centred in a sparse 2D me
2D meshes, and the value of each integration is used to embed the dij a

2620 | Digital Discovery, 2024, 3, 2618–2627
In a GNN, structural data are generated for the input structure
into a graph object with nodes and edges. For a given structure,
nodes can represent information about atoms at the nodes'
spacial positions Ri, and edges can represent the bonds between
the atoms. The structure of the graph, as well as the count of
nodes and edges, is different for each structure. In a GNN, the
NN learns the graph connection between each node and the
neighboring nodes iteratively. Following the extraction of bonds
and triplets from the graphical representation of the input crystal
structure, which is routinely performed by common GNN-based
packages, DIEP performs the following standardization trans-
formation on bonds and triplets, which is depicted in Fig. 2:

� for a bond between atoms with atomic numbers Zi and Zj,
positions Ri and Rj, the line joining the points Ri and Rj is

transformed into the line joining the two points �dij
2
and

dij
2
,

where dij is the distance between Ri and Rj;
� for a triplet involving three atoms with atomic numbers Zi,

Zj and Zk, positions Ri, Rj and Rk, the triangle Ri—Rj—Rk is
transformed to Ra—Rb—Rc such that Ra—Rb is the longest side,
followed by Rb—Rc then Ra—Rc.

For a transformed bond, identifying either atoms as Zi or Zj is
the same, whereas for a triplet, we set the identities of the atoms
in the transformed triangle based on the intersection between
the identities of the atom pairs in the bonds of the triangle. This
transformation ensures that the transformed structure is
invariant to permutation of the identities of atoms.
s dataset. The input crystal structure is decomposed into its constituent
t is centred in a sparse 2D mesh, and each triplet is transformed into
sh. The DIEP integration is applied to each dij and tijk in their respective
nd tijk of the input structure.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Both the transformed bond and triangle are then centred
within a two-dimensional grid where the x- and y axes range
from −L to +L (in units of Å), with step size Dl. The trans-
formation of the triangle Ri—Rj—Rk ensures that any three
atoms at positions Ri, Rj and Rk will have a unique value for Eijk.

The 2D grid in DIEP is a simplication for the actual 3D grid
in which the external potential is integrated; it is only a 2D
“slice” of the 3D box. The points on the mesh represent the
coordinates r of the electronic density function r(r). The
representation of a triplet as a triangle on a mesh is an explicit
incorporation of three-body interactions that combines the
properties of the atoms (atomic numbers Zi) with their positions
in a natural way, rather than embedding the triplet using bond
angles that are separated from the atomic numbers as in
M3GNET.

To embed a transformed bond, we compute the following
terms, which are based on the external energy term Eext[r(r)] in
eqn (3):

Eij;mn ¼ Dl2rðrmnÞ

0
B@ Zi����rmn � dij

2

����
þ Zj����rmn þ dij

2

����

1
CA; (5)

whereas for triplets, the following quantities are computed:

Eijk;mn ¼ Dl2rðrmnÞ

�
�

Zi

jrmn � Raj þ
Zj

jrmn � Rbj þ
Zk

jrmn � Rcj
�
: (6)

where r(rmn) represents a simple analytical form for the electron
density, which is given by

rðrmnÞ ¼
XN
i

e�
jrmn�Ri j2

s (7)

and m and n are indices from the position of a point in the 2D
grid, and the grid is of size L × L. The function r(r) is the
optimization target in DFT, and therefore its relationship with
the atomic structure is highly complicated. One can use
a simplied or trained11 analytical form for r(r). However, we
choose a simplied representation: a summation of Gaussian
functions centred at the atomic positions. This representation
is based on the trainable expression (eqn (1)–(3)) in ref. 11 in
which the electron density is expanded as sum of Gaussian
functions with trainable coefficients.

