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certainty-aware interatomic force
modeling with equivariant Bayesian neural
networks†

Tim Rensmeyer, *a Ben Craig,b Denis Kramera and Oliver Niggemanna

Ab initio molecular dynamics simulations of material properties have become a cornerstone in the

development of novel materials for a wide range of applications such as battery technology and

catalysis. Unfortunately, their high computational demand can make them unsuitable in many

applications. Consequently, surrogate modeling via neural networks has become an active field of

research. Two of the major obstacles to their practical application in many cases are assessing the

reliability of the neural network predictions and the difficulty of generating suitable datasets to train the

neural network in the first place. Bayesian neural networks offer a promising framework for modeling

uncertainty, active learning and improving data efficiency and robustness by incorporating prior physical

knowledge. However, due to the high computational demand and slow convergence of the gold

standard approach of Monte Carlo Markov Chain (MCMC) sampling methods, variational inference via

Monte Carlo dropout is currently the only sampling method successfully applied in this domain. Since

MCMC methods have often displayed a superior quality in their uncertainty quantification, developing

a suitable MCMC method in this domain would be a significant advance in making neural network-based

molecular dynamics simulations more practically viable. In this paper, we demonstrate that convergence

for state-of-the-art models with high-quality MCMC methods can still be achieved in a practical amount

of time by introducing a novel parameter-specific adaptive step size scheme. In addition, we introduce

a new stochastic neural network model based on the NequIP architecture and demonstrate that, when

combined with our novel sampling algorithm, we obtain predictions with state-of-the-art accuracy as

well as a significantly improved measure of uncertainty over Monte Carlo dropout. Lastly, we show that

the proposed algorithm can even outperform deep ensembles while sampling from a single Markov chain.
1 Introduction

Despite the fact that the laws of quantum mechanics, which
underly chemistry, were discovered almost a century ago, their
application for the ab initio prediction of many chemical and
material properties such as stress-strain relationships or cata-
lytic activity remains a formidable task.1,2 This is in large part
a result of the sheer computational complexity involved in
solving these equations numerically.1,2

Molecular Dynamics (MD), where the time evolution of
atomic systems is investigated, is particularly affected by this
challenge because each time step requires the numerical
calculation of the forces acting on the atoms. While computa-
tional methods such as Density Functional Theory (DFT) have
been developed that can calculate interatomic forces with very
high accuracy, these methods are in general computationally
any. E-mail: rensmeyt@hsu-hh.de

tion (ESI) available. See DOI:

56–2366
expensive and scale badly with growing system sizes. Thus, it
remains very difficult to model larger systems with high accu-
racy and a large enough time horizon.

To circumvent these difficulties, the prediction of inter-
atomic forces via machine learning models such as neural
networks has become a highly active area of research.3 However,
the cost of generating training data from ab initio simulations
prevents the generation of large training sets commonly
required to construct sufficiently predictive neural networks.
Recent innovations in neural network designs have already
made it possible to learn highly accurate interatomic force
elds for simple molecules and materials with limited data by
incorporating hard constraints in the form of symmetry prop-
erties and energy conservation into neural network
architectures.4–9 However, several open problems remain, for
neural network-based force elds to become a practical tool for
computational material scientists and chemists.

The rst problem is the training of a suitable machine
learningmodel. As a consequence of the vastness of the space of
possible atomic congurations, training models to have
chemical accuracy for entire classes of compounds requires
© 2024 The Author(s). Published by the Royal Society of Chemistry
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large amounts of data10 and such models still don't reach
a satisfactory accuracy for many applications computational
material scientists are interested in. For example, leading
models on the Open Catalyst 20 benchmark still have a predic-
tion error that is more than ten times larger than the stated
target accuracy of that benchmark.11 Hence, a material scientist
attempting to investigate a system of interest will oentimes
have to train a machine-learning model for that specic system.
However, the generation of suitable training datasets represents
a major challenge. For example, in solid–gas interfaces, gas
molecule adsorbates on the surface of the solid can cause the
surface to restructure on an atomic level to make the total
surface-adsorbate system more energetically favorable.12

Suppose that a material scientist attempts to investigate this
process with a neural network model. A suitable training data-
set would have to contain many intermediate congurations of
this restructuring process to ensure the accuracy of the neural
network during that transition. However, it is not known
beforehand what these intermediate structures are because
otherwise the neural network model would not be needed in the
rst place. Additionally, the space of apriori plausible inter-
mediate structures will be unpractically large. The selection of
congurations to label for the training dataset therefore will be
very difficult, especially considering the high computational
cost of labeling each conguration. The creation of predictive
models is, therefore, still a challenging task.

The second challenge is, that the existing state-of-the-art
models generally lack a measure of uncertainty in their
prediction,3,13 which makes it impossible to tell which of the
predictions are reliable. This limits the applicability of active
learning strategies, where uncertainty can be used to select
useful training data from the large conguration space more
efficiently14–18 by only labeling congurations with a high
predictive uncertainty and energies that are accessible at the
target temperature. Further, for a deployed model detected
outliers can be recomputed on-the-y in DFT to ensure the
accuracy of a neural network-based MD trajectory.

