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learning interatomic potentials, datasets, and its
applications in the thermal transport of half-
Heusler thermoelectrics†
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High-throughput screening of thermoelectric materials from databases requires efficient and accurate

computational methods. Machine-learning interatomic potentials (MLIPs) provide a promising avenue,

facilitating the development of database-driven thermal transport applications through high-throughput

simulations. However, the present challenge is the lack of standardized databases and openly available

models for precise large-scale simulations. Here, we introduce HH130, a standardized database for 130

half-Heusler (HH) compounds in MatHub-3d (http://www.mathub3d.net), containing both MLIP models

and datasets for the thermal transport of HH thermoelectrics. HH130 contains 31 891 total configurations

(∼245 configurations per HH) and 390 MLIP models (three models per HH), generated using the dual

adaptive sampling method to cover a wide range of thermodynamic conditions, and can be openly

accessed on MatHub-3d. Comprehensive validation against first-principles calculations demonstrates

that the MLIP models accurately predict energies, forces, and interatomic force constants (IFCs). The

MLIP models in HH130 enabled us to efficiently perform four-phonon interactions for 80 HHs with

phonon frequencies closely matching ab initio results. It is found that HHs with an 8 valence electron

count (VEC) per unit cell generally exhibit lower lattice thermal conductivities (kLs) compared to those

with an 18 VEC, due to a combination of low 2nd-order IFCs and large scattering phase spaces in the

former group. Additionally, we identified several HHs that demonstrate significant reductions in kL due to

four-phonon interactions. HH130 provides a robust platform for high-throughput computation of kL and

aids in the discovery of next-generation thermoelectrics through machine learning.
ineering Research Center for Integrated

Shanghai University, Shanghai 200444,

t.shu.edu.cn

eering, Southern University of Science and

China

Ceramics and Superne Microstructure,

cademy of Sciences, Shanghai 200050,

Beijing 100049, China

ool of Mechanical Engineering, Shanghai

na

ersity of Missouri, Columbia, MO 65211,

ced Quantum Materials and Devices,

tational Science and Materials Design,

gy, Shenzhen, Guangdong 518055, China

tion (ESI) available. See DOI:

is work.

the Royal Society of Chemistry
1 Introduction

Since the introduction of the Materials Genome Initiative
(MGI)1 in 2011, methods for exploring novel materials have
advanced beyond traditional trial-and-error approaches.2–4

Databases based on rst-principles calculations have emerged,
including the Materials Project (MP),5,6 the Automatic-FLOW for
Materials Discovery (AFLOW),7–9 the Open Quantum Materials
Database (OQMD),10,11 the Joint Automated Repository for
Various Integrated Simulations (JARVIS),12 the MatHub-3d13–15

and others. These databases provide fundamental information
about materials, such as crystal parameters, electronic density
of states, formation energies, and phase elds. MatHub-3d is
a materials data repository containing over 33 000 electronic
structures and 10 000 electrical transport properties, specically
designed for thermoelectric applications.

Currently, computational materials databases primarily rely
on rst-principles calculations and related results. However,
this limits the range of properties for which large volumes of
data can be obtained. Although there are some existing
Digital Discovery, 2024, 3, 2201–2210 | 2201
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databases based on machine learning methods, such as
AFLOW-ML16–19 and JARVIS-ML,20–22 there remains a lack of
computational results that are based directly on the structures
of materials and can be precisely applied to larger-scale simu-
lations. MLIPs, which parameterize the interaction between
atoms, are highly promising novel direction machine learning
methods due to their reusable models and training datasets and
their demonstrable high delity to the underlying rst-princi-
ples calculations.23,24 This combination of transferability and
precision enables large scale studies of complex materials and
efficient high throughput searches. Mortazavi et al. utilized
MLIPs to compute phonon dispersion relations in two-dimen-
sional materials andmade theMLIP model and training dataset
publicly accessible.25 Liu et al. developed an open-access MLIP
model for SnSe to precisely capture its temperature-dependent
phonon transport properties.26 Accelerated thermal transport
simulation is also a primary application of MLIP models, as
thermal transport is crucial in various elds such as thermo-
electrics,27,28 thermal barriers,29 and thermal management
materials.30 Ouyang et al. used accurate machine learning
neuroevolution potentials to calculate the kL of AgX (X = Cl, Br,
I) including four-phonon scattering.31 However, signicant
challenges are the computational difficulty of generating accu-
rate validated MLIPs and the absence of standardized MLIP
databases and open-access MLIP models.