While this charge density representation is not representa-
tive for a large number of bonds, particularly in charge transfer
situations where one of the atom loses a signicant portion of
its charge density (such as in the case of transition metals), it is
still a reasonable assumption for the broad variety of bonds, as
well as being computationally efficient. An improvement to the
charge density representation would either use parametrised
expressions such the one in ref. 11 or to express the charge
density as a sum of gaussians with learnable parameters. Those
learnable parameters would then be tuned as part of the entire
training cycles of the DIEPmodel. Even though these trained 2D
fragment charge densities will not be as complete as the
densities that are obtained from models trained on actual
© 2024 The Author(s). Published by the Royal Society of Chemistry
densities, such as ref. 12–14 they would be expected to model
the densities of their respective fragments. Exploring alternative
strategies to represent r(r) is currently in progress.

Following the computation of the quantities Eij,mn and Eijk,mn,
these quantities are then used to embed the bonds ij and trip-
lets ijk into the neural network. This by performing the
following numerical integration across the grid:

Eij ¼
XL
m¼1

XL
n¼1

Eij;mn;

Eijk ¼
XL
m¼1

XL
n¼1

Eijk;mn

(8)

The quantities Eijk and Eij are then fed into the GNN. These
quantities replace the 2D representation quantities aSBF

(kj,ji)and
the distance representation quantities eRBF

(ji)in the DimeNet
embedding layer (Fig. 4 of ref. 7). The total number of trainable
parameters in the DIEP model is 279837, whereas it is 288 157
in the M3GNET model. Hence, an improvement in the DIEP
model is not due to introducing additional learnable parame-
ters. The DIEP hyperparameters include: the resolution of the
grid (the values of L and Dl), the choice of using the external
potential or external energy terms, whether to use the entire
grid points or to use the summation of terms, and the value of s
in the exponential formula for r(r).

Next, To examine the predictive power of DIEP compared
with M3GNET, we perform two training tasks. In the rst task,
we train DIEP and M3GNET models on a subset of stable
materials from MP, and then challenge the generalisability the
two models on deformed materials which are described in
Fig. 5. In the second task, we train the M3GNET and DIEP
models on a dataset of structural optimisation trajectories (the
MPF.2021.2.8 dataset used in ref. 8) and compare the accuracy
of predicting the total energy per atom and the atomic forces.
3 Results and discussion
3.1 Prediction of the energy of defective materials

3.1.1 Defective materials. We design material deforma-
tions with structural features that are signicantly different
from the materials in TinyUnitCells. We consider deformations
that are oen encountered in routine material science investi-
gations, as well as those generated in the course of material
discovery processes. The classes of deformations we examine
are:

� Random strains: for a sample of unit cells with a maximum
of 4 atoms, a uniaxial strain is applied, where we randomly pic
a strain value from the set of percentage strain values ±1%,
±2%, ±3%, ±4% and ±5% along the a lattice direction. For
another sample of unit cells with a maximum of 4 atoms, we
applied random triaxial strains, where we randomly pic a strain
value from the set of percentage strain values ±1%, ±2%, ±3%,
±4% and ±5% along each of the axial directions.

� Single-site defects: for a sample of unit cells with
a maximum of 4 atoms, a point defect is created in 2 × 2 × 1
supercells by either removing an atom, or substituting an atom
with another, such that the two atoms are in the same group of
Digital Discovery, 2024, 3, 2618–2627 | 2621
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Fig. 3 Dataset characteristics. (a) Periodic table displaying a heatmap
of the frequency of occurrence of each element in the periodic table in
the TinyUnitCells dataset. (b) Comparison between the number of
triplets extracted for materials in the TinyUnitCells dataset (#10
atoms), and defective materials with > rbin 10 atoms, showing the large
difference in the distribution of geometric information between the
two sets of materials.
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the periodic table. This ensures the same number of valence
electrons in the unit cell and avoid the complexity of dealing
with potentially charged defects.

� Swapping of atomic positions: this disorder naturally
occurs in high entropy alloys, where the distribution of the
atoms within the lattice structure is rather stochastic.15

� Multi-site defects: a permutation of multiple vacancies is
created in a supercell. In some cases, the permutations do not
result in signicant changes in the total energy. In this case, this
class of deformations examines the false positives: whether the
MLmodel will overestimate the energy cost of a small geometric
change.

