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Exploring inhomogeneous surfaces: Ti-rich
SrTiO3(110) reconstructions via active learningt
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The investigation of inhomogeneous surfaces, where various local structures coexist, is crucial for

understanding interfaces of technological interest, yet it presents significant challenges. Here, we study
the atomic configurations of the (2 x m) Ti-rich surfaces at (110)-oriented SrTiOz by bringing together
scanning tunneling microscopy and transferable neural-network force fields combined with evolutionary

exploration. We leverage an active learning methodology to iteratively extend the training data as

needed for different configurations. Training on only small well-known reconstructions, we are able to

extrapolate to the complicated and diverse overlayers encountered in different regions of the
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inhomogeneous SrTiOz(110)-(2 x m) surface. Our machine-learning-backed approach generates several

new candidate structures, in good agreement with experiment and verified using density functional

DOI: 10.1039/d4dd00231h

rsc.li/digitaldiscovery surface reconstructions.

1 Introduction

The surfaces of metal oxides play key roles in countless natural
processes and technological applications. At the atomic level,
the properties of metal oxide surfaces, such as reactivity, elec-
tronic structure, and defect formation, are intricately linked to
their performance. Only through a deep understanding of these
surfaces at the atomic scale, can their properties be precisely
controlled and optimized.

Machine-learned force fields (MLFFs) are an increasingly
popular tool that can be used to explore surface structures,
including those of metal oxides. Method development and their
applications have been advancing in parallel, with innovative
and powerful models synergizing with established and proven
methods. For example, moving from neural-network force fields
that utilize precomputed invariant descriptors’® to adopting
equivariant message passing networks*® has enabled more
data-efficient and transferable MLFFs. Modern applications
include foundation models trained on a wide range of mate-
rials,” transferable water potentials,® and condensed phase
chemistry.’

Here, we utilize MLFFs to explore the surface reconstructions
of strontium titanate (SrTiO;z), a perovskite oxide used as
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theory. The approach could be extended to other complex metal oxides featuring large coexisting

a model system for the development of many technological
applications, including optoelectronics, catalysis, memory
devices, and photovoltaics.'®*® SrTiO; is also exciting from
a fundamental standpoint: It exemplifies the richness of bulk,
surface, and interface properties that can be accessed within
a single perovskite material: donor doping by chemical impu-
rities,"*'* oxygen vacancies,'*'*"” or field effects'>*® can turn it
into an insulator, a metal, a superconductor or even induce
confined metallic behaviour in the form of 2D electron gases.
The diversity extends to the atomistic details of the surface,"
where a variety of composition-related, polarity-compensating
reconstructions have been found for the (001), (110), and
(111) orientations.?*?” Pinpointing the regions of stability of
such reconstructions and gaining a deep understanding of the
atomic-scale details of their surfaces is essential for designing
SrTiO;-based systems with tailored functionalities.

Many studies exist that explore the atomic details of the
surface of single-crystalline SrTiO; samples under ultra-high
vacuum (UHV) conditions. It is known that specific surface
reconstructions are difficult to reproduce and can depend on
sample history and preparation conditions." Notably, scanning
tunneling microscopy (STM) studies of SrTiO; surfaces
frequently reveal the coexistence and even intermixing of
multiple surface structures,”***® a feature common to the
surfaces of other complex perovskites such as BaTiO; and (La,
Sr)MnO; (ref. 29 and 30). The variety of coexisting surface
reconstructions and their dependence on sample history
underlines the necessity of changing the framing from identi-
fying a single specific reconstruction to mapping out the range
of possible reconstructions. This diversity can serve as an ideal
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showcase of the power of MLFF-supported stochastic searches,
which, in turn, could be applied to the exploration of surface
structures of further, technologically relevant materials.

In particular, the enhanced accuracy and reliability of MLFFs
facilitate the application of stochastic algorithms for structural
exploration of materials.***® Stochastic approaches require
a substantial volume of calculations and are impracticable with
ab initio methods such as density functional theory (DFT) as the
backend. This holds especially true for large and complex
systems, such as surface reconstructions of multi-element
compounds. Such systems usually feature a complex energy
surface with too many degrees of freedom to explore exhaus-
tively, as well as many local minima, where local searches for an
optimal structure largely depend on the initial geometry of the
search. Given that stochastic searches produce more diverse
structures than, e.g.,, molecular dynamics, a transferable,
robust, and generalizable force field trained on a diverse dataset
is key to their success.