Here, a standardized open-access database, HH130, has
been established on MatHub-3d. This can be applied to the
simulation of thermal transport in HHs. We demonstrate this
database by investigating the thermal transport properties of
HHs for thermoelectric performance. Out of the 273 HHs in
MatHub-3d, 130 HHs meet two criteria, band gap > 0.1 eV and
no imaginary frequencies in phonon dispersion. These are
selected for our high-throughput computational materials
study. MLIP models for the 130 HH compounds from MatHub-
3d (IDs of each material are shown in Table S1†) have been
trained. To cover a wide range of thermodynamic conditions,
the dual adaptive sampling (DAS)32 method is adopted to
construct the HH130 database. HH130 consists of 390 MLIP
models (three models per HH) and 31 891 congurations (∼245
congurations per HH).

The MLIP models from HH130 enabled us to efficiently
perform four-phonon thermal conductivity calculations for 80
HHs with phonon frequencies similar to those obtained from ab
initio calculations. We nd that HHs with an 8 VEC typically
exhibit lower kL than those with an 18 VEC. This phenomenon
arises from a combination of low 2nd-order IFCs and large
scattering phase spaces. Specically, low 2nd-order IFCs lead to
reduced phonon group velocities, while large scattering phase
spaces increase phonon scattering rates in the HHs with an 8
VEC. It may also be noted that low 2nd-order IFCs indicate weak
bonding, which is oen associated with anharmonicity.33,34

Additionally, we screened several HHs that exhibit substantial
reductions in kL due to four-phonon interactions. Among these,
LiAgTe exhibits the highest reduction (54.4%), owing to its large
four-phonon scattering phase space. All trained MLIP models
and datasets in HH130 are publicly available on the website
http://www.mathub3d.net, providing a robust foundation for
2202 | Digital Discovery, 2024, 3, 2201–2210
future data mining. The establishment of HH130 has
expanded the data scope of MatHub-3d beyond rst-principles
results, demonstrating novel possibilities for integrating
machine learning with thermal transport research.
2 Methods

For our research, we utilize the DAS method to construct an
effective conguration dataset for each HH compound. This
method comprises an inner adaptive loop and an outer loop:
the inner loop explores the local conguration space under
relatively narrow thermodynamic conditions, while the outer
loop spans a broad temperature range. The main difference
between the DAS method and other active learning sampling
methods is its adaptive approach, which automatically updates
the threshold of ensemble ambiguity using atomic forces. The
ensemble ambiguity �a(x) for conguration x is calculated by
using35

aðxÞ ¼ max
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nm

X
m

kf j;mðxÞ � f jðxÞk
2

s
and

f jðxÞ ¼ 1

Nm

X
m

f j;mðxÞ;
(1)

where Nm is the number of MLIP models and fj,m is the force on
atom j predicted by the model m.

Based on the above formula, the convergence criterion for
the inner loop is dened as

aðxÞ# aai ¼ max
~x˛ ~X

a

i�1

að~xÞ; for all x˛X a
i ; (2)

where Xa
i is the set of congurations generated from molecular

dynamics (MD) simulations in the ith iteration of the sampling
block a, and ~Xa

i−1 is the set of congurations added to the
training dataset in the (i − 1)th iteration.

The inner loop of DAS primarily consists of three steps: (1)
training Nm MLIP models based on the updated training data-
set; (2) exploring the conguration space under specied ther-
modynamic conditions through MD simulations and sampling
according to the adaptive threshold of ensemble ambiguity; (3)
labeling the sampled congurations using density functional
theory (DFT)36,37 calculations, and subsequently adding them to
the training dataset.

In the MLIP model training section, we select the moment
tensor potential (MTP)38,39 as the local environment descriptor
to t the training dataset due to its high accuracy and low
computational cost.40 The moment tensor descriptors have the
following form:

Mm;nðniÞ ¼
X
j

fm
���rij��; zi; zj

�
rij5/5rij|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

n times

;
(3)

where fm is the radial part, rij5/5rij is the angular part, and n

is the tensor rank. The atomic neighborhood of the ith atom,
denoted as ni, consists of the atomic type zi, the atomic type of
its neighbors zj, and the positions of the neighbors relative to
the ith atom, represented by rij.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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In the exploration of conguration space and sampling
section, we use the LAMMPS package41 to conduct MD simula-
tion with the MLIP model that has the lowest loss on the
training dataset. The optimized congurations of the 130 HHs
and their DFT-calculated phonon dispersions are all obtained
from MatHub-3d.13–15 All of the ab initio calculations are carried
out by using the Vienna ab initio Simulation Package (VASP)42

with the projector augmented wave method.43 The Perdew–
Burke–Ernzerhof form of the generalized gradient approxima-
tion served as the exchange-correlation functional.44 For each
HH compound, the initial training dataset is constructed by
sampling every two steps from a 20 fs ab initio molecular
dynamics (AIMD)45 simulation at 300 K, with a timestep of 1 fs.
This dataset is then used to train the initial MLIP models,
initiating the DAS process. All DFT calculations, including
AIMD, employ a plane-wave energy cutoff of 400 eV and an
energy convergence criterion of 10−5 eV, with the k-point mesh
set to 1 × 1 × 1. During the sampling process, all MD simula-
tions and DFT calculations used 192-atom 4 × 4 × 4 supercells.

The phonon dispersion calculations are done using the
Phonopy package.46,47 The kLs, derived using the Boltzmann
transport equation (BTE) method, are computed with the
ShengBTE package based on a full iterative solution.48 In the
framework of the BTE, the kL tensor can be expressed as:48

k
ab
L ¼ 1

kBT2UN

X
l

n0l
�
n0l þ 1

�ðħulÞ2valFb
l ; (4)

where a and b are the Cartesian directions, kB is the Boltzmann
constant, U is the volume of the unit cell, and N is the number
of q points in the rst Brillouin zone. n0l, ul, v

a
l, and Fbl are the

Bose–Einstein distribution function, frequency, group velocity,
and the linear coefficient in the nonequilibrium phonon
distribution function corresponding to phonon mode l,
respectively.

In this work, the relaxation time was obtained with both
three-phonon (3ph) and four-phonon (4ph) scattering. The
scattering rates for the 3ph and 4ph processes were calculated
using the scattering probability matrices:49

G�
ll

0
l
00 ¼ ħp

4

8><
>:

n0
l
0 � n0

l
00

n0
l
0 þ n0

l
00 þ 1

9>=
>;

d
�
ul � u

l
0 � u

l
00
�

ulul
0u

l
00

���V�
ll

0
l
00

���2 (5)

G
ðþþÞ
ll

0
l
00
l
000 ¼ ħ2p

8N

�
1þ n0

l
0

��
1þ n0

l
00

�
n0
l
000

n0l

���V ðþþÞ
ll

0
l
00
l
000

���2

d
�
ul þ u

l
0 þ u

l
00 � u

l
000
�

ulul
0u

l
00u

l
000

(6)

G
ðþ�Þ
ll

0
l
00
l
000 ¼ ħ2p

8N

�
1þ n0

l
0

�
n0
l
00 n0

l
000

n0l

���V ðþ�Þ
ll

0
l
00
l
000

���2d
�
ul þ u

l
0 � u

l
00 � u

l
000
�

ulul
0u

l
00u

l
000

(7)
© 2024 The Author(s). Published by the Royal Society of Chemistry
G
ð��Þ
ll

0
l
00
l
000 ¼ ħ2p

8N

n0
l
0 n0

l
00 n0

l
000

n0l

���V ð��Þ
ll

0
l
00
l
000

���2 d
�
ul � u

l
0 � u

l
00 � u

l
000
�

ulul
0u

l
00u
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:

(8)

Eqn (5) corresponds to 3ph processes, and eqn (6) to (8)
correspond to 4ph processes, with energy conservation enforced
by using the Dirac delta function d.

To calculate the kL using MLIP, the higher-order IFCs are
determined through the nite displacement method. We
considered up to the h-nearest neighboring atoms for the
3rd-order IFCs and second-nearest neighboring atoms for the
4th-order IFCs. The cutoff distances for both 3rd- and 4th-order
IFCs are identical for DFT and MLIP. The BTE with 3ph scat-
tering is solved using a 20 × 20 × 20 q-point grid, while the BTE
with 4ph scattering is solved using a 12 × 12 × 12 q-point grid.
To calculate the phonon renormalization and coherent kL for
TiCoSb,50 we conducted MD simulations using the MLIP model
and employed the obtained snapshots to t the higher-order
IFCs in the Hiphive soware package.51
3 Results and discussion