Deep ensembles, where several neural networks are trained
from scratch with different weight initializations, are a popular
method for quantifying uncertainty by measuring the
disagreement between the neural network predictions.18

However, training several models from scratch can become very
time-consuming with limited GPU hardware. Furthermore, they
do not offer a solution to the nal challenge we want to make
progress toward in this work:

It would be very desirable to not have to train models from
scratch but to instead ne-tune existing pre-trained neural
network models to the specic system of interest since such ne-
tuning can be vastly more data-efficient than training from
scratch.19 Such models could have been pre-trained either on
large-scale databases of different molecules and materials
labeled in DFT or on data of the system of interest simulated with
a lower accuracymethod that is less computationally demanding.
However, a practical ne-tuning strategy would most likely still
have to be integrated with an active learning approach as the
previous case study illustrates. This requires the development of
a suitable framework to merge active learning with ne-tuning.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Furthermore, most publicly available models don't quantify the
uncertainty in their predictions and the training time of a single
model on largematerial databases will already require larger GPU
clusters.11 Therefore, it will not be a viable solution for many
material scientists to pre-train a deep ensemble on such a data-
base themself and then ne-tune it on the system they are
interested in. How to ne-tune such uncertainty unaware,
publicly available pre-trained models and simultaneously assess
the predictive uncertainty during the ne-tuning process, there-
fore, represents a major difficulty.

Bayesian Neural Networks (BNNs) have a robust measure of
uncertainty and offer a promising framework for ne-tuning
pre-trained models via the Bayesian prior distribution.20,21

Additionally, constructing a prior from a single pre-trained
model would still allow for the sampling of several models
from the posterior which could in principle enable the assess-
ment of uncertainty via their disagreement, even if the pre-
trained model itself was uncertainty unaware.

Unfortunately, BNNs sometimes display a suboptimal accu-
racy22 and recent work has found that this is also the case for
neural network-based force elds.23 However, the sampling
approach used in that work has recently been demonstrated to
have convergence issues.24 Therefore, whether BNNs can achieve
state-of-the-art accuracy in this domain remains an open question.

Additionally, sampling the Bayesian posterior for commonly
used modern neural network architectures comes with partic-
ular difficulties, as even with classical gradient descent-based
optimizers the training on just a single compound to full
convergence can already take days and for sampling the true
posterior articial noise has to be added to the gradients via
Monte Carlo Markov Chain (MCMC) methods, further pro-
longing convergence times. Additionally, we found that current
off-the-shelf MCMC methods are either unsuited for dealing
with the vastly different gradient scales that different parameter
groups exhibit in modern models or come with a signicant
increase in computational demand. This results in an unprac-
tically slow traversal through the parameter space to the point
where no convergence is achievable in reasonable amounts of
time, which explains their current lack of use. Consequently,
successful applications of Bayesian neural networks in practi-
cally relevant systems have so far all involved approximate
inference via Monte Carlo dropout25,26 which oen underper-
forms on uncertainty quantication metrics when compared
with MCMC methods but is currently less computationally
demanding.

The central research question investigated in this paper is,
whether combining high-quality MCMC-based Bayesian neural
network approaches and state-of-the-art neural network archi-
tectures is practically viable.

We measure viability on the following three conditions. First
of all, the approach has to yield an improved quality of uncer-
tainty over more basic BNN methods such as MC-Dropout.
Furthermore, there has to be no signicant loss in accuracy
compared to classical non-Bayesian methods. Lastly, because
the main purpose of the machine learning model is to speed up
simulations for computational chemists and material scien-
tists, it would be desirable if the training times remain
Digital Discovery, 2024, 3, 2356–2366 | 2357

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00183d


Table 1 Commonly used notation

Notation Meaning

Bold case symbol Vector-valued quantities
N (m, S) Normal distribution
Nðm;SÞ Random variable ∼ N(m, S)
E Potential energy
D The dataset
I The identity matrix
q Neural network parameters
x Independent variable
y Dependent variable
yjx y conditioned on x
r Atomic coordinates
z Nuclear charges
ab Element-wise product of a and b
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reasonable on hardware available to those groups (e.g. no more
than a few GPU days on a single small molecule dataset with
a single modern GPU). Otherwise, training times could become
a limiting factor in the speed-up that can be reached with the
machine learning model.

The contributions of this paper are the following:
� We develop a new stochastic neural network model based

on the NequIP architecture7 for uncertainty-aware interatomic
force modeling with state-of-the-art accuracy.

� We introduce a novel Bayesian MCMC algorithm that
produces high-quality samples of the posterior density in
a practical amount of time.