� Interstitial defects: hydrogen atoms are introduced into
interstitial sites of metals and perovskites.

To examine the ability of DIEP and M3GNET in predicting
the energies of the above defects, we rst train both models on
a sample of pristine materials from MP with up to 10 atoms in
the unit cell, TinyUnitCells (version 1). The composition of this
dataset is: 10kmaterials with up to 4 atoms per unit cell, 1k with
5 or 6 atoms per unit cell, and 1k materials with 7–10 atoms per
unit cell. The representation of each of the elements in TinyU-
nitCells is displayed in Fig. 3a. There are 88 elements repre-
sented in the dataset (out of 89 elements that are represented in
MP), the most frequently occurring elements are O, Li and Mg.
The large representation of O in TinyUnitCells is similar to the
case of the larger dataset MPF.2021.2.8.8

3.1.2 TinyUnitCells results. We have re-computed the DFT
structural optimisation for TinyUnitCells using standardised
DFT input parameters (details in the Methods section). The size
of unit cells in TinyUnitCells are chosen in order to bias the
GNN on learning features of small unit cells, and hence to test
the ability of the method to generalise to larger structures,
particularly those supercells with a small concentration of
defects. The histogram in Fig. 3b illustrates the scale of such
difference in terms of the number triplets extracted from each
structure in the dataset. Small unit cells (such as those in
TinyUnitCells) possess much lower triplets than larger struc-
tures, such as the defect structures examined here. The 80–10–
10% split is also applied for the TinyUnitCells dataset. DIEP
exceeds the accuracy of M3GNET in predicting the total energy
per atom of the test set, as displayed in Fig. 4b. Note that the
MAE values are higher than those obtained for the JARVIS
dataset because the size of TinyUnitCells is nearly one-h that
of JARVIS. Aer establishing the accuracy of training the DIEP
models for the pristine materials in TinyUnitCells, we demon-
strate its accuracy for predicting the defective crystals.

3.1.3 Prediction of the total energy pert atom. The results
of running the two models on the 6 classes of deformed mate-
rials is displayed in Table 1. DIEP performs better than
M3GNET in reproducing the total energy per atom for most of
the defect classes considered.

DIEP outperforms M3GNET in predicting the energies of
strained unit cells, whether the strain is triaxial, uniaxial opti-
mised or uniaxial unoptimised, as shown in Table 1. We further
examine the optimised uniaxial strained structures by
observing the errors obtained for the strains ±1%, ±2%, ±3%,
±4%, and ±5%. The MAE for the DIEP model for each group of
2622 | Digital Discovery, 2024, 3, 2618–2627
strains gradually increase with strain, as expected: 37 meV per
atom, 45 meV per atom, 56 meV per atom, 68 meV per atom and
94 meV per atom. Except for the ±4% strain, these errors are
consistently lower than those obtained using the trained
M3GNET model: 44 meV per atom, 53 meV per atom, 62 meV
per atom, 67 meV per atom and 101 meV per atom.

For single-site defects, DIEP is only 7 meV per atom better
than M3GNET. Both models can accurately predict substitu-
tional defects, where an atom is replaced by another atom that
is one row above or below it in the periodic table (such as F
replaced with Cl). They both struggle to predict the energy of
substitutional defects where a small atom is substituted with
a larger one that is 2 or more rows lower in the periodic table.
For example, the DFT-calculated total energy per atom for BN
( ) with a N atom substituted with Bi is −7.90 eV per
atom, but DIEP predicted a value of −9.87 eV per atom and
M3GNET predicted −9.74 eV per atom. Vacancy defects are
generally accurately predicted.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Correlation plots for the ML prediction of the total energy per atom for the
structures in TinyUnitCells using (a) DIEP and (b) M3GNET.