To predict HH compounds with excellent thermal transport
properties in the context of thermoelectric application, we
established the HH130 database and designed a comprehensive
process for material screening and calculation standards. The
HH130 workow comprises three main parts: material selec-
tion, training MLIP models, and material property prediction,
as illustrated in Fig. 1. HH compounds XYZ are ternary solids
with a cubic structure (space group no. 216, F�43m). Their crys-
talline structure can be visualized as a combination of rock salt
and zinc blende structures. The Wyckoff positions of the X, Y,
and Z atoms are 4a (0, 0, 0), 4c (1/4, 1/4, 1/4), and 4b (1/2, 1/2, 1/
2), respectively. The elements for HH compounds are shown in
Fig. S1.†

The training datasets for the 130 HH compounds are ob-
tained through the DAS method. Two temperature sampling
blocks, 250 K to 400 K and 650 K to 800 K, are established with
50 K intervals. Based on the temperature dependence of the
lattice constants, a 3% thermal expansion is considered for the
sampling volume at each temperature. For each HH compound,
we simultaneously trained three MTP models with random
initialization under identical conditions. The DAS program
selects the model with the lowest loss on the training dataset to
run MD simulations, each lasting 2.5 ps with a time step of 0.5
fs. Congurations are sampled every 20 steps and added to the
candidate conguration set. From this set, effective congura-
tions are selected for labeling based on the adaptive threshold
of ensemble ambiguity, with a maximum of 10 congurations
chosen for labeling. Finally, the DFT-labeled congurations are
added to the training dataset for model updates.

To verify the accuracy of the MLIP models, the energies and
forces of randomly selected congurations, as calculated by
MLIP, are compared with those calculated by DFT. At each
temperature (300 K or 700 K, both within the temperature
Digital Discovery, 2024, 3, 2201–2210 | 2203
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Fig. 1 The workflow of HH130 on MatHub-3d.
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sampling blocks), a 0.1 ns MD simulation is rst conducted.
Following this, an additional 4.5 ps simulation is performed,
during which congurations are sampled every 0.5 ps to ensure
they are relatively novel to the model. This process results in
a total of 10 test congurations. In TiCoSb, the comparison of
forces between the DFT and MLIP calculated congurations at
300 K and 700 K is shown in Fig. 2a. The average mean absolute
errors (MAEs) of the energies are 1.91 meV per atom and 1.20
meV per atom, respectively. The corresponding MAEs of the
forces are 7.84 meV Å−1 and 12.17 meV Å−1. These errors follow
a near-zero normal distribution, indicating the high accuracy of
MLIP in predicting forces (Fig. 2b).

The MAEs of the forces for 130 HHs at 300 K and 700 K are
shown in Fig. 2c. At 300 K and 700 K, the average MAEs of the
energies are 0.98 meV per atom and 0.62 meV per atom, and the
average MAEs of the forces are 11.73 meV Å−1 and 16.42 meV
Å−1, respectively. The corresponding error distributions are
2204 | Digital Discovery, 2024, 3, 2201–2210
shown in Fig. S2.† The MLIP trained using a single room-
temperature sampling block exhibits a relatively dispersed
distribution of MAEs. In contrast, training with both room-
temperature and high-temperature sampling blocks signi-
cantly reduces the MAEs of energies to below 1 meV per atom
for most systems, while the MAEs of forces are below 20 meV
Å−1. Overall, the energies and forces predicted by MLIP are in
good agreement with those obtained by DFT calculations. The
nal training datasets for 130 HH compounds, along with the
number of congurations, are shown in Fig. 2c. The total
number of congurations is 31 891, with an average of 245 per
HH compound.

As summarized in Table 1, the HH130 includes sample
information, MLIP model details, and open-access les from
MatHub-3d for 130 HH compounds. The sampling covers
temperatures ranging from 250 K to 400 K and 650 K to 800 K,
spanning both low- and high-temperature ranges. The MLIP
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a) Comparison of the DFT-predicted forces and the MLIP-predicted forces for TiCoSb at 300 K and 700 K. (b) The distribution of absolute
errors in the forces for TiCoSb at 300 K and 700 K. (c) The number of configurations in the training datasets (yellow bar) and the MAEs of the
forces at 300 K (dark blue bar) and 700 K (light blue bar) for 130 HH compounds.
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model section lists the employed descriptors and cutoff radius.
The MTP descriptors effectively capture various material prop-
erties during training. To achieve an optimal balance between
accuracy and efficiency, we selected an MTP model with a level
of 18 and a cutoff radius of 6 Å based on our tests (as shown in
Tables S2 and S3†). Additionally, the open-access section
provides the trained MLIP models and training datasets, which
are available on MatHub-3d. Three independent MLIP models
are provided for each HH compound to assess prediction
uncertainty. The training datasets record atomic coordinates,
energies, forces, and stress tensors sampled during training,
© 2024 The Author(s). Published by the Royal Society of Chemistry
which facilitate the validation of the potentials against the rst-
principles calculations.