� We show that the sampling algorithm produces models
with state-of-the-art accuracy and high-quality uncertainty
quantication, signicantly outperforming Monte Carlo
dropout.

� We discuss shortcomings as well as possible further
improvements and research directions based on the results of
the proposed neural network model and sampling algorithm.

Notation commonly used in this paper is summarized in
Table 1.
1.1 Related work

While BNNs to date have found very few applications in this
context, some use cases exist in the literature.23,25–27 However, in
two of them25,26 Monte Carlo dropout was used for Bayesian
inference. While this method can in some instances be inter-
preted as Bayesian variational inference,28 it yields only a local
approximation of the true posterior distribution. Due to this
fact, it can result in poorer uncertainty quantication compared
to MCMC methods.29 While a much more accurate Bayesian
algorithm was used by Thaler and Zavadlav,27 the use case was
very limited in scope to diatomic systems. Further, all of the
above instances were limited to very small fully connected
neural networks while we utilize a state-of-the-art graph neural
network-based architecture. We only found one attempt to
generate samples from the true posterior of a graph neural
network-based architecture in the literature by Thaler et al.23

who used the Preconditioned Stochastic Gradient Langevin
Dynamics (PSGLD) sampler.30 In that work, they did not get
2358 | Digital Discovery, 2024, 3, 2356–2366
competitive results when compared to non-Bayesian optimiza-
tion in terms of accuracy. However, it was recently shown that
this sampler suffers from serious convergence problems,
causing it to converge to a suboptimal distribution.24

A different Bayesian inference method, that has a long history
in modeling interatomic forces and energies are Gaussian
processes.17,31–35 In these approaches, the posterior distribution is
explicitly modeled over the space of functions instead of the
model parameters. The drawback of those models is, that, unlike
neural networks, they do not scale well to large-scale datasets.
This makes pre-training on large-scale databases unfeasible.
Furthermore, while they yielded comparable accuracies to neural
network potentials several years ago,36 neural network architec-
tures have progressed signicantly since then,4–9 substantially
increasing their data efficiency and accuracy. Nonetheless,
Gaussian processes have become a well-established approach for
molecular dynamics modeling. Lastly, more recently deep
evidential regression has been applied to molecular property
prediction, including energy predictions.37 Thesemethodsmodel
more sophisticated distributions than regular single-model
uncertainty quantiers and have shown promising results.

2 The base model
2.1 The formal setting

The aim of the neural network-based interatomic force model is
tomap a conguration of atoms x= {(r1, z1),., (rn, zn)}, where ri
denotes the position of the nucleus of atom i and zi refers to its
nuclear charge, to the forces {F1,., Fn} acting on the individual
nuclei. These forces are then used to simulate the movement of
the nuclei based on Newton's equations of motion via a solver
for Ordinary Differential Equations (ODEs) (Fig. 1).

One important aspect of this form of data is that the order in
which the atoms are enumerated is arbitrary. A suitable neural
network model should therefore be equivariant under a reor-
dering of the data. Another important constraint is, that these
forces are conservative and can therefore be derived as the
negative gradients of a single potential energy surface

Fi = −Vri
E((r1, z1), ., (rn, zn)).

The potential energy surface itself is invariant under any
distance-preserving transformation of the atomic coordinates.
This was at rst incorporated into neural network models by
using only the interatomic distances rij and nuclear charges as
input, which have these invariances themself. Even though it is
in principle possible to extract directional information from the
set of interatomic distances, in practice incorporating direc-
tional information explicitly can improve data efficiency and
accuracy quite a lot13 and has become a key feature of many
state-of-the-art neural network models.4–9

2.2 The NequIP model

One of the most powerful neural network models for inter-
atomic force modeling that currently exists is the NequIP
model7 (Fig. 2). This model takes all the previous considerations
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 An illustration of a molecular dynamics workflow with neural network predictions for the forces.
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into account and consists of a model base and projection layers.
The model base maps an atomic conguration {(r1, z1), ., (rn,
zn)} to a set of high dimensional latent feature vectors {v1,., vn}
that are invariant under distance-preserving transformations.
The projection layers then map {(v1, z1), ., (vn, zn)} to (virtual)
atomic energies {E1, ., En}.

The potential energy E is then calculated as the sum of the
atomic energies. Finally, the forces acting on the nuclei are then
calculated as the negative gradients of the potential energy with
respect to the nuclear coordinates.
Fig. 2 The computational graph of the stochastic model for predicting t
and atomic forces Fi from the atomic numbers zi and coordinates ri. The c
original NequIP model, while the MLPs are modifications for modeling p

Fig. 3 Receiver operating characteristic curves for uncertainty-based d
(mol Å)−1 using k = 8 Monte Carlo samples on the RMD17 datasets.