Table 1 The mean absolute error (MAE) in meV per atom for predictin
structures of all the deformation classes have been relaxed except for th

Deformation

Strains Triaxial
Optimised uniaxial
Unoptimised uniaxial

Single-site defects Vacancies
Substitutions

Atomic swaps PtPdIrRh
CoCrFeNi
FeNi
PtIr

Multi-vacancy swaps LiCoO2

LiAlO2

LiFePO4

Single interstitial H defect Metals
Perovskites

Multiple interstitial H defects Zn
Ni
Fe
Pt

© 2024 The Author(s). Published by the Royal Society of Chemistry
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For alloy structures with swapped atomic positions, atomic
swapping leads to mild changes in the total energy per atom in
the PtPdIrRh, CoCrFeNi and PtIr alloy systems, and signicant
changes in the FeNi alloy system. The range of energies
(difference between the highest and lowest values) in these
alloy systems is 44 meV per atom, 73 meV per atom, 21 meV
per atom and 354 meV per atom, respectively. Such spread in
the data affected the predictive accuracy of both models. We
also examine the swapping of multiple vacancy sites in the
cathode materials LiCoO2 and LiFePO4, and LiAlO2, a cathode
coating material. Lithium diffusion is key to the function of
these materials, and it involves the presence of various defect
congurations at any instance of time. We swap 3 defect sites
in LiCoO2, 4 in LiFePO4 and 3 in LiAlO2. The structures for
these defects were obtained by enumerating all the possible
symmetrically unique combination of defects using the
python library . Swapping of defects in these materials
caused very small changes in the total energy per atom: the
energies vary within a range of 40 meV per atom. In all three
cases, both methods were able to reect the small variance in
energies, with DIEP performing better than M3GNET in 2 of
the 3 cases.

Next, we consider H interstitial defects. An extra H is inserted
into a crystal void of metallic structures and perovskites using
the function from the
class in the python package. The presence of
interstitial H in metals is one of the key causes of their
embrittlement,16 and occurs during the diffusion of hydrogen in
perovskites en route of water splitting. Predicting the energy of
a single interstitial atom in both metals and perovskites was
challenging for DIEP and M3GNET. For metals, the highest
errors were due to H interstitial defects in crystal with triclinic
g the total energy per atom of the deformed materials. The atomic
e “unoptimised uniaxial” strains

Dataset size
DIEP MAE
(meV per atom)

M3GNET MAE
(meV per atom)

404 90 94
929 59 65
943 61 66
213 78 79
196 108 120
257 41 55
263 90 45
123 328 287
268 41 43
53 53 112
53 96 11
70 195 231
246 97 90
141 91 101
18 48 103
14 24 35
10 136 180
10 56 144
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symmetry (MAE for DIEP is 110 meV per atom, for M3GNET is
160 meV per atom). While DIEP is more accurate than M3GNET
in predicting the energies of cubic and triclinic crystals,
M3GNET surpassed the accuracy of DIEP for monoclinic (DIEP:
86 meV per atom, M3GNET: 80 meV per atom), orthorhombic
(DIEP: 99 meV per atom, M3GNET: 92 meV per atom), trigonal
(DIEP: 105 meV per atoms, M3GNET 73 meV per atom) and
tetragonal (DIEP: 101 meV per atom, M3GNET: 86 meV per
atoms) crystals. Adding more interstitial H atoms in a selection
of metals (Fe, Pt, Ni and Zn) improved the accuracy of the DIEP
model, as shown in the bottom of Table 1.

3.1.4 Diamond defects.We test the predictions of DIEP and
M3GNET for the following neutral diamond defects against the
DFT values: nitrogen vacancy (N-V),17 oxygen vacancy (O-V),18

phosphorus vacancy (P-V), germanium vacancy (Ge-V),19 tin
vacancy (Sn-V),20 silicon vacancy (Si-V),21 sulfur vacancy (S-V),22

substitutional boron (BC),23 substitutional nitrogen (NC),23,24

substitutional oxygen (OC),18 interstitial hydrogen (Hi),25 and
interstitial carbon (Ci).26 Fig. 5a shows that DIEP achieves better
Fig. 5 Prediction results for deformations. (a) The MAE for predicting
the total energy per atom for each of the 10 diamond defects. (b) An
examination of the influence of defect dilution on the quality of the
prediction.