The public availability of MLIP models and their corre-
sponding training datasets in HH130 expands the scope of data
provided by MatHub-3d, extending beyond purely rst-princi-
ples results. The provided MTP models can be used directly and
accurately for large-scale MD simulations of HH compounds.
Moreover, these models are highly accurate in predicting
atomic forces and stress tensors for most systems in the
training dataset. The accuracy makes them suitable for precise
predictions of lattice dynamics and modulus properties.
Digital Discovery, 2024, 3, 2201–2210 | 2205
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Table 1 A summary of the key contents included in HH130. It is
divided into three main sections: sample information, MLIP model
details, and open-access files from MatHub-3d

Sample information Materials 130 HHs
Temperatures [250, 300, 350, and 400 K]

[650, 700, 750, and 800 K]
MLIP model details Descriptors MTP

Cutoff radius 6.0 Å
Open-access les
from MatHub-3d

MLIP models 3 MLIP models per HH
Training datasets Atomic coordinates

Energies
Forces
Stress tensors

Input les INCAR.vasp
KPOINTS.vasp
POTCAR.spec
in.lammps
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The remainder of this paper provides demonstrations of the
prediction of 2nd-, 3rd-, and even 4th-order IFCs, as well as the
simulation of kL, using the MLIP models from the HH130
database. Based on these simulations, we can elucidate the
trends in the kL of HH compounds using the generated large
dataset, as shown below. Besides, from a technical standpoint,
even accounting for the total time required to generate the
training datasets (including training, sampling, and DFT
labeling), the efficiency of calculating 3rd- and 4th-order IFCs
using MLIP remains approximately an order of magnitude
higher than that of traditional DFT calculations (as shown in
Tables S4 and S5†).

To evaluate the model's suitability for accurate prediction of
IFCs, we calculated the 2nd-order IFCs and harmonic phonon
dispersions using the nite displacement method within MLIP,
comparing them to DFT data from MatHub-3d. Fig. 3a shows
that the TiCoSb phonon dispersion calculated by MLIP is very
similar to the DFT result. To facilitate statistical analysis of the
differences across all HH compounds, we calculated the root
mean square error (RMSE) of the phonon dispersion for each
HH compound, based on the frequencies at corresponding
points in the DFT and MLIP results. RMSE ¼
Fig. 3 (a) The DFT (red line) and MLIP (blue line) phonon dispersions for
phonon dispersions for 130 HH compounds. The RMSEs from 0 to 0.1 a

2206 | Digital Discovery, 2024, 3, 2201–2210
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
ql

ðuDFT
ql � uMLIP

ql Þ2

N

vuuut
, where uql is the frequency corresponding

to a phononmode with wave vector q and branch l, and N is the
number of q points in the rst Brillouin zone. The RMSE of
TiCoSb phonon dispersion is 0.027 THz. Fig. 3b displays the
RMSEs of phonon dispersions for 130 HH compounds. Among
these, the RMSEs for 123 HH compounds range from 0 to 0.5,
demonstrating the high accuracy of MLIP in predicting 2nd-
order IFCs.

Given the high demand for accurate higher-order IFCs, 80
HH compounds with phonon dispersion RMSEs less than 0.1
THz were selected to calculate kL. Calculating the kL including
higher-order scatterings, requires higher-order IFCs (such as
3rd- and 4th-order IFCs), which account for the majority of the
calculation time. This oen necessitates thousands of single-
point DFT force calculations, depending on the cutoff distance
and symmetry relationship.52 MLIP models capable of accu-
rately predicting forces are employed to calculate higher-order
IFCs, signicantly reducing the high-throughput calculation
costs.53–55 To assess our MLIP model's accuracy in predicting kL,
we computed the kL of TiCoSb using 3rd-order IFCs with the
MLIP model. The predictions closely match the kL at the DFT
level, as well as the experimental results (Fig. S3†).