© 2024 The Author(s). Published by the Royal Society of Chemistry
3 Solution
3.1 Bayesian neural networks

Themain difference between BNNs and regular neural networks
is, that in the former the parameters, i.e. weights and biases, are
modeled probabilistically. To keep the notation simple, we use
q to denote a vector containing a complete set of neural network
parameters. For BNNs, it is assumed that some prior knowledge
exists about what constitutes a good set of parameters, which is
expressed in the form of a prior density p(q). This prior density
he means Ê, F̂i and standard deviations sE,sFi of the potential energy E
omputational graph for the calculation of themeans coincides with the
robabilistically.

etection of force components with a prediction error of at least 1 kcal

Digital Discovery, 2024, 3, 2356–2366 | 2359
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then gets rened through the training data D = {(x1, y1), ., (xl,
yl)} by invoking Bayes rule for calculating the posterior density:

pðqjDÞ ¼ pðDjqÞpðqÞ
pðDÞ ¼ pðDjqÞpðqÞÐ

pðDjqÞpðqÞdq

A prediction on a new data point (x, y) can now be made via:

pðyjx;DÞ ¼
ð
pðyjx; qÞpðqjDÞdq ¼ EpðqjDÞ½pðyjx; qÞ�:

For BNNs, this integral is almost always analytically intrac-
table. However, by generating samples q1, ., qk from p(qjD) it
can be estimated through the law of large numbers as:

pðyjx;DÞz 1

k

Xk

i¼1

pðyjx; qiÞ:

3.2 The stochastic model

In order to achieve state-of-the-art accuracy combined with
a good measure of predictive uncertainty in modeling inter-
atomic forces, a new stochastic neural network model is
required, which we will introduce in this section.

To build a stochasticmodel of the data, wemake the following
assumptions on the conditional independence of the data:

pðDÞ ¼ pðx1; .; xlÞ
Yl

i¼1
pðyijxiÞ:

p(yijxi) will be inferred by a neural network as p(yijxi, q) while
p(x1, ., xl) depends on the data generation process.

More specically we model the conditional densities

p(yjx, q) = p(E, F1, ., Fnj(r1, z1), ., (rn, zn), q)

as

yjx; q � N
�
mEðq; xÞ; sE

2ðq; xÞ�
�
Yn

i¼1
N
�
mF i

ðq; xÞ; sE
2ðq; xÞI�

where yjx, q denotes y conditioned on x and q, x= {(r1, z1),., (rn,
zn)}, the means mE(q, x) and mFi(q, x) are the regular point
predictions of the NequIPmodel, the standard deviations sE(q, x)
and sFi(q, x) are predicted by two separate Multi-Layer Percep-
trons (MLPs) from the outputs of the NequIP base v1,., vn and I
denotes the identity matrix (Fig. 2). Note that a single invariant
standard deviation is calculated for all three force components to
ensure equivariance of the predicted density under any distance-
preserving transformation of the atomic coordinates.

We include the potential energy E here as an additional
dependent training variable because it is calculated as
a byproduct of force calculations in DFT anyway. Lastly, we use
the simple Gaussian mean eld prior q ∼ N(0, I).
‡ Several MCMC algorithms have been proposed that use adaptive step sizes
without using those higher-order derivative terms. However, none of them
converge close to the correct distribution as was shown in ref. 24.
3.3 Sampling the posterior

Generating high-quality sample weights from the posterior
distribution is usually done via the simulation of a Markov
chain which converges in distribution to the posterior. While
2360 | Digital Discovery, 2024, 3, 2356–2366
several Markov chainmethods have been constructed for neural
network applications, we found them unsuitable for this use
case. The main difficulty we encountered was, that the scale of
the gradients with respect to the different sets of parameters
corresponding to the different layers of the neural network vary
by several orders of magnitude. This makes the use of a single
step size for all parameters impossible, as it would cause the
sets of parameters with smaller gradients to be frozen during
the optimization. In practice, we found that this causes the
training and validation loss to become stuck at values several
times higher than what can be achieved with modern (non-
Bayesian) neural network optimizers, who circumvent this
problem through an adaptive step size for each parameter.38

However, the use of adaptive step size is only possible to a very
limited degree for Markov chains39 without changing the
distribution to which they converge. Furthermore, this typically
requires the calculation of higher-order derivatives39 which is
computationally expensive‡, especially in light of the already
slow convergence of SOTA architectures with classical opti-
mizers. To deal with these challenges, we develop here a new
approach to sampling the posterior distribution based on the
Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) algo-
rithm introduced by Chen et al.40 In its basic form, the algo-
rithm is given by the Markov chain

Dwt ¼ ��VqtuðqtÞ þM�1Cwt�1

�
Dtþ

ffiffiffiffiffiffiffiffiffiffiffi
2CDt

p
N tð0; IÞ;

Dqt = M−1wtDt.

where

uðqÞ :¼ �lnpðqÞ �
Xl

i¼1

ln pðyijxi;qÞ;

M−1 and C are vectors containing strictly positive values, Dt � 1
is the step size and N tð0; IÞ denotes a random variable with
a multivariate standard normal distribution. To keep the nota-
tion simple, we use the convention here, that all operations on
vectors (multiplication, inversion, etc.) are to be taken element-
wise. The auxiliary variable wt has the same dimension as qt.