An accurate MLFF is, however, just one part of the toolbox
necessary to build a robust and efficient workflow for structure
searches. The design of an MLFF can enhance or restrict its
transferability and any MLFF has the potential to emit infinitely
diverse mispredictions. This is especially significant for
stochastic searches, which, by design, tend to move into regions
that the model was not trained on. Extrapolation happens
almost surely in high-dimensional models,*” and therefore is
not, by itself, an indicator of poor performance. Research has
hence focused on estimates of uncertainty as proxies for the
error incurred by using a given MLFF.**** When that error is
suspected to exceed tolerable margins, retraining with an
expanded training set can help extend the applicability of the
MLFF. In such scenarios, an efficient algorithm must aim
toward issuing only as many ab initio calculations as required,
while preventing waste of resources on redundant or irrelevant
configurations.**** Thus, the need for an uncertainty metric to
evaluate the quality of the results dovetails with the usefulness
of such metrics for identifying or even generating optimally
informative new configurations.* This makes stochastic struc-
ture searches naturally part of the domain of application of
active learning (AL) workflows, where an informed data selec-
tion is achieved through uncertainty estimation.*®

This work focuses on the less well-understood Ti-rich surface
reconstructions at the (110) orientation of SrTiOs;. Literature
describes numerous composition-related SrTiO;(110) surface
reconstructions that can be broadly grouped into two families,
characterized by Ti-poor (n x 1) and Ti-rich (2 x m) overlayers
on an otherwise unchanged bulk.>® Here, n and m denote the
number of (1 x 1) bulk unit cells covered in the [001] and [110]
directions, respectively. Fig. 1 shows examples of both varia-
tions. Ti-rich overlayers pose the particular challenge that, even
when the Ti-to-Sr ratio is controlled,** numerous reconstruc-
tions lacking corresponding DFT models can coexist. Here, we
again observe pronounced inhomogeneity in new STM
measurements and are able to identify varied reconstructions
(see Fig. S1 of the ESI}). We mitigate the lack of suitable
atomistic models of such inhomogeneous surfaces by
combining an evolutionary search algorithm with a transferable
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Fig. 1 Top view of SrTiO3(110)-(n x m) surface reconstructions that
are used for MLFF training: previously explored (4 x 1),22 (2 x 2) and
(2 x 3)b,2®> and newly identified (2 x 3)c and c(2 x 6) from this work. O
atoms are shown in red, Sr in green and Ti in blue. The blue polyhedra
depict TiOy polyhedra in all panels. Colored lines indicate the borders
of unit cells. For (e) only half the unit cell is outlined. See Fig. S10 of the
ESI¥ for the full unit cell and additional side views. (n x 1) overlayers
exclusively contain tetrahedrally coordinated TiO4 units, while
SrTiO3(110)-(2 x m) surface reconstructions are predominantly
composed of octahedrally coordinated TiOg units and in experimental
observations include at least one Sr atom per unit cell.**2*

MLFF to identify valid candidate structures. Transferability, in
particular, is an important prerequisite for minimizing the
computational cost associated with generating training data.
We demonstrate that by utilizing small, well-known recon-
structions and implementing a careful data selection routine
built on structural and spatially-resolved local uncertainties, we
can arrive at an MLFF capable of extrapolating to larger, more
complex structures. In the following, we first discuss the active
learning approach. We then proceed to show how structural
models reproducing the STM images can be systematically ob-
tained for all the coexisting surface structures.

