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Machine learning (ML) models have provided a highly efficient pathway to quantum mechanical accurate

reaction barrier predictions. Previous approaches have, however, stopped at prediction of these barriers

instead of developing predictive capabilities in reactivity analysis tasks such as distortion/interaction–

activation strain analysis. Such methods can provide insight into reactivity trends and ultimately guide

rational reaction design. In this work we present the novel application of ML to the rapid and accurate

prediction of distortion and interaction DFT energies across four datasets (three existing and one new

dataset). We also show how our models can accurately predict on unseen, high impact literature

examples where DFT-level distortion/interaction analysis has previously been used to explain reactivity

trends for cycloadditions. This work thus provides support for ML to be utilised further in reactivity

analysis across different reaction classes at a fraction of the cost of traditional methods such as DFT.
Introduction

The use of machine learning (ML) across the vast catalogue of
chemical problems has increased substantially in recent years
given the potential for both rapid and accurate predictions with
research areas including solvation effects,1 yield predictions,2,3

quantum chemical property prediction,4,5 machine learned
forceelds,6 and high-level energy predictions.5,7–9 One area in
which ML has delivered accurate and computationally efficient
results is in the prediction of reaction barriers derived from, for
example, density functional theory (DFT) or coupled cluster
(CC) calculations.8–15 Various ML techniques have been
employed to successfully predict these reaction barriers
including standard ML techniques as well as transfer learning
(TL) for working in low data regimes.8–11,13

However, these ML studies seldom go further than reaction
barrier prediction. Thus, an area which remains relatively
untouched by ML is reactivity analysis. To the best of our
knowledge, only one paper has utilised ML in this context for
energy decomposition analysis, however this work focused on
minimum energy and not transition state (TS) structure anal-
ysis.16 Common computational methods used to gain insight
th, Claverton Down, Bath, BA2 7AY, UK.
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into the origins of chemical reactivity include Natural Bond
Orbital (NBO),17,18 Non-Covalent Interaction (NCI),18–21 and
Distortion/Interaction–Activation Strain (DIAS) analysis
(Fig. 1).22–31 In the DIAS model, the reaction barrier can be
decomposed into reactant distortion energies (strain) and
interaction energy. The former arises from the conformational
changes that occur during the reaction and the latter is the
interaction between these distorted structures. The reaction
barrier can therefore be considered as a balance between
distortion and interaction energies. Breaking the barrier down
into these energy components can provide insight into the
factors that govern reactivity and is a particularly popular
method of analysis in the study of cycloadditions.22,23,27,31–34 As
an example, in a study of the reaction of cycloalkenones with
Fig. 1 The DIAS model explained graphically. The energy required for
the reactants to distort (red) into the correct geometry added to the
interaction energy (green) equals the activation energy (purple).
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Fig. 2 How the distorted reactants at the TS were separated. In step
one, the TS displacement vectors are used to generate reactant- and
product-like geometries from which adjacency matrices are then
created and compared. Any new bonds formed are highlighted and
designated as the reaction centres. The associated atoms are then
used to separate the distorted structures from the TS geometry and
generate new Gaussian input files (step two).
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various cyclic dienes,31 it was found that the interaction ener-
gies across the reaction series were almost identical. Therefore,
the differences in reaction barrier arise from changes in dien-
ophile and diene distortion energies. In a related study of the
cycloaddition reaction of cyclopropenes with butadiene, the
distortion energies of the endo and exo reactions were nearly
identical, with the differences in reaction barrier (endo reac-
tions favoured by 2–3 kcal mol−1) arising from the difference in
interaction energies.35 This type of analysis therefore provides
detailed information on reactivity trends which can aid in the
rational design of new reactions.

Similar analysis has been applied to many other reactions
such as: SN2/E2,24,36 iridium-catalysed C–H borylation,29

palladium-catalysed cross-coupling,37 asymmetric prop-
argylation38 and allyboration,39 and nickel-catalysed amide (a
functional group that is ubiquitous in drug discovery) C–N bond
activation.40 However, computing accurate distortion and
interaction energies requires the use of expensive quantum
mechanical calculations (typically DFT) which prevents the
routine use of this reactivity analysis on large datasets. ML may
instead offer a rapid approach to high accuracy distortion and
interaction energy predictions.