The kL values at 300 K for the 80 HH compounds, consid-
ering both 3ph and 4ph scattering, are presented in Fig. 4a (the
results with only 3ph scattering are shown in Fig. S4†). The kL

values range from 0.44 to 33.16 W m−1 K−1. This wide range
underscores substantial variability in the thermal transport
properties of HHs. Based on the stability characteristics of HH
semiconductors with an 8 or 18 VEC proposed by Carrete et al.,56

we classied the 80 HH compounds into two group: 23 with an 8
VEC and 57 with an 18 VEC. This classication is important for
understanding the underlying physical mechanisms affecting
kL. As shown in Fig. 4a, the kL for both categories of HH
compounds decreases with increasing average atomic mass as
expected from consideration of the effect of mass on phonon
group velocities. Furthermore, the kL of HH compounds with an
8 VEC is generally lower than that of those with an 18 VEC,
suggesting that the number of VEC plays a key role in the
thermal transport properties of HHs.
TiCoSb. (b) The root mean square errors (RMSEs) of the DFT and MLIP
re shown in the inset.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (a) The relationship between the kLs of 80 HH compounds with an 8 (red plot) and 18 (blue-purple plot) VEC at 300 K and the average
atomic mass. (b) The average 2nd-order IFCs (jFab

ij j), (c) the average phonon scattering rates and (d) the total phase spaces of 80 HH compounds
plotted as functions of the average atomic mass at 300 K.
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To further investigate the reasons behind the difference in kL

between 8- and 18-VEC HHs, we analyzed the phonon group
velocities and scattering rates for both groups based on the BTE.
The average phonon group velocities for 8-VEC HHs are
generally lower than that for 18-VEC HHs (as illustrated in
Fig. S5†). Furthermore, the magnitude of the phonon group
velocity depends on the 2nd-order IFCs (jFab

ij j), where i and j
represent the atomic indices, and a and b denote the directions.
To gain a deeper understanding of phonon behavior, we
calculated and averaged the 2nd-order IFCs for each HH
compound (the methodology for averaging the 2nd-order IFCs
is shown in the ESI†). The average IFCs as a function of average
atomic mass are depicted in Fig. 4b. At the same average atomic
mass, the equivalent average 2nd-order IFCs for 8-VEC HHs are
smaller than those for 18-VEC HHs, which aligns with observed
trends in kLs and phonon group velocities. Thus 8-VEC HHs
tend to be more weakly bonded than 18-VEC compounds. This
comparison underscores the inuence of the VEC on the IFCs,
thereby enhancing the understanding of the lower kLs observed
in 8-VEC HHs.

Next, the average scattering rate for all HHs was obtained
based on the method by Dai et al.,57 as shown in Fig. 4c. This
average scattering rate is derived from the total phonon scat-
tering rates, considering both the 3ph and 4ph scattering. The
© 2024 The Author(s). Published by the Royal Society of Chemistry
results reveal that 8-VEC HHs exhibit higher average scattering
rates compared to 18-VEC HHs. To explore the underlying
physical mechanisms, we examined the relationship between
the total scattering phase space (considering both 3ph and 4ph
scattering) and the average atomic mass. As shown in Fig. 4d, 8-
VEC HHs exhibit larger total scattering phase spaces than 18-
VECHHs. This trend is consistent in the individual 3ph and 4ph
scattering phase spaces, as illustrated in Fig. S6.† Thus, the
combination of low 2nd-order IFCs, leading to low phonon
group velocities, and large scattering phase spaces, resulting in
high phonon scattering rates, contributes to the lower kL

observed in HH compounds with an 8 VEC.
To gain quantitative insights into the inuence of 4ph scat-

tering and the number of VEC on the kL, we calculated the
reduction rate in kL (h) due to 4ph scattering for the 80 HHs
classied with an 8 and an 18 VEC, as shown in Fig. 5a. Here, h
is dened as:

h ¼ k
3ph
L � k

3phþ4ph
L

k
3ph
L

; (9)

where k3phL represents the kL including 3ph scattering, and
k3ph+4phL represents the kL including both 3ph and 4ph scat-
tering. At 300 K, h values for most of the HHs are within 20% (67
out of 80). However, three HHs exhibit signicant reductions
Digital Discovery, 2024, 3, 2201–2210 | 2207
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Fig. 5 (a) The distribution of the kL reduction from k3phL to k3ph+4phL for 80 HHs. (b) The kL as a function of temperature for LiAgTe, with (blue line)
and without (red dashed line) 4ph scattering. (c) The DFT and MLIP phonon dispersions for LiAgTe. (d) The weight phase space at 300 K as
a function of frequency for 3ph scattering (red) and 4ph scattering (blue). (e) The norm of the 2nd-order IFCs (jFab