2 Approach
2.1 Active learning workflow for the initial dataset

We set out to iteratively construct a versatile MLFF, which can
subsequently be used in combination with an evolutionary
search, specifically the covariance matrix adaptation evolution
strategy (CMA-ES),* to explore the different motifs encountered
on the inhomogeneous, Ti-rich SrTiO3(110) surface. In this
study, we refer to the suggested atomistic surface reconstruc-
tion models as “unit cells” and to the corresponding regions of
the STM images as “motifs”. Due to the complex nature of the
various surface reconstructions, the MLFF must be capable of
resolving a wide range of local environments. Additionally,
given the nature of the evolutionary search, which produces
more diverse and possibly unphysical structures than, e.g,
molecular dynamics, intermediate configurations are likely to
exhibit unusual properties, such as unphysical bond lengths.
For that reason, the MLFF needs to be robust and the under-
lying training data diverse, making the construction of a suit-
able training set containing ab initio energies and forces far
from trivial. Furthermore, we aim to explore (2 x 5) surface
reconstructions with up to 450 atoms per unit cell, where the
computational costs associated with DFT evaluation is

© 2024 The Author(s). Published by the Royal Society of Chemistry
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prohibitive for constructing diverse training databases. The
MLFF must therefore also be able to generalize from smaller
training structures to the larger unit cells explored.

We started from the basis of our previous results on a Ti-poor
reconstruction of SrTiO3(110), namely the (4 x 1) (see
Fig. 1(a)).* There, overlayers were symmetrically set up on
opposite sides along the surface normal, attached to bulk-like
layers in between. All structures in this study are constructed
in the same manner as introduced in ref. 35. We constructed
a database of 495 structures, re-evaluated using VASP*” with the
r’SCAN functional.*® This initial DFT database is illustrated in
Fig. 2 together with a 2D projection of the spherical Bessel
descriptors of the local environments of Sr atoms obtained
using the uniform manifold approximation and projection
(UMAP) method for dimension reduction.*

Using these data we trained a ten-member committee based
on the descriptor-based NeuralIL architecture.**® In committees
the uncertainty is approximated by training a set of models that
vary by initialization seed, hyperparameters, architecture, or
training data, and monitoring their disagreement on a predic-
tion to obtain the model variance. The majority of the compu-
tational cost incurred when training a descriptor-based model
can be attributed to the calculation of the descriptors and the
associated vector-Jacobian product operator. In this study, we
vary the initial seed to enable NeuralIL's particularly efficient
committee implementation that reuses descriptor encodings
for all members, so that committees needed for uncertainty
estimation can be trained with a negligible performance
penalty.*®

View Article Online
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We then generated CMA-ES trajectories for the (2 x 2),
(2 x 3)aand (2 x 3)b reconstructions, see Fig. 1. The CMA-ES*
samples a population of 1 individuals, x[‘f’), k=1, ..., A, for every
generation g from the multivariate normal distribution

X N(m@’*‘k [a<g*1>}zc<g*1>)7 (1)

with distribution mean m, step size ¢ and covariance C. In the
present case, the x{é’) are the Cartesian coordinates of the atoms
as explained in the Technical details section. The population
size A, initial mean m®, and initial step size ¢©, are user-
defined hyperparameters. We refer to the initial mean as the
founder structure and data generation started from founders
that are variations of published structures.”® The mean is
updated to move the average towards individuals/structures
with low energy. Similarly, the covariance matrix is updated to
let it reflect successful steps according to the CMA-ES
algorithm.*

We then iteratively added structures from the MLFF backed
CMA-ES trajectories using the committee uncertainty estimate
aggregated structure-wise*>*

N
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to identify structures that should be added to the training data.
Here, N is the number of atoms and sj(k) the committee standard
deviation of the k-th component of the force on atom . In total,
519 (2 x 2) and 775 (2 x 3) training structures were generated
during this process. The dataset was then refined by
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Fig.2 The upper row shows a two-dimensional UMAP representation of the spherical Bessel descriptors of the local environments of Sr atoms.
The background of all plots displays the training data as fitted utilizing a log—log hexbin approach, with darker shading indicating higher data
density per bin (right color bar). In the foreground of the first four columns, colored dots depict the local environments of Sr atoms corre-
sponding to the structures labeled (n x 1), (2 x 2), (2 x 3) and “(2 x 3) (explore)”, respectively. Here, the colors indicate each atom's distance from
the center of the surface slab (left color bar). Column (e) features the local Sr descriptors of geometry-optimized (2 x m) results (including ¢ (2 x
6), (2 x 4)c, c(2 x 8), (2 x 4)d, (2 x 4)f, (2 x 5)b, and (2 x 5)c projected on the same 2D UMAP background as black crosses. The red crosses in the
same subplot depict the same for randomly chosen individuals from earlier generations of (2 x 4)f evolution runs, including generations 10, 25,
and 50. In the bottom row, the active learning workflow is schematically illustrated. The circle arrows represent iterations, the stacked paral-
lelograms depict MLFF committees, and the CMA-ES blocks indicate parallel and/or sequential execution of multiple CMA-ES runs.
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incorporating 141 (5 x 1) and a further 296 (4 x 1) structures
from ref. 35 into the training data in order to reinforce perfor-
mance on SrTiO;(110)-(n x 1) structures.