In this work, we report the rst example of predicting
distortion and interaction energies using ML. Models are built
to predict DFT energies from rapid semi-empirical quantum
mechanical (SQM) calculations for four distinct datasets (of
which one is a new dimethyl malonate Michael addition data-
set). The models yield high accuracy distortion and interaction
energies for all four datasets with further insight available from
the computed SQM TSs. Finally, we show that performance
remains high when the models are applied to two unseen
reaction sets from the literature.

Methodology

We utilised pre-existing datasets for three chemical reactions:
nitro-Michael addition (ds1),8 Diels–Alder (ds2),9 and [3 + 2]
cycloadditions (ds3).41 Ds3 geometries were available at the DFT
level of theory therefore we performed SQM calculations on the
reported structures (see ESI, Section 1.3† for full information).
The newly created dataset is a collection of dimethyl malonate
Michael addition reactions (ds4) which are a class of reactions
of particular importance in polyketide biosynthesis.42 Reactant
and TS geometries were generated for 1000 dimethyl malonate
Michael addition reactions (Fig. 3a) using Schrödinger's R-
group enumeration tool.43 In this, we varied four positions on
the a,b-unsaturated carbonyl Michael acceptor (MA) using
synthetically relevant and accessible functional groups.44–46

Once generated, Schrödinger's MacroModel47 was used to con-
formationally search reactant and TSs using the OPLS3e force-
eld.48 The lowest energy conformation for every structure was
then optimised with AM1 49 and uB97X-D/def2-TZVP.50,51 Single
point energy (SPE) calculations at the same levels of theory were
performed on these structures to account for solvent effects
using the integral equation formalism of the polarisable
continuum model (IEFPCM) with water.52 The combination of
DFT and an implicit solvent model was chosen due to its good
2480 | Digital Discovery, 2024, 3, 2479–2486
agreement with experiment as reported within the literature for
this type of chemistry.53–55 All calculations were performed with
Gaussian16 (Revision A.03 56 and Revision C.01 57). Energies and
quasi-harmonic free-energies (298.15 K, 1 mol l−1 concentra-
tion) were calculated using GoodVibes.58 Further details on this
dataset are provided in the ESI, Section 1.4.†

For the distortion/interaction analysis, the distorted reac-
tants at the TS must be separated to perform the necessary
calculations. Whilst there is python code available for this
function,59 it requires a detailed input le about the given
chemical system and does not provide a mapping of atom
numbers from a TS to its respective reactant and distorted
structures. We developed an approach that utilises the
frequency vibrations of the TS as detailed in Fig. 2 (the code is
available on GitHub (https://github.com/the-grayson-group/
distortion-interaction_ML)). The main benet of our code is
that it can provide us with a mapping of atom numbers
between the reactant, distorted, and TS structures regardless
of the initial atom numbering. This is crucial for ML
approaches that use knowledge of specic atoms. Dataset ds3
contained arbitrary atom numbering and our approach for
determining the common atoms of this dataset is
summarised in the ESI, Section 1.3.† Aer extracting the
distorted structures from each TS, SPE calculations were
performed at the same level of theory that the TS and
reactants were calculated at and in solvent with energies then
extracted with GoodVibes. The distortion and interaction
energies were calculated as outlined in ESI Section 2.†

From the SQM optimised reactants, distorted reactants, and
TSs, atomic and physical organic chemical features were
extracted using Morfeus60 and cclib61 python packages. The
features extracted and the entire procedure are outlined in the
ESI, Section 4.1.† Features were standardised before three sci-
kit-learn62 regression algorithms and two TensorFlow63 neural
networks (NNs) were trained. The targets were also standardised
for the NNs.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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The scikit learn algorithms were ridge regression, kernel
ridge regression (KRR) with a radial basis function (RBF) kernel,
and support vector regression (SVR) with the RBF kernel. These
models were chosen due to their success in predicting reaction
barriers in previous work.8,9,64 The link between reaction
barriers and distortion/interaction energies suggests that
similar models may also be able to predict these new targets.