ij j) plotted as a function of the
interatomic distance between atoms i and j.
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exceeding 40%: LiAgTe (54.4%), AgCaP (50.6%), and LiScSi
(49.8%). Upon increasing the temperature to 700 K, 8 HHs
exhibit kL reductions over 40%. Remarkably, at both 300 K and
700 K, 8 VEC-HHs show relatively higher hs compared to 18-VEC
HHs. It was also found that as the temperature increases (300 K
to 700 K), the impact of 4ph scattering becomes more
pronounced, leading to a signicant rise in kL reduction.
According to the scaling law, the 3ph scattering rate is deter-
mined as s3ph

−1 ∼ T and the 4ph scattering rate as s4ph
−1 ∼ T2

for acoustic phonons. The quadratic temperature dependence
of the 4ph scattering rate indicates its stronger impact on kL

with temperature, compared to the linear dependence observed
in 3ph processes. LiAgTe is one of the typical systems exhibiting
this phenomenon, and exhibits the highest h value among the
HHs. Its k3phL is 2.83 W m−1 K−1, and k3ph+4phL drops to 1.29 W
m−1 K−1, reecting a signicant reduction of 54.4% at 300 K
(Fig. 5b).

Next, the reasons for the large h in LiAgTe were analyzed. As
the cumulative kL tends to be stable at high frequencies, we
calculated the cumulative kL below 4 THz at 300 K (Fig. S7†).
Between 0.4 and 1.5 THz, the cumulative k3phL increases rapidly,
while k3ph+4phL increases more slowly, indicating that 4ph
interactions within this frequency range signicantly contribute
to the h. Fig. 5c displays the phonon dispersion of LiAgTe
calculated by using DFT and MLIP, which has only 0.082 THz
RMSE. It has relatively at and concentrated phonon dispersion
in the low-frequency region and an ∼1 THz phonon gap
2208 | Digital Discovery, 2024, 3, 2201–2210
between acoustic and optical phonons. These behaviors are
reported to enhance 4ph interaction.53,58 In order to observe the
specic scattering processes, Fig. 5d presents the 3ph and 4ph
scattering weight phase spaces59 at 300 K for LiAgTe. Similar to
the cumulative kL, the 4ph scattering weight phase space is
obviously larger than that of 3ph scattering in the 0.4 to 1.5 THz
range. The large 4ph scattering weight phase space enhances
the 4ph scattering rate, leading to a signicant reduction in kL.
It is interesting that the aaaa process is the most prevalent in
the 4ph process. Furthermore, we assessed the effect of phonon
group velocity on kL by calculating the norm of the 2nd-order
IFC matrix, as shown in Fig. 5e. The equivalent average IFC is
0.94 eV Å−2, notably lower than the average of 2.03 eV Å−2 for the
80 HH compounds. Therefore, in the case of LiAgTe, its low kL is
due to, on one hand, low phonon velocities from small 2nd-
order IFCs, and on the other hand, strong 4ph interactions from
large 4ph scattering phase spaces.

4 Conclusions

The HH130 database includes open-access MLIP models and
training datasets for 130 HH compounds, encompassing 31 891
congurations with atomic coordinates, energies, forces, and
stress tensors. These MLIP models, formulated as MTP and
tted using the DAS method, demonstrate high accuracy in
predicting energies and forces, as conrmed by validation
against DFT calculations. Utilizing the MLIP models from
HH130, we investigated the effects of 4ph scattering and the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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number of VEC on the kL of HH compounds, revealing the
complex relationship between atomic interactions and thermal
transport properties. The analysis highlights substantial vari-
ability in kL among 80 HH compounds, with values ranging
from 0.44 to 33.16 W m−1 K−1 at 300 K. 8-VEC HHs typically
exhibit lower kL values than 18-VEC HHs due to smaller 2nd-
order IFCs and larger scattering phase spaces, which contribute
to the smaller phonon group velocities and higher scattering
rates, respectively. Additionally, we screened several HH
compounds that exhibit signicant reductions in kL as a result
of 4ph scattering. As temperature increases, 4ph processes
becomemore pronounced. LiAgTe exhibits the highest h among
the 80 HHs, due to its large 4ph scattering phase space. This
comprehensive analysis elucidates the complex mechanisms
governing thermal transport in HH compounds. The kL data
presented in this work were computed using the nite
displacement method implemented in the Phonopy and
ShengBTE packages. Notably, the MLIP models for each HH
compound can be utilized in conventional MD simulations,
enabling the easy extraction of temperature-dependent IFCs
and the corresponding particle-like kL and coherent kL (see the
results for TiCoSb in Fig. S8†). The establishment of HH130 has
expanded the data scope provided by MatHub-3d, and bridged
the gap between accuracy and efficiency in computational
thermoelectric research on a larger scale.
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A. V. Shapeev, A. P. Thompson, M. A. Wood and S. P. Ong, J.
Phys. Chem. A, 2020, 124, 731–745.