The structures added to the training data are illustrated in
Fig. 2 (top row) using the 2D UMAP projection. The background
shows the distribution of all SrTiO3(110) data from the final
dataset through hexagonal binning. The foreground of subplots
(a)—(c) depicts the local Sr environments of the individual (n x
1), (2 x 2) and (2 x 3) data sets, with the colors indicating the
distance of each Sr atom from the center of the surface slab. It
can be seen how the data from each reconstruction used for the
initial dataset contributes their own distinct environments. Not
surprisingly, the Sr in the (2 x 3) overlayer reconstructions,
depicted as green points in the top left of Fig. 2(c), is particularly
distinctive, since it did not occur in the (n x 1) or (2 x 2)
training data. In the bottom row of Fig. 2, the workflows used
for generating the data depicted directly above them are illus-
trated, with (b) and (c) generated by different iterations of the
same workflow.

2.2 Exploration-based active learning

Using the 2226 structures in the training database, we trained
a five-member committee using the equivariant message-
passing neural network framework MACE.* MACE provides
significantly improved accuracy and transferability and is more
data-efficient than NeuralIL due to its equivariant architecture
and custom-learned atomic representations. The mean absolute
error in the force components, fyag, for the (4 x 1), (2 x 2) and
(2 x 3) sets decreased by a factor of 2.5 when moving from
NeurallL to MACE with the same training data (see Table S27).
Notably, the aggregated force uncertainty estimates obtained
from MACE and NeurallL committees, eqn (2), exhibit strong
correlations for all highly uncertain configurations (see Fig. S3
of the ESIT). This underscores the efficiency of constructing the
database by using uncertainties derived from the NeuralIL
committee. The initial MACE model demonstrated strong
performance on test data and could reliably be applied to
investigate (n x 1) and (2 x 2) structures using the CMA-ES with
relatively large population sizes, A = 100, and initial step sizes,
o e [0.1, 0.35].

We then performed exploratory CMA-ES searches on the (2 x
3) surface with population size 2 = 100, and varying the initial
step size in the range of (¥ € [0.1, 0.5]. To expand the search
space, we developed a more generic founder structure (pictured
in Fig. S7 of the ESIt), rather than relying on published findings.
From these searches, we identified the new SrTiO5(110)-(2 x 3)c
reconstruction, Fig. 1(c). A key feature of this structure is the
alignment of the overlayer Sr atoms relative to the topmost TiO,
rows. Geometry optimizing the (2 x 3)b and (2 x 3)c structures
using VASP, reveals that the new (2 x 3)c has a lower energy of
AE = 160 meV per (1 x 1) bulk unit cell.

While two of the 35 initial CMA-ES searches produced the
new stable configuration, a majority of these evolutionary
searches were found to be prone to instability, specifically to the
expulsion of an Sr atom (see inset structure in Fig. 3). Although
problematic structures could be identified manually, an active
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Fig. 3 Spatially resolved uncertainty of a CMA-ES trajectory of
a mirror-symmetric SrTiO3(110)-(2 x 3) structure. The gray lines show
the locally aggregated uncertainty s/°° of each atom. The mean of all
local uncertainties, i.e., the global structure uncertainty s, is depicted as
a dashed red line, with three times their standard deviation o shaded in
blue. The local uncertainty associated with the overlayer Sr atom is
highlighted in black. The inset shows a structure at generation 160 with
the atoms colored according to the local uncertainty estimate. The
color scale ranges from dark-blue (lowest) to yellow (highest local
uncertainty).

learning procedure needs to be able to identify and incorporate
such structures into the training data based on computed
quantities such as model uncertainties. Interestingly this
behaviour was not reflected in the aggregated structure uncer-
tainty s, eqn (2), as shown with the red line in Fig. 3. We
therefore calculated spatially resolved atomic uncertainties by
aggregating over neighboring atoms within a cutoff radius*? (in
the following set to 4 A) instead of over the entire structure