From a non-Bayesian machine learning perspective, wt

represents a momentum term similar to the ones used in many
modern neural network optimizers.38 In fact, Chen et al. used
some substitutions which lead to a Bayesian analog to
stochastic gradient descent with momentum,40 but we will
make somewhat different substitutions that lead to a natural
way to include adaptive step sizes: a = DtM−1C, g = (Dt)2jDja−1

and vt = g−1Dtwt which yields:

Dvt ¼ �a 1

jDjVqtuðqtÞ � avt�1 þ a

ffiffiffiffiffiffiffiffiffiffi
2M

jDjg

s
N tð0; IÞ;
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Dqt ¼ gM�1vt

where jDj is the size of the dataset D.
This is up to the noise term N tð0; IÞ equivalent to the

updates of the Adam optimizer.41

Unfortunately, the mass termM used in the standard Adam
optimizer can vary a lot even during later stages of the training
and this variation depends on the value of qt at the previous
time steps. As a consequence, the resulting process (qt, vt)
would not even be a Markov chain, and the Bayesian posterior
would most likely no longer be the distribution qt converges
to.39 For many neural network architectures, timely conver-
gence to the posterior can be achieved by simply settingM = I.
However, the vastly varying gradient scales of the different
parameter groups in the model make this approach not
feasible. As a solution, we introduce now a new adaptive step
size method for the SGHMC algorithm which still converges to
the posterior distribution without requiring the computation
of higher-order derivatives. In order to achieve this, we set M
as the denominator of the AMSGrad algorithm42 during the
rst phase of the optimization:

at ¼ ð1� bÞ 1��D��2 ðVqtuðqtÞÞðVqtuðqtÞÞ þ bat�1;

Dt = max(Dt−1, at),

Mt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt

1� bt

s
þ estability:

Here, max(Dt−1, at) is the element-wise maximum, estability is
a stability constant and b is a hyperparameter used in
computing the running average at and is typically set between
0.99 and 0.9999.

Because this mass term is still time- and path-dependent, qt
can not, in general, be expected to converge exactly to the
posterior distribution during this phase. However, because Mt

is not based on a running average of squared gradients like
most adaptive step size methods are, but instead on the
maximum of such a running average, it typically changes very
little during the later stages of the optimization. As a result,
the process will already become fairly close in distribution to
the Bayesian posterior during this stage of the optimization.
Furthermore, because Mt already remains almost constant
aer a while, we can keep it entirely constant aer a certain
amount of steps without causing instabilities, at which point
the process qt becomes a regular SGHMC process which is
known to converge to the Bayesian posterior for sufficiently
small step sizes.40

Because deep learning datasets are usually very large, eval-
uating Vqu(q) exactly is typically very time-consuming. Practical
implementations instead estimate Vqu(q) on a smaller,
randomly sampled subset D̂ 3 D via

VquðqÞ ¼ eðqÞ þ VqûðqÞ
© 2024 The Author(s). Published by the Royal Society of Chemistry
:¼ eðqÞ þ Vq

0
@�ln pðqÞ � jDj��D̂��

X
ðx;yÞ˛D̂

ln pðyjx;qÞ
1
A:

The resulting algorithm is summarized in Algorithm 1. Here
eðqÞ is the error in the estimation of Vqu(q) with E½eðqÞ� ¼ 0.

As long as
jeðqÞj
jDj �

ffiffiffiffiffiffiffiffiffi
2Mt

gjDj

s
it is clear that this additional noise

does not have a large effect on the dynamic as the Gaussian
noise term will dominate. This can always be achieved by
choosing an appropriate batch size and step size g. Because the
proposed algorithm becomes a regular SGHMC process onceMt

remains constant, the same convergence analysis that was
introduced by Chen et al.40 is also valid for this algorithm.

4 Empirical evaluation
4.1 The benchmarks

To assess our models' accuracy and predicted uncertainty we
utilize three different datasets. To analyze our model's perfor-
mance with varying amounts of Monte Carlo samples and under
domain shi, we used a dataset consisting of PEDOT polymers,
which are conducting polymers, that due to their chemical
stability and tuneable properties43 have been used for a wide
range of applications including sensors,44 supercapacitors,45

battery electrodes,46 bioelectronics, solar cells, electrochromic
displays, electrochemical transistors,47 and spintronics.48 The
dataset consists of polymers of lengths 8, 12 and 16, where only
the shorter chains were used for training (see ESI Section A† for
details). The total training set contained only 100 congura-
tions, 50 of length 8 polymers and 50 of length 12 polymers.
Equivalently a small validation set of size 30 was constructed.