41 A. P. Thompson, H. M. Aktulga, R. Berger,
D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in't
Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan,
M. J. Stevens, J. Tranchida, C. Trott and S. J. Plimpton,
Comput. Phys. Commun., 2022, 271, 108171.

42 G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54,
11169–11186.

43 P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953–17979.
44 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.,

1996, 77, 3865–3868.
45 R. Car and M. Parrinello, Phys. Rev. Lett., 1985, 55, 2471–2474.
46 A. Togo and I. Tanaka, Scr. Mater., 2015, 108, 1–5.
47 A. Togo, J. Phys. Soc. Jpn., 2022, 92, 012001.
48 W. Li, J. Carrete, N. A. Katcho and N. Mingo, Comput. Phys.

Commun., 2014, 185, 1747–1758.
49 Z. Han, X. Yang, W. Li, T. Feng and X. Ruan, Comput. Phys.

Commun., 2022, 270, 108179.
50 L. Ji, A. Huang, Y. Huo, Y.-M. Ding, S. Zeng, Y. Wu and

L. Zhou, Phys. Rev. B, 2024, 109, 214307.
51 F. Eriksson, E. Fransson and P. Erhart, Adv. Theory Simul.,

2019, 2, 1800184.
52 L. Lindsay, D. A. Broido and T. L. Reinecke, Phys. Rev. B,

2013, 87, 165201.
53 Y. Xia, V. I. Hegde, K. Pal, X. Hua, D. Gaines, S. Patel, J. He,

M. Aykol and C. Wolverton, Phys. Rev. X, 2020, 10, 041029.
54 J. Brorsson, A. Hashemi, Z. Fan, E. Fransson, F. Eriksson,

T. Ala-Nissila, A. V. Krasheninnikov, H.-P. Komsa and
P. Erhart, Adv. Theory Simul., 2022, 5, 2100217.

55 B. Mortazavi, E. V. Podryabinkin, I. S. Novikov, T. Rabczuk,
X. Zhuang and A. V. Shapeev, Comput. Phys. Commun.,
2021, 258, 107583.

56 J. Carrete, W. Li, N. Mingo, S. Wang and S. Curtarolo, Phys.
Rev. X, 2014, 4, 011019.

57 S. Dai, C. Liu, J. Ning, C. Fu, J. Xi, J. Yang and W. Zhang,
Mater. Today Phys., 2023, 31, 100993.

58 Y. Li, J. Chen, C. Lu, H. Fukui, X. Yu, C. Li, J. Zhao, X. Wang,
W. Wang and J. Hong, Phys. Rev. B, 2024, 109, 174302.

59 W. Li and N. Mingo, Phys. Rev. B, 2015, 91, 144304.
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00240g

	HH130: a standardized database of machine learning interatomic potentials, datasets, and its applications in the thermal transport of half-Heusler...
	HH130: a standardized database of machine learning interatomic potentials, datasets, and its applications in the thermal transport of half-Heusler...
	HH130: a standardized database of machine learning interatomic potentials, datasets, and its applications in the thermal transport of half-Heusler...
	HH130: a standardized database of machine learning interatomic potentials, datasets, and its applications in the thermal transport of half-Heusler...
	HH130: a standardized database of machine learning interatomic potentials, datasets, and its applications in the thermal transport of half-Heusler...
	HH130: a standardized database of machine learning interatomic potentials, datasets, and its applications in the thermal transport of half-Heusler...
	HH130: a standardized database of machine learning interatomic potentials, datasets, and its applications in the thermal transport of half-Heusler...
	HH130: a standardized database of machine learning interatomic potentials, datasets, and its applications in the thermal transport of half-Heusler...
	HH130: a standardized database of machine learning interatomic potentials, datasets, and its applications in the thermal transport of half-Heusler...