NJ
glocal — % DI 3)
b n kexyz

for atom j with N; neighbors. Recently, such locally aggregated
uncertainties and errors were shown to have a direct monotonic
correlation.*? This is in contrast to the uncertainties and errors
of the individual force components, s}k), which only feature an
asymmetric relationship, where large errors occur predomi-
nantly for large uncertainties. However, large uncertainties do
not necessitate large errors, causing many false positives when
trying to select high-energy structures.”” Locally aggregated
uncertainties thus allow us to reliably identify high-error sub-
regions without false positives.

The local uncertainties, eqn (3), clearly identified the
misinterpretation of unphysical local structures which led to
escalating errors during the evolution and are thus a reliable
indicator for atoms being expelled from the surface. A visual
representation of the evolution of local and global uncertainty
within a CMA-ES run is given in Fig. 3. The solid black line
tracks the local uncertainty associated with the single Sr atom in
the overlayer, siocal, Notably, siocal begins to increase after
generation 70 and exceeds three times the standard deviation of

© 2024 The Author(s). Published by the Royal Society of Chemistry
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the local uncertainties (30;) after generation 90. This behavior is
further illustrated by the atomic structure shown in the inset: at
generation 160 even the configuration with the lowest energy
features a bright yellow sphere, indicating the high local
uncertainty in the force estimate for the Sr atom. The rise in
local uncertainty corresponds to environments that the model
is increasingly uncertain about but which are localized enough
for them to have a low weight in the globally aggregated
uncertainty, eqn (2). Once an atom is separated from the rest by
more than the cutoff radius of the underlying MLFF model, its
contribution to the energy and forces, and thus also to the local
and global uncertainty, becomes zero.

In an additional AL step we then identified trajectories where
the local uncertainty associated with at least one atom j excee-
ded three standard deviations of all local uncertainties (s;'** >
305). We randomly sampled structures from 40 CMA-ES evolu-
tion trajectories, with 32 of these structures exhibiting similar
local uncertainty behaviour as shown in Fig. 3. The sampling
was performed uniformly but was restricted to intact surface
slabs, meaning that generations following Sr expulsion were
excluded. The 2D UMAP of the local Sr descriptors within these
structures is shown in Fig. 2(d), highlighting the added diversity
that was achieved. With these additional 392 structures, the full
training set consisted of 2618 configurations. This was used to
train the final MACE model which was utilized for all further
CMA-ES runs. The complete database and trained model are
made available on Zenodo.*

3 Technical details
3.1 CMA-ES

We applied CLINAMEN?2,** a functional-style Python framework
that interfaces to different codes for loss evaluation in
a straightforward manner, to perform the covariance matrix
adaptation evolution strategy (CMA-ES)** for all structure
searches in this study.

Surface slabs were set up as illustrated in Fig. S8.1 For all
system sizes an anchor region of fixed atom positions was
defined at the center of each slab, consisting of bulk-like layers
that remained unchanged. The Cartesian coordinates of the
atoms in the over- and attachment-layers are the degrees of
freedom, i.e., the individuals x{¥, sampled from the multivariate
normal distribution. Opposite sides of all slabs were made
symmetric. Further symmetry elements (e.g., mirror planes)
were leveraged where feasible to drastically reduce the number
of degrees of freedom in larger unit cells.

3.2 DFT

We used VASP* version 6.2.0 with the r’'SCAN functional*® for
all ab initio calculations in this study, including single-shot
structure evaluations for training and test data and geometry
optimization of low-energy candidate structures. The energy
cutoff was set to 440 eV, the width of Gaussian smearing to
0.02 eV, and EDIFF to 10 °. To ensure compatibility of DFT
energies and forces calculated for different system sizes, we

© 2024 The Author(s). Published by the Royal Society of Chemistry
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utilized the optimized k-point grid generator by Wang et al.,
with the minimum distance set to 25 in the PRECALC input.*

3.3 Machine-learned force fields

All NeuralIL models in this work used 7.y = 4.0 A and 7, = 5,
with ResNet core widths set to [256, 128, 64, 32, 32, 32, 16].
Training on forces was run for only 101 epochs due to the
replacement of the standard Adam optimizer with the versatile
learned optimizer VeLO,*® which drastically reduced the
number of epochs needed for convergence by orders of
magnitude and eliminated the need to set up a learning rate
schedule.*

With the majority of hyperparameters set to default values,
MACE trainings were performed with a cutoff radius 7y, = 4.0
A and two hidden layers set to 128 channels for scalar and vector
properties each. The maximum number of epochs was set to
1200 with an early stopping patience of 50, and energy and force
weights of 1 and 100, respectively. Afterwards, training was run
for an additional 300 epochs with an increased energy weight of
1000 and an unchanged force weight.