2624 | Digital Discovery, 2024, 3, 2618–2627
predictive accuracy for all of these defects thanM3GNET, except
for the Ci defect where the two models are close. The most
challenging defect for both models is Ci, owing to the presence
of bond distances that lie outside of the distribution of bonds in
TinyUnitCells. We further examine the impact of combining
two defects within the supercell. We generate a permutation of
P-V, P-V, S-V, Sn-V, Si-V, N-V, O-V with BC, NC and OC (a total of
18 two-site defects). The accuracy of DIEP in this set surpasses
that of M3GNET with an MAE of 22 meV versus 196 meV,
respectively.

Further, we examine the impact of dilution on the quality of
the predictions. Defect dilution means that a single defect is
created in increasingly large supercells. Here we focus on the
single carbon vacancy defect. Fig. 5b displays the prediction
error for the defect, starting with the defect in a 2 × 2 × 2
diamond supercell, up to 3 × 3 × 3. The MAE of the prediction
of both M3GNET and DIEP reduces as the defect becomes more
dilute, with DIEP highly surpassing the accuracy of M3GNET at
all defect concentrations considered.
3.2 Prediction of the potential energy surface

Training an ML model to predict the potential energy surface
(PES)27 requires the ability of the model to predict the potential
energy as well as the atomic force vectors. The equivalence
between the negative of the neural network's gradients with
respect to the atomic coordinates and the forces on those atoms
along those coordinates, is a natural connection between neural
learning and the PES that was observed by Behler and Parri-
nello28 in their early work on neural network regression of
material properties. To train the models, we use the
MPF.2021.2.8 dataset which includes the total energy per atom,
atomic forces and lattice stresses for nearly 188k structures. We
applied the same network architecture as that used for M3GNET
training. For the network parameters lmax and nmax, we test the
following combination of values to nd the combination (lmax,
nmax) that will yield the lowest validation error for the total
energy per atom: (2, 1), (2, 2) and (3, 3). We applied a training-
validation-test partitioning of 90%, 5%, 5% and only included
structures with atomic forces within the range −10 and 10 eV
Å−1, following the procedure in ref. 29. We label the PES trained
model DIEP-PES, and compare its performance against the
M3GNET-PES model released as part of the python
library ( ).8 We train the DIEP-PES
model by optimising the total energy per atom and the atomic
forces, without optimising the lattice stress. The combination
(lmax, nmaxthat gave the lowest validation MAE for the total
energy per atom was (3, 3), where the validation set error is 41
meV per atom. For the test set, the DIEP-PES models achieves
a total energy per atom MAE of 61 meV per atom and a force
MAE of 73 meV Å−1. The total energy per atom MAE for DIEP-
PES is higher than that of the M3GNET-PES (which is 34 meV
per atom) whereas the forceMAE of the DIEP-PES is close to that
of the M3GNET-PES (70 meV Å−1).

To assess the computation cost for running a PES calcula-
tion, we performed a single-point calculation with both DIEP-
PES and M3GNET-PES on each structure of the entire MP
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 The root mean square distance between the original struc-
ture and the structure obtained from genetic optimisation using DIEP
and M3GNET models as PES calculators

MP ID Formula DIEP-PES M3GNET-PES

mp-24208 CrH2

mp-784631 CrNi2
mp-182 SrGa2 0.01
mp-24728 VH2

mp-2732 PRh2

mp-11237 ScAg 0.00 0.04
mp-1018138 VI2
mp-1000 BaTe 0.00 0.00
mp-1169 ScCu 0.00 0.01
mp-2516 YZn 0.00 0.00
mp-1441 CsO2