The models were hyperparameter tuned and performance
wasmonitored on a validation set. The nal model performance
was evaluated on a held-out test set. For a full description of the
ML procedure see ESI, Section 4.†
Results and discussion
Pre-ML metrics

Prior to training the ML models, we evaluated how closely the
SQM approximated the DFT calculations. This gave us
a rational, dataset specic context to consider alongside the
widely accepted 1 kcal mol−1 threshold typically used in evalu-
ating reaction barrier/energy predictions.65,66

For ds1,8 ds2,9 and ds3,41 their pre-ML SQM-DFT metrics are
reported in the literature, Table 1, and in the ESI, Section 4.3.†

For ds4, the pre-ML AM1-DFT MAE for reaction barrier
prediction is 10.46 kcal mol−1. The spread of distortion and
interaction energies are shown in Fig. 3. Fig. 3c and e highlight
that AM1 signicantly overestimates the dimethyl malonate
distortion and interaction (pre-ML MAEs of 3.70 and
10.83 kcal mol−1 respectively) energies. The interaction energy
is calculated from the reaction barrier and distortion energies
thus, its pre-ML AM1-DFT MAE could be impacted by the
compounding of errors from the lower level of theory across
multiple calculations. It could also be rationalised in part by the
inability of the parent method (Hartree Fock) to account for
electron correlation sufficiently and thus important interac-
tions are not well captured.49,67 The interaction energies are also
overestimated by AM1 across the other datasets. For full infor-
mation on pre-ML metrics see ESI, Section 4.3.†

In this work we propose that if AM1 can provide rapid and
approximate values relative to DFT, ML can be used to bridge
Table 1 Best model performance for predicting distortion and interactio
test set range to aid cross-dataset comparisons. These metrics are for a

Datasets
Pre-ML AM1-DFT
MAE (kcal mol−1)

ds1 MA 4.45
Nitromethane (nucleophile) 2.57
Interaction 7.60

ds2 Diene 2.80
Dienophile 2.04
Interaction 9.87

ds3 Dipole 3.59
Dipolarophile 3.81
Interaction 20.01

ds4 MA 4.07
Dimethyl malonate (nucleophile) 3.70
Interaction 10.83

© 2024 The Author(s). Published by the Royal Society of Chemistry
this gap and give accurate distortion and interaction energy
predictions at a fraction of the cost of DFT.
ML for ds1 and ds4 distortion energy prediction

As previously shown, SQM calculations can, when coupled with
ML, provide DFT-accuracy reaction barrier predictions for ds1–
3.8,9,15 To further show the value of our hybrid SQM-ML
approach, we rst built models to predict the DFT reaction
barriers for the new dataset (ds4). To provide a fair represen-
tation of model performance, ve random seeds (RS) were
tested for each model throughout this work (full results for ds1
and ds4 reaction barrier predictions are averaged and can be
found in the ESI, Section 4.3, Tables S4 and S7† respectively).
The best performing model for DG‡ prediction on ds4 is SVR,
which achieved an averaged test set MAE of 0.97 ±

0.13 kcal mol−1 which is below the 1 kcal mol−1 accuracy
threshold.