The second dataset used is the RMD17 dataset49 consisting
of long molecular dynamics trajectories of several small organic
molecules from the MD17 dataset50 recalculated at higher
resolution in DFT. Because dropout is by far the most common
Bayesian method used for interatomic force modeling and one
Digital Discovery, 2024, 3, 2356–2366 | 236
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of the most common methods for uncertainty quantication in
this domain in general, we will compare our algorithms'
performance to a dropout-based version of the proposed
stochastic model on this dataset (see ESI Section A† for details).

For each compound, we used 1000 randomly sampled
congurations during training and the rest for testing. Of the
1000 congurations sampled, 30 were reserved as a small vali-
dation set, and the remaining ones comprised the actual training
set. The same samples were used as training, validation and test
sets for our proposed model and the dropout-based model.

To include a stronger baseline thanMonte Carlo Dropout and
to demonstrate our methods' capability to model interatomic
forces at very high accuracies we included a third benchmark
consisting of a dataset from an ethanol molecule dataset simu-
lated with coupled cluster methods and introduced by Bogojeski
et al.51. This simulation method is typically more accurate than
DFT although considerably more computationally expensive. On
this benchmark, we compare our algorithm with a deep
ensemble consisting of 8 of our proposed stochastic NequIP
neural network models trained on the same dataset with
different initializations of the weights. Deep ensembles generally
have a high quality of uncertainty quantication52 but are
computationally demanding to train since several neural
networks have to be trained from scratch. We use 100 randomly
sampled congurations for training and 1000 congurations as
a test set. All neural networks for the deep ensemble were trained
using early stopping on a validation set of 30 congurations.

The details of the neural network architectures and sampling
procedures can be found in ESI Section A.†

4.2 Evaluation metrics

To measure prediction accuracy, we evaluate both the Mean
Absolute Error (MAE) as well as the Root Mean Square Error
(RMSE). In the evaluation, we use the expectation value under
the estimated posterior density as a point prediction. I.e.

FpredðxÞ ¼ 1
k

Xk

i¼1
mFðx;qiÞ. One metric used to evaluate and

compare the predicted uncertainties are the Mean Log
Fig. 4 Observed and predicted error densities of the force components i
and the length 16 PEDOT polymer dataset.

2362 | Digital Discovery, 2024, 3, 2356–2366
Likelihoods (MLLs) of the forces and energies. Since in the most
common applications, the main task of the uncertainty
measure is outlier detection, we further evaluate the ROC AUC
scores for detecting force components with an error larger than
1 kcal (mol Å)−1 on the basis of the variance of the predicted
distribution of those force components. Because of the rela-
tively small size of the PEDOT dataset, we only evaluate the
outlier detection on the other datasets.

Lastly, to evaluate if the proposed model is properly cali-
brated we utilize a normalized version of the Expected Cali-
bration Error (NECE)53 as well as a visual inspection of the
predicted and observed error densities of the force components
(Fig. 4) (see ESI Section A† for details). To calculate a NECE, the
predictions yi are divided into m bins of equal width d. The
NECE is then calculated as

NECE ¼
Xm
i¼1

fi

d
jfi � eij

where fi is the fraction of observed samples that fall into bin i
and ei is the predicted probability of a sample falling into bin i.
For small d this is just an estimate of

ErðyÞ
���rðyÞ � rpredictedðyÞ

���:

4.3 Results

4.3.1 Results on the PEDOT datasets. As can be seen in
Table 2, the algorithm achieves high accuracy in the force
prediction on all three test sets with a decreasing accuracy for
increasing chain lengths.

A slight improvement in the accuracy is observed when going
from one to eight Monte Carlo samples. Further, it can be seen
from Table 2, that a single Monte Carlo sample does not yield
good uncertainty estimates for the forces which vastly improves
when using eight Monte Carlo samples.

Even though no polymer chains of length 16 were included
in the training set, we nd that the model still achieves high
accuracy (Table 2). Again we see much poorer uncertainty
n kcal (mol Å)−1 with k= 8 Monte Carlo samples on the RMD17 datasets

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Results on the PEDOT datasets. All targets and predictions (means and standard deviations) in kcal (mol Å)−1

Chain length

k = 1 sample k = 8 samples

MAE RMSE NECE MLL MAE RMSE NECE MLL

16 0.222 0.385 0.649 −1.79 0.210 0.371 0.313 −0.20
12 0.184 0.276 0.652 −0.87 0.169 0.254 0.317 0.14
8 0.151 0.221 0.619 −0.28 0.139 0.203 0.215 0.44

Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
O

ct
ob

er
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

1/
7/

20
25

 6
:0

6:
08

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
quantication for a single Monte Carlo sample when compared
to the case of k = 8 Monte Carlo samples (Table 2). A complete
histogram of predicted and actual force components can be
found in ESI Section A.† We observe some overcondence even
in the k = 8 case (Fig. 4).