mp-1883 SnTe 0.00
mp-1008626 VTe2
mp-2221 Zr2Ag
mp-2697 SrO2 0.01
mp-2857 ScN 0.02 0.01
mp-23251 KBr 0.00 0.00
mp-987 ZnCu 0.00 0.00
mp-2658 AlFe 0.00 0.00
mp-28013 MnI2 0.29
mp-1207380 ZrIn 0.00 0.00
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database (155k structures). The average execution time of
DIEP-PES on 1 GPU processor is 5.3 milliseconds per atom,
while that of M3GNET-PES is 5.5 milliseconds per atom. We
further examined the computational cost comparison by per-
forming single-point calculations with DIEP-PES, M3GNET-
PES and DFT (using VASP) for a random selection of 96
structures from the MP database where the number of atoms
exceeds 30 atoms. The mean number of atoms in the set is 59
atoms. The DIEP-PES on 1 GPU processor consumed 1.4
milliseconds per atom, M3GNET-PES 1.3 milliseconds per
atom, while the DFT calculation on 96 CPU cores consumed
18.1 seconds per atom. This shows that the computational
complexities of the two methods are very close, and that the
computational performance of the MLmethods exceeds that of
DFT by 3 orders of magnitude.

The computational performance per atom improves with
larger number of atoms. To see how the structure size inu-
ences the computational performance, we perform a single-
point calculation on a supercell of diamond with size N × 1 ×

1 where N takes values from 1 to 100. The number of atoms at N
= 1 is 8. The result is displayed in Fig. 6, showing that the
computational scaling behaviours of both DIEP-PES and
M3GNET-PES are very close.

3.2.1 Structure discovery using genetic algorithms. We
examine the ability of DIEP-PES to re-discover the stable crystal
structure for a number of binary compounds, by employing the
genetic optimisation library available in the python
package which wraps the genetic library in . We compare the
number of compounds that we successfully re-discovered by
DIEP-PES against those re-discovered by M3GNET. We display
the results in Table 2.

We examine the ability of DIEP-PES to re-discover the stable
crystal structure for a number of binary compounds with an
energy above hull of zero eV per atom. We utilise the

class which is a wrapper for the genetic algo-
rithm code within the python library. We limit the genetic
optimisation process to an initial population of 20 structures,
and 5 evolutions where 20 candidate structures are generated
every evolution. The genetic algorithm uses the total DFT energy
as the tness function. The following genetic evolution
Fig. 6 The scaling behaviour of DIEP-PES and M3GNET-PES: the
computational time per atom as the size of the system increases.

© 2024 The Author(s). Published by the Royal Society of Chemistry
operators are allowed: cut and splice pairing,30 so mutation31

and strain mutation,32 with probabilities of 0.4, 0.3 and 0.3,
respectively. To compare between the optimised structures, we
calculate the root mean square distance between two structures
using the method in
the python library. The results are displayed in Table
2. The DIEP-PES was able to score more hits than M3GNET-PES:
the DIEP-PES optimiser re-discovered the equilibrium structure
of 12 out of 22 structures, whereas M3GNET-PES re-discovered
10 structures.

3.2.2 Carbon nanotube fracture. A pristine carbon nano-
tube (CNT) can withstand an elongation strain up to 20% of its
original length, but will rupture at lower strains due to the
presence of defects.33 We investigate the maximum strain that
pristine and defective CNTs can withstand by performing
quasi-static pulling of the CNT, in which a strain increment of
0.5% is enforced on the structure followed by geometry opti-
misation until the CNT ruptures. This approach is similar to
that in ref. 34–36. The CNT structure we simulate is a 172 Å-
long (10,10) zigzag CNT (2798 atoms), and we examine two
defects: a single C vacancy defect, in which a single C atom
close to the middle of the structure (as indicated in Fig. 7a) is
removed, and a double C vacancy defect, in which 2C atoms
close to the middle of the structure are removed. Following the
removal of the C atoms, the atomic structure of the defect is
optimised. For the pristine CNT, the structure ruptures when
using DIEP-PIES at 22% (Fig. 7b), which is close to the failure
strain value of 20% obtained using DFT for a (10,0) CNT.36