Notably, as mentioned in the workflow description, training
and test data are generated in a manner that allows the result-
ing MLFF to serve as the backend for CMA-ES runs, instead of
DFT codes. This means that the MLFF needs to be able to reli-
ably evaluate configurations far from the equilibrium, which is
achieved by utilizing the CMA-ES itself for data generation. At
each step, training and test data belong to the same
distribution.

To eliminate unusable or obstructive data, all structures with
force components larger than 500 eV A™?, as well as those that
do not converge with the chosen parameters, are excluded.

3.4 Evolution details

In total, approximately 3000 exploratory CMA-ES runs were
performed on various system sizes and founder structures. For
each founder, runs were started for different random seeds to
leverage the stochasticity of the method. Population sizes were
varied between A € {25, 35, 50, 100}, with the choice of step size
o depending on symmetry. Whenever mirror symmetry was
enforced, ¢® was capped at 0.35 A, while evolutionary searches
without symmetry were performed for step sizes up to 0.5 A. The
lower limit for ¢(*) was 0.1 A for all cases.

The computation of one CMA-ES trajectory starting from
a founder containing 450 atoms and running for up to 1000
generations, with population size A = 100, required only
between one and three hours on one NVIDIA A40 GPU with 46
GiB memory when utilizing MACEg,;, depending on early
stopping. For that reason, it was possible to freely explore
various founders to then select highlights for further investi-
gation using DFT.

3.5 Experimental methods

SrTiO;(110) single crystals (CrysTec GmbH, 0.5 wt% Nb,Os, 5 X
5 x 0.5 mm?®, one-side polished, miscut less than 0.3°) were
prepared ex situ by sonication in heated neutral detergent (3%
Extran® MAO02, diluted in ultrapure water, 2 x 20 min) and

Digital Discovery, 2024, 3, 2137-2145 | 2141
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ultrapure water (milli-Q™, 10 min). Subsequent boiling for
10 min in milli-Q™ water removed commonly observed CaO
contamination. The samples were then mounted on flag-style,
HNOj-cleaned Nicrofer® sample plates with Nicrofer® clips,
and inserted in a UHV setup comprising three interconnected
chambers: (i) a preparation chamber (base pressure below 10~ *°
mbar) equipped with sputtering-annealing facilities and an
evaporator for Sr deposition; (ii) an analysis chamber (base
pressure below 5 x 10~ ' mbar) equipped for STM (SPECS
Aarhus STM 150), low-energy electron diffraction (LEED)
(Omicron SpectaLEED), and X-ray photoelectron spectroscopy
(XPS) (nonmonochromatic dual-anode Mg/Al K« source, SPECS
Phoibos 100 analyzer, normal emission); (iii) a pulsed-laser
deposition (PLD) chamber (base pressure below 2 x 107°
mbar).

After a few cycles of sputtering-annealing (6 x 10~° mbar Ar,
1 keV, 5-10 pA, 10 min, followed by 1 h at 1000 °C, 6 x 10~°
mbar O,), the surface cleanliness was verified through XPS and
STM. The surface stoichiometry was then adjusted via sub-
monolayer deposition of Sr (via molecular-beam epitaxy)** or
TiO, (via PLD).*® The resulting surface periodicity was verified
by LEED and STM. The surface presented in this work was ob-
tained starting from a mixed (4 x 1)/(5 x 1) reconstruction. 1.4
ML Ti was deposited in PLD by keeping the sample at 580 °C in
a background oxygen pressure of 6 x 10~ ° mbar O,, followed by
ramp down at 80 °C min ™.