For ds4, models were trained to predict distortion energies
for the dimethyl malonate nucleophile and the MA. The best
predictions were obtained once again using SVR with a test set
MAE of 0.50 (RS = 23) and 1.05 kcal mol−1 (RS = 14) for
nucleophile and MA respectively (Fig. 4). When averaged over
ve random states, test set predictions were 0.54 ±

0.06 kcal mol−1 and 1.27 ± 0.17 kcal mol−1 for nucleophile and
MA, respectively. Overall, these results are a signicant
improvement on the pre-ML metrics. For full metrics and
gures see ESI, Section 4.3 and Table S7.†

Similar performance was seen when models were built to
predict the distortion energies of the nucleophile andMA of ds1
(see Table 1). The low test set MAEs seen for the ds4 but espe-
cially the ds1 nucleophiles are likely due to the minimal
conformational exibility of these species which results in fewer
distorted conformations across the entire dataset thus making
the task of correcting their SQM energies an easier one.
ML for ds2 and ds3 distortion energy prediction

We utilised two pre-existing datasets of Diels–Alder reactions
(ds2) and [3 + 2] cycloadditions (ds3) to predict diene/
n energies for each dataset including test MAE as a percentage of the
ll SVR models

Average SVR test
MAE (kcal mol−1)

Average test set range
(DFT) (kcal mol−1)

Test MAE as %
of test set range

1.35 2.60 to 28.26 5.3
0.36 0.73 to 5.36 7.8
1.59 −23.11 to −0.09 6.9
0.33 12.12 to 26.54 2.3
0.34 7.01 to 21.92 2.3
0.50 −17.40 to −3.43 3.6
2.55 0.98 to 41.25 6.3
2.37 0.13 to 35.33 6.7
2.46 −43.62 to −7.92 6.9
1.27 7.30 to 39.64 3.9
0.54 3.43 to 13.98 5.1
1.23 −26.78 to −5.05 5.7

Digital Discovery, 2024, 3, 2479–2486 | 2481
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Fig. 3 C–C bond forming dimethyl malonate Michael addition reaction and R groups used to generate the dataset (a), an example of a TS (b), and
the spread of the dimethyl malonate nucleophile distortion (c), MA distortion (d), and interaction (e) energies (blue and red indicate AM1 and DFT
energies respectively).
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dienophile and dipole/dipolarophile distortion energies,
respectively.

The pre-ML MAEs for the diene and dienophile distortion
energy for ds2 were 2.80 and 2.04 kcal mol−1 respectively (Table
1). Across all tested models, averaged predictions of the diene
distortion energies for ds2 were well below 1 kcal mol−1; the
best performing model was again SVR with an averaged MAE of
0.33 ± 0.08 kcal mol−1 (the results of the best models are
visualised in Fig. 5). Ridge regression had the highest averaged
error across all predictions (0.61 kcal mol−1) however, its
performance is still signicantly below the 1 kcal mol−1 accu-
racy threshold that has typically been used for energy
predictions.

SVR is again the best performing model when predicting
dienophile distortion energies with KRR also performing
strongly (MAEs of 0.34 ± 0.05 and 0.38 ± 0.05 kcal mol−1

respectively). Greater uctuation in model performance is seen
when predicting the dienophile distortion energies, however,
SVR tends to perform consistently well across the diene and
dienophile distortion energy prediction tasks.

Ds3 provides an interesting challenge due to the diversity
and biological relevance of this bio-orthogonal dataset.41 The
best reported ML predictions of the reaction barriers are
between 2 and 3 kcal mol−1.68–70 These results highlight the
complexity of this dataset and the difficulty in predicting
barriers approaching the desired accuracy of 1 kcal mol−1. A
prediction limit for this dataset may have been reached.

The pre-ML AM1-DFT MAE for the dipole distortion energies
was 3.59 kcal mol−1 (Table 1). When predicting the distortion
energy of the dipole, the best performing model again used SVR
2482 | Digital Discovery, 2024, 3, 2479–2486
with an averaged test set MAE of 2.55 ± 0.13 kcal mol−1. SVR
again gave the best performing model for the dipolarophile
distortion energy predictions with an averaged test MAE of 2.37
± 0.12 kcal mol−1. Across the datasets tested, prediction errors
for the distortion energy models are either similar or lower than
that those of the reaction barrier models. For full results on
both cycloaddition datasets see ESI, Section 4.3, Tables S5 and
S6.†
ML for interaction energy prediction

As previously outlined, predicting the interaction energies
provides a unique challenge as the pre-ML MAEs across all
datasets is signicantly larger (all are greater than
7.6 kcal mol−1, Table 1) than those of the distortion energies.