4.3.2 Inuence of the number of Monte Carlo samples. As
can be seen in Table 3, both the calibration as well as the MLL
signicantly improve with increasing sample size. Because
these samples are generated from a single Markov chain, this
demonstrates an efficient traversal of the parameter space by
the proposed sampling algorithm. Further, it appears that the
improvements in MLLs diminish quickly with increasing
sample size. Overall we nd k = 8 Monte Carlo samples to be
a good tradeoff between quality of uncertainty quantication
and computational complexity.

4.3.3 Results on the RMD17 datasets. Using eight Monte
Carlo samples for both models, the proposed algorithm has
comparable accuracy to the dropout model on many of the
easier RMD17 datasets but signicantly outperforms it on the
aspirin and malonaldehyde datasets (Table 4). The achieved
Table 3 Influence of the MC sample size on the length 16 PEDOT
dataset. All targets and predictions (means and standard deviations) in
kcal (mol Å)−1

Number of samples
k

Proposed algorithm

MAE RMSE NECE MLL

1 0.222 0.385 0.649 −1.79
2 0.219 0.381 0.473 −0.87
4 0.216 0.378 0.376 −0.44
8 0.210 0.371 0.313 −0.20
16 0.201 0.356 0.254 0.00

Table 4 Results on the RMD17 dataset using k = 8 Monte Carlo sampl
(mol Å)−1

Molecule

Dropout

MAE RMSE MLL AU

Aspirin 0.215 0.340 −1.85 0.8
Ethanol 0.078 0.147 0.74 0.8
Uracil 0.082 0.141 0.71 0.8
Malonaldehyde 0.145 0.259 −0.18 0.8
Salicylic acid 0.108 0.199 0.14 0.8
Naphthalene 0.044 0.069 1.19 0.9
Toluene 0.052 0.084 1.11 0.8
Benzene 0.020 0.032 1.50 NA

© 2024 The Author(s). Published by the Royal Society of Chemistry
accuracies are very consistent with the original NequIP model
on these datasets7 (See ESI Section A† for the results of a single
Monte Carlo sample and the NequIP model on this dataset).
Further, it consistently outperforms the dropout model in terms
of mean log-likelihoods.

A very large difference in the performance of the models is
found in the outlier detection task where the proposed algo-
rithm consistently achieves ROC AUC scores much closer to the
optimal score of 1 (Table 4). The benzene dataset was not
included in this comparison because there were no instances of
force prediction errors of the necessary scale for the proposed
algorithm. A complete plot of the receiver operating character-
istic curves is given in Fig. 3. As can be seen there, the proposed
model is much more reliable at detecting outliers.

Lastly, as is evident from Fig. 4 the resulting model is not
accurately calibrated in the case of 8 Monte Carlo samples and
has a tendency for overcondence.

A table with additional results for the energy predictions can
be found in ESI Section A.†

4.3.5 Results on the coupled cluster dataset. On the ethanol
coupled cluster level dataset, our method outperforms the deep
ensemble for force predictions in terms of MAE (0.401 kcal (mol
Å)−1 vs. 0.489 kcal (mol Å)−1), RMSE (0.675 kcal (mol Å)−1 vs.
0.871 kcal (mol Å)−1) andMLL (−1.00 vs.−1.19). Furthermore, as
Fig. 5 illustrates, our method is slightly more reliable at detecting
force components with a high prediction error via the predicted
uncertainty of that force component which can also be seen by
comparing their ROC-AUC scores (0.885 vs. 0.866).

A signicant difference in performance is found in the
energy prediction task, where the proposed BNN model signif-
icantly outperforms the deep ensemble for the MAE
(0.069 kcal mol−1 vs. 0.142 kcal mol−1), RMSE (0.097 kcal mol−1

vs. 0.191 kcal mol−1) and MLL (0.978 vs. 0.327).
es. All targets and predictions (means and standard deviations) in kcal

Proposed algorithm

C-ROC MAE RMSE MLL AUC-ROC

00 0.144 0.229 0.22 0.952
97 0.064 0.115 1.03 0.993
88 0.085 0.138 0.83 0.986
24 0.099 0.170 0.49 0.983
09 0.109 0.182 0.63 0.977
02 0.043 0.069 1.63 0.995
94 0.051 0.082 1.43 0.995

0.010 0.016 3.06 NA

Digital Discovery, 2024, 3, 2356–2366 | 2363
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Fig. 5 Receiver operating characteristic curves on the coupled cluster
level ethanol force predictions for the deep ensemble and our
proposed algorithm with k = 8 Monte Carlo samples.