STM images were acquired in constant-current mode with
homemade, electrochemically etched W tips. The tips were
prepared in situ by Ar sputtering (1 pA, 30 min). Voltage (up to 10
V) or current pulses (up to 10 nA) were applied while in
tunneling contact to reshape the tip and improve resolution.
Positive bias voltages correspond to tunneling into the empty
states of the sample.

4 Results and discussion
4.1 Structure search

The final MACE model described above enabled us to perform
a large number of structure searches for SrTiO3(110)-(2 x m), m
€ {3, 4, 5}, with initial step sizes in the range of ¢® € [0.1, 0.5].
The choice of population size 4 strongly influences the stability
of the evolution trajectories, especially for such rough loss
landscapes. Moreover, a larger population size increases the
likelihood of identifying the most stable structure, rather than
other stable structures nearby on the loss surface. Because of
this trade-off, we performed the same searches with population
sizes between 25 and 100, as outlined in the Technical details.

The UMAP in the upper row of Fig. 2(e) illustrates the variety
of local Sr environments encountered in randomly selected
structures chosen from early generations (10, 25, and 50) along
these trajectories (red crosses). In comparison, the local envi-
ronments in geometry-optimized structures of different unit
cell sizes are clearly more uniform (black crosses). Throughout
all CMA-ES searches, spatially resolved local uncertainty, along
with the loss, served as an indicator for structure stability.
Importantly, after adding the structures from the exploration-
based active learning in the (2 x 3) cell, Fig. 2(d), to the
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training data, the MLFF learned to avoid regions leading to the
previously observed overlayer instability. Fig. S4 of the ESI}
shows uncertainty trajectories for (2 x 3), (2 x 4), and (2 x 5)
runs, where no local uncertainty exceeds 30s. Of particular
interest is the (2 x 3) trajectory, which still illustrates that the Sr
environment is the most uncertain, but does not escalate
anymore (compare to Fig. 3). Importantly, this demonstrates the
transferability of the model when extrapolating to reconstruc-
tion with larger unit cells.

With this approach, we were able to discover the new
candidate structures shown in Fig. 4, namely (2 x 4)d (yellow),
(2 x 4)e (orange), c(2 x 8) (blue), and (2 x 5)c (white). All of
these structures were then relaxed with VASP and will be
compared to experiment in the following. They are available on
Zenodo.”

4.2 Comparison to experiment

Fig. 5 depicts a high-resolution STM image that illustrates how
the preparation of Ti-rich surfaces results in a mixture of
various surface structures. In this image, local symmetries with
(2 x 4) (orange and yellow), (2 x 5) (white), and c¢(2 x 8) (blue)
motifs can be observed. In the STM images of the Ti-rich
SrTiO3(110) surfaces, the Sr atoms and TiO, rows (henceforth
referred to as “TiO ridges”) are visible as bright spots. In the
cells shown in Fig. 5, the topmost TiO ridges tend to be aligned
with the Sr atoms. This feature is incompatible with the STM
image obtained from the published (2 x 5)b structure,* where
the TiO ridges are offset with respect to the Sr atoms.

In experiments, it is rare to encounter a surface composition
that precisely matches the stoichiometry of a given thermody-
namically stable surface reconstruction. Rather, the average
composition observed in experiments often lies between two
specific reconstructions, implying the coexistence of these
reconstructions on the surface. Additionally, kinetic limitations
may lead to the coexistence of even more surface reconstruc-
tions, with local variations in composition, while preserving the
overall average surface composition.

To facilitate the investigation of these coexisting recon-
structions, founder structures for SrTiO;(110)-(2 x 4) and
-(2 x 5) cells were created as described in Section S3 of the ESL.{
In short, they were generated by varying initial atom positions
and adjusting the stoichiometry (addition or removal of TiO,
units). Details regarding the evolutionary searches, including
the number of runs, population sizes A, and step sizes ¢ are
summarized in the Technical details. All newly proposed
structures were tested by comparing the corresponding simu-
lated STM images with the experimental data in Fig. 5. Impor-
tant criteria for matching were the position of the Sr adatoms
and their relative alignment to the TiO ridges.