For ds1, the average test MAE for interaction energies was
1.59 ± 0.18 kcal mol−1 (SVR) which is approaching the
1 kcal mol−1 accuracy threshold and a signicant improvement
upon the pre-ML AM1-DFT MAE of 7.6 kcal mol−1 (Table 1).
Similar performance was seen for ds4 with an averaged test set
MAE of 1.23 ± 0.17 kcal mol−1 (SVR), improving on a pre-ML
value of 10.83 kcal mol−1.

Similar success is seen with the cycloaddition datasets. Prior
to ML, the interaction MAEs for ds2 and ds3 were 9.87 and
20.01 kcal mol−1 respectively (Table 1). The best model built on
ds2 yielded an MAE of 0.41 kcal mol−1 (RS = 14) which is well
below the 1 kcal mol−1 accuracy threshold (Fig. 6). The averaged
test MAE for ds2 was 0.50 ± 0.06 kcal mol−1 (Table 1). When
predicting ds3 interaction energies, the best performing model
was again SVR. The best model achieved a test MAE of
2.33 kcal mol−1 (RS = 1) which, when considered against the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Dimethyl malonate nucleophile (top) and MA (bottom) distor-
tion energy test set predictions from SVR on ds4. These models were
chosen because they achieved the best performance on the test set
for their respective targets. The dotted line indicates perfect agree-
ment between predicted and true values. The grey region shows the
1 kcal mol−1 threshold either side of this perfect agreement. Random
seed = 1 (top) and 14 (bottom).

Fig. 5 Diene (top) and dienophile (bottom) distortion energy test set
predictions for SVR models for ds2. These models were chosen
because they achieved the best performance on the test set for their
respective targets. The dotted line indicates perfect agreement
between predicted and true values. The grey region shows the
1 kcal mol−1 threshold either side of this perfect agreement. Random
seed for both is 14.

Fig. 6 Interaction energy test set predictions from SVR on the Diels–
Alder dataset (ds2). The dotted line indicates perfect agreement
between predicted and true values for the interaction energy predic-
tion. The grey region shows the 1 kcal mol−1 threshold either side of
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pre-ML MAE of 20.01 kcal mol−1, is a striking improvement and
in line with literature predictions of this dataset's reaction
barriers. When averaged over ve random states, the test MAE
was 2.46 ± 0.12 kcal mol−1. Another approach to evaluating
model performance is to consider the test MAE as a percentage
of the range of test values. Table 1 shows the averaged test set
performances for SVR models for each distortion and interac-
tion energy over ve random states. Evaluating ds3 performance
solely on MAE would lead to the conclusion that the models are
above the 1 kcal mol−1 accuracy threshold and thus not as
accurate as other models, however, when considering the MAE
as a percentage of the test set range, the performance is
comparable to that of the Michael addition models (ds1 and
ds4).

Learning curves were also generated for models used in this
work to inspect if overtting had occurred. Across all models,
there was good agreement between test and train metrics (see
ESI, Section 4.5†). In addition to this, feature importances were
generated for SVR models on ds2 to investigate the
this perfect agreement. Random seed is 14.

© 2024 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2024, 3, 2479–2486 | 2483
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Table 2 External test set MAEs for cycloalkenone and cyclopropene
datasets using the ds2 ML distortion and interaction models with pre-
ML AM1-DFT MAEs

Dataset
Pre-ML AM1-DFT
MAE (kcal mol−1)

Average SVR test
MAE (kcal mol−1)

Cycloalkenones Dienophile 1.93 1.58
Interaction 12.71 1.52

Cyclopropene Dienophile 4.27 1.62
Interaction 6.73 1.42
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explainability of our models. This was done by randomly shuf-
ing a feature at inference (full procedure can be found in the
ESI, Section 4.6†). For the prediction of DFT interaction ener-
gies, the three most important features were the AM1 DG‡, DE‡,
and DEint (ESI, Fig. S48†). All these features, when randomly
shuffled, resulted in aMAE above 1 kcal mol−1 highlighting that
they describe the target task well. Similar easily understood
feature importances were also seen for the diene and dienophile
distortion models. For all ds2 target feature importances see
ESI, Section 4.6.†