Fig. 6 Observed errors (predictions-ground truths) plotted over pre-
dicted standard deviations for the coupled cluster level ethanol energy
predictions for (a) the Bayesian neural network model and (b) the deep
ensemble.
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As can be seen in Fig. 6, a clear trend for higher error vari-
ance for increasing predicted uncertainty is present. However,
again a tendency for overcondence is evident in both models,
illustrated by an unusually high amount of points outside of the
2s envelope. Lastly, a clear bias in the energy predictions is
visible for the deep ensemble but not for the BNN, with energy
predictions having a bias for being too low.
5 Conclusion and outlook

As the results demonstrate, the proposed Bayesian neural
network model achieves all three conditions we used to assess
the viability of combining state-of-the-art neural network
architectures for interatomic force modeling with high-quality
MCMC-based BNNs. Contrary to the results of Thaler et al.23
2364 | Digital Discovery, 2024, 3, 2356–2366
we found no evidence of reduced accuracy for models sampled
from the Bayesian posterior, suggesting that the suboptimal
performance in that work is due to the convergence issues of
PSGLD.24 Instead, the accuracy is very consistent with what is
achievable with non-Bayesian state-of-the-art neural networks.
The proposed sampling algorithm appears to converge to the
posterior distribution in a reasonable amount of time and
maintains a fairly swi traversal through the parameter space
aerward. Most importantly, the resulting model can detect
outliers much more reliably than the commonly used dropout
method while sampling parameters from the same Markov
chain. Furthermore, on the coupled cluster-level ethanol
benchmark, it outperforms a deep ensemble on all metrics.
While the comparison to deep ensembles is limited to this
benchmark due to the computational cost of generating deep
ensembles, it provides evidence that our proposed method
performs at least as well, if not better. In particular, the results
on the energy predictions on that benchmark are quite prom-
ising, where a substantial performance difference was found.
The reason for this might be, that the training dataset is fairly
small and even though early stopping was used in the training
of the ensemble models, overtting might still be a problem.
This would also explain the better result of the BNN, as BNNs
are more robust to overtting due to the noise added to the
gradients.

These results open up new possibilities for Bayesian active
learning procedures for learning interatomic forces. Another
interesting opportunity that could be built on top of these
results is the principled incorporation of additional datasets in
the Bayesian prior distribution. These datasets might have been
created with lower accuracy but faster simulations or might be
publicly available datasets from different molecules but labeled
with the same simulation method. This might substantially
improve the computational demand of creating machine
learning force elds while simultaneously maintaining high-
quality uncertainty quantication. While that approach is not
widely studied in the literature, there are some papers where
such methods yielded promising results.20,21

Even though the proposed model already achieves good
results, some improvements could still be made.

While convergence to the posterior distribution becomes
feasible with the proposed algorithm, in practice we nd that it
still takes a few days to reach convergence and generate all
Monte Carlo samples (see ESI Section A† for more details on
training times). However, given the time it takes to generate
a suitable training dataset, such training times will not consti-
tute a computational bottleneck in most applications.
Furthermore, while it was useful for demonstrative purposes of
the convergence properties of the proposed sampler, much
faster convergence can most likely be achieved by simply
reducing the injected gradient noise and the batch size during
the initial phases of the optimization. An interesting aspect here
is also that quick convergence was achieved without a locally
adaptive step size for each parameter despite signicant van-
ishing gradient problems of the neural network architecture.
This is a promising sign, that the (global) parameter-specic
adaptive step size approach we introduced here can also work
© 2024 The Author(s). Published by the Royal Society of Chemistry
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in other BNN applications where vanishing gradients are an
issue without the additional computational cost and conver-
gence issues of locally adaptive methods.24

Of course, the inference time of eight Monte Carlo samples
will be eight times as large as a single model prediction unless
parallel implementations are used. However, even without
parallel implementations, inference times can almost always be
neglected when compared to the time of creating a training
dataset.

Further, the stochastic model could potentially still be
improved by adequate incorporation of covariances between
atoms and also between force components. However, both of
these covariances are challenging to include. For covariance
between force components, the main challenge is to maintain
rotation equivariance of the predicted density. For the incor-
poration of interatomic covariances, a dense covariance matrix
will very quickly become impractical for larger molecules, as the
evaluation of the log-likelihoods becomes a computational
bottleneck. While a sparse covariance matrix might be adequate
due to the mostly local nature of interatomic forces, a way to
parameterize sparse covariance matrices would be needed,
which is not trivial and which we could not nd in the existing
literature.

Lastly, we found that the predicted uncertainties are not
always properly calibrated and have a tendency for over-
condence. This might be a result of sampling from the same
Markov chain, where the models can never be completely
independently sampled from each other. This can lead to
a reduced predictive variance between the sampled models and
hence increased condence. Here it might be benecial to
recalibrate the uncertainties on a validation set.

Data availability

All datasets used for training and evaluating the neural network
models in this paper as well as source code and in-depth
illustrations on how the neural networks were trained and
evaluated are available. The PEDOT datasets, source code and
jupyter notebook les illustrating how the training and evalu-
ation of the different models is done are included in the ESI
le†. The RMD17 dataset is available at https://gshare.com/
articles/dataset/Revised_MD17_dataset_rMD17_/12672038.
The coupled cluster-level ethanol dataset is available at http://
www.quantum-machine.org/gdml/data/npz/
ethanol_ccsd_t.zip.
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