However, the M3GNET-PES simulation does not lead to
rupture. For vacancy defects, rupture is only produced when
using the DIEP-PES: the CNT with a single C vacancy defect
Digital Discovery, 2024, 3, 2618–2627 | 2625
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Fig. 7 Simulation of CNT fracture. (a) The simulation cell for the
(10,10) zigzag CNT, highlighting the frozen atoms using green rect-
angles and indicating the carbon vacancy with an arrow. (b) For pristine
CNT, it ruptures at a strain of 22% using the DIEP-PES, but never
ruptures even when strain reaches 25% using the M3GNET-PES. (c)
The defective CNT ruptures at 14.8% strain (single C vacancy) and at
12.5% strain (double C vacancy) when the DIEP-PES is used. However,
using the M3GNET-PES, the same defective CNTs never rupture, even
when strain reaches 27.5%.
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ruptures at a strain of 14.8%, while that with a double C
vacancy ruptures at 12.5%, as displayed in Fig. 7c. The drop in
failure strain from pristine to double vacancy defective struc-
tures qualitatively agree with the results in ref. 33, where a CNT
with similar length was examined using classical molecular
dynamics. We display the structure of the fractured CNT in
Fig. 7. We also examined the inuence of the distance between
the C vacancies and the rupture strain by applying the strain
procedure on two CNT structures where the vacancy–vacancy
distances are 7.4 Å and 19.7 Å. We found that the rupture
strains are 15.4% and 15.6% respectively, indicating a slight
decrease in CNT strength when the distance between the
vacancies becomes smaller. The distance between the vacan-
cies in the double vacancy structure in Fig. 7 is the smallest
possible, and hence is the weakest CNT structure (12.5%
rupture strain). However, for M3GNET-PES, the structure does
not rupture at all for an elongation strain of 27.5%. That is, the
M3GNET-PES highly overestimates the elasticity of the pristine
and defective CNT structure, which is contrary to observation
and theoretical calculations.
4 Conclusion

The ability to accurately predict the total energy is critical for the
determination of the thermodynamic properties of materials.
Our work improved the accuracy of predicting this quantity for
materials with and without defects by introducing the direct
integration of the external potential (DIEP) method. In
2626 | Digital Discovery, 2024, 3, 2618–2627
principle, DIEP partially reects the computations that take
place during the electronic structure optimisation step in
density functional theory, and therefore more faithfully intro-
duces “physics” in a physics-informed machine learning
process. We demonstrated the enhanced accuracy of DIEP in
predicting the total energy per atom for several datasets: a 12k
dataset of pristine materials, and datasets that represent 6
classes of material imperfections. In addition, we established
the ability of DIEP in predicting the potential energy surface for
materials (total energies and forces) by performing structure
optimisation and molecular dynamics tasks, in particular
reproducing the maximum strain of a carbon nanotube struc-
ture. Enriched with its unique physical insight, DIEP is there-
fore suited for high-throughput screening procedures for
accelerating material discovery.
5 Methods
5.1 DFT calculations

DFT calculations are performed using VASP 5.4.4.37 The gener-
alized gradient approximation (GGA) of Perdew, Burke and
Ernzerfof (PBE),38 The energy cut-off for the plane wave basis set
is 520 eV, and the energy tolerance is 10−6 eV to ensure the
accuracy of the calculations. In the structural energy minimi-
zation, the internal coordinates are allowed to relax until all of
the forces are less than 0.01 eV Å−1. For magnetic structures, the
initial magnetic moments are set using the default VASP values.
Code availability

DIEP was implemented on the codebase of Matgl and is avail-
able here: https://github.com/sheriawkabbas/diep. The code
that was used to generate the deformed structures is available as
part of the package: https://github.com/
sheriawkabbas/oganesson.
Data availability

The VASP POSCAR les for the materials in TinyUnitCells and
all of the defects examined in the work, the trained DIEP and
M3GNET models are available here: https://github.com/
sheriawkabbas/materialsalchemist.
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