For (2 x 5) systems, the initial placement of “TiO, vacancies”
resulted in distinct founders, with the vacancies positioned either
in-line or out-of-line relative to the overlayer Sr in the [110] direc-
tion. All sensible configurations resulting from these founders
yielded significantly higher energies than the (2 x 5)b from ref. 25.
However, an alternative candidate structure, (2 x 5)c (see Fig. 4),
could be identified due to its distinct features. There, in contrast to

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Top view of SrTiO3(110) overlayer candidates. (a) and (b) with (2 x 4) bulk periodicity. (c) With centered (2 x 8) periodicity and (d) with (2 x
5) periodicity. The orange and white rectangles and the blue rhombus indicate (parts of) the respective unit cells. Only half of the c(2 x 8) unit cell

is outlined. See Fig. S11 of the ESIt for the full picture.

Fig. 5 Different regions of the same STM measurement of Ti-rich
SrTiO3(110), showing (2 x 4) (orange and yellow), c(2 x 8) (blue), and (2
x 5) (white) motifs. The colored dashed lines mark the border of
simulated images, overlaid with 50% transparency, colored solid lines
represent the model unit cells or parts thereof in the case of c(2 x 8).
Imaging parameters: Viample bias = +1.8 V, I = 0.04 nA. Simulated
images were created using the Tersoff-Hamann approximation.>®
Alternative versions of this figure, including without overlays, with fully
opaque simulation images or the topmost atoms overlaid, as well as
a larger cutout from the experimental image, are shown in the ESI as
Fig. S1.¥

(2 x 5)b, the overlayer Sr atom is aligned with a TiO ridge rather
than being offset. While the energy difference between the two is
AE = 208 meV per (1 x 1) bulk unit cell in favor of (2 x 5)b, the

© 2024 The Author(s). Published by the Royal Society of Chemistry

new (2 x 5)c clearly fits regions of the inhomogeneous surface, as
shown in Fig. 5.

The investigation of SrTiO3(110)-(2 x 4) identified two stable
surface structures, labeled (2 x 4)d and (2 x 4)e, both shown in
Fig. 4. Although the difference in DFT energies between them is
vanishingly small - only 2 meV per (1 x 1) bulk unit cell in favor
of (2 x 4)d - the arrangement of the overlayer atoms is distinct.
The most noticeable differences include the relative position of
the overlayer Sr atom with respect to the TiO ridges and the
resulting positional changes. Additionally, the centered unit cell
c(2 x 8) was found as a candidate structure for explaining
regions on the STM measurement showing a shift between Sr
positions.

The newly proposed structures (2 x 4)d, (2 x 4)e, c(2 x 8),
and (2 x 5)c thus provide previously missing atomistic models,
which we successfully matched to the various experimentally
observed motifs.

5 Summary and conclusions

We successfully integrated neural-network force fields with the
covariance matrix adaptation evolution strategy to develop an
accurate and transferable machine-learned force field suitable
for the exploration of Ti-rich SrTiO3(110) surface reconstruc-
tions. The required training data were generated through an
active learning workflow, which involved repeatedly performing
CMA-ES runs on SrTiO3(110)-(2 x 2) and -(2 x 3) founder
structures to gather uncertain and diverse data. During this
process, invariant, descriptor-based NeurallL. committees were
utilized for energy evaluation and uncertainty estimation. The
collected data was then used to train an equivariant MACE
model with learned representation suitable for production
runs.
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To fine-tune the training data in a further AL step, and
thereby enhance model performance, we employed spatially
resolved uncertainty estimation to identify underrepresented
local environments which global uncertainty measures had
failed to resolve. The resulting MLFF, MACEg¢,;, was trained on
2618 structures spanning SrTiO5(110)-(n x m), n € {4, 5}, m € {2,
3}

We successfully identified two not previously reported
candidates for stable (2 x 3) reconstructions. These structures
were then used to extrapolate to (2 x 4) and (2 x 5) founder
structures for evolutionary exploration. With this approach, we
found new stable candidate structures for SrTiO3(110)-(2 x 4)
and -(2 x 5), explaining different experimentally observed
regions of the inhomogeneous Ti-rich surface. This method
could be extended to other multi-element oxides featuring
complex, composition-related, and possibly coexisting surface
reconstructions characterized by large motifs.

Data availability

The trained models, training and test data, and POSCAR files
containing founders and results are available on Zenodo. This
dataset also includes an example evolution script to be used in
combination with CLINAMEN2 and MACE.*
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