As mentioned in the methodology section, a selection of
different models were tested in this work. Across most tasks and
datasets, SVR yielded the best performance, however the 2-layer
NN achieved comparable accuracy (ESI, Section 4.3†). It should
be noted that even with the appropriate methods to circumvent
overtting, there was a degree of this with almost every NN
hence the discussion in this work primarily focussed on the use
of SVR models.
External test set

To further show the value of our approach, we sought to apply
the ds2 models to real examples from the cycloaddition litera-
ture given the popularity of the distortion/interaction model in
this eld. The papers selected examined the reaction of cyclic
dienes with various cycloalkenones31 and cyclopropene reac-
tions with butadiene35 (Fig. 7); as detailed in the introduction,
both studies use the distortion/interaction model to explain
reactivity.

Predictions were made using geometries that were taken
from these two studies aer optimising them with AM1 and
DFT (see the methodology section outlined above for the full
computational procedure). Model performance on ds2 was
strongest using SVR thus we utilised this model for our external
test set predictions (Table 2).

The dienes used in the external test sets were part of ds2
therefore, diene distortion was not predicted to avoid a trained
model predicting on a previously seen datapoint. Furthermore,
Fig. 7 External test sets for ds2 ML models constructed from ref. 33
and 37. The dienes in both datasets are part of ds2 thus diene distortion
was not predicted. Any dienophiles that were in ds2 were removed
from these external test sets.
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any dienophiles that were present in ds2 were removed from the
external test sets.

As before, all models were tested over ve random states with
results averaged. For context, three of the pre-ML AM1-DFT
MAEs are large, especially for the interaction energies (Table
2). The averaged test MAEs from the ds2 ML models for each
target, across both datasets, were signicantly lower than the
pre-ML AM1-DFT MAEs which shows that the models can make
predictions close to the 1 kcal mol−1 accuracy threshold on
unseen datapoints. Noticeably, prediction of the interaction
energies using ML resulted in a signicant reduction in test
MAE for both the cycloalkenone and cyclopropene datasets; the
MAE on the cycloalkenone data dropped from a pre-ML value of
12.71 to 1.52 kcal mol−1. As we have previously shown, SQM TSs
can be a very good approximation to DFT TSs for cycloaddi-
tions.9 Therefore, our hybrid SQM-ML approach gives energies
and mechanistic insight close to the accuracy of DFT at a frac-
tion of the computational cost.
Conclusions

In this work, we present a hybrid SQM-ML approach for the
prediction of distortion and interaction energies for four
unique datasets across two reaction classes which provides
a signicant improvement upon the pre-MLMAEs between AM1
and DFT calculations. We have shown that predictions below
the 1 kcal mol−1 accuracy threshold are possible for distortion
and interaction energies for the Diels–Alder dataset; Michael
addition predictions are either approaching 1 kcal mol−1 or are
below. The accuracy of predictions for the [3 + 2] cycloaddition
distortion and interaction energies are similar to barrier
prediction accuracies reported in the literature (2–3 kcal mol−1).
We reviewed ourmodel performances as a percentage of the test
set range to better compare accuracy between datasets. This
showed that while there is still room to improve model perfor-
mance for the [3 + 2] cycloaddition dataset in terms of the MAE,
the performance matches well with other datasets tested. Thus,
our [3 + 2] models could be used to provide rapid access to
accurate DFT distortion and interaction energies for these
biologically relevant reactions to signicantly reduce computa-
tion time in reactivity analysis.71,72 Finally, we used our SVR
models built on ds2 to accurately predict the distortion and
interaction energies for two unseen, high impact literature
datasets of Diels–Alder reactions that use the distortion/
interaction model for reactivity analysis.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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