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Towards a science exocortex

Artificial intelligence (Al) methods are poised to revolutionize intellectual work, with generative Al enabling
automation of text analysis, text generation, and simple decision making or reasoning. The impact to

science is only just beginning, but the opportunity is significant since scientific research relies

fundamentally on extended chains of cognitive work. Here, we review the state of the art in agentic Al

systems, and discuss how these methods could be extended to have even greater impact on science.
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We propose the development of an exocortex, a synthetic extension of a person’s cognition. A science

exocortex could be designed as a swarm of Al agents, with each agent individually streamlining specific
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1 Introduction

Artificial intelligence and machine-learning (AI/ML) methods
are having growing impact across a wide range of fields,
including the physical sciences.”® Generative foundation
models, in particular, are displacing a swath of other methods.
Foundation models involve extensive training of deep neural
networks on enormous datasets in a task-agnostic manner.”®
Generative methods (genAl), often employing the transformer
architecture,® seek to create novel outputs that conform to the
statistical structure of training data,'®"* enabling (e.g.) image
synthesis>™ or text generation.”® Large language models
(LLMs) are generative models trained on text completion, but
which can be adapted to a variety of tasks, including text clas-
sification, sentiment analysis, code or document generation, or
interactive chatbots that respond to wusers in natural
language.”'**® The performance of LLMs increases with the
scale of the training data, network size, and training time.">*
There is growing evidence that LLMs do not merely reproduce
surface statistics, but learn a meaningful world model;***” one
correspondingly observes sudden leaps in capabilities during
training, suggesting the emergent learning of generalized
concepts.”*?*3 LLMs can be tailored via reinforcement learning
using human feedback (RLHF),*>** so that particular behaviors
(e.g- helpful and truthful) are emphasized during generation.
Generation quality can be improved by connecting to a corpus
of trusted documents, which allows production of replies that
are sourced and grounded (so-called retrieval augmented
generation, RAG).**

While LLMs are often viewed purely as text-generators (e.g.
for chat interactions), they have transformative potential owing
to their ability to generate decisions and plans. For instance,
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researcher’s cognition and volition.

researcher tasks, and whose inter-communication leads to emergent behavior that greatly extend the

LLMs can trigger software tools by providing them access to
application programming interfaces (APIs).***° Generations can
be improved by inducing self-critique of output quality,**** or
creating chains of thought through iterative self-prompting.>*>¢
These systems can be turned into task-oriented autonomous
agents by allowing them to iteratively propose and execute
solutions.*®>7-%

The impressive capabilities of LLMs presage a paradigm
shift in the way intellectual work is performed, as they empower
humans to delegate many tasks to the LLM and instead focus on
the highest-level deliberation and planning. However, there
remain many outstanding questions about what system archi-
tecture and human-computer interactions (HCI) will best
leverage these capabilities. Adaptation of these methods to
scientific domains requires even deeper consideration, as
science and engineering tasks are extremely technical and
require high reliability and sourcing for both information and
arguments.

Here, we explore the concept of an exocortex—an artificial
extension to the human brain that provides additional cognitive
capabilities. While future implementations of this concept
might employ brain-computer interfaces (BCIs),** we argue that
progress can be made by leveraging existing HCI methods to
connect the human to a swarm of inter-communicating Al
agents. If the individual agents are sufficiently capable, and
their interactions sufficiently coherent, then the emergent
activity could feel, to the human operator, as an empowering
expansion to their mental capabilities.

We focus in particular on the concept of a science exo-
cortex—meant to expand a researcher's intelligence and scien-
tific reasoning—and propose some concrete architectural ideas.
We propose an implementation (Fig. 1) using a swarm of Al
agents that operate on behalf of the human user, and which—
importantly—communicate with one another and thereby
reserve human interaction only for high-value ideas and
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Fig. 1 An exocortex seeks to augment human intelligence by connecting computation systems to a person. A science exocortex could be
implemented as a swarm of specialized Al agents, operating on behalf of the human researcher, including agents for controlling experimental
systems, for exploring data and synthesizing it into knowledge, and for exploring literature and ideation. The Al agents would connect to science
components (instruments, databases, software, etc.) and streamline access. Crucially, the Al agents communicate with one another, working on
tasks on behalf of the user and only surfacing the most important decisions and outputs for human consideration. If successful, such a system
would allow researchers to handle the enormity of modern scientific knowledge, and accelerate discovery and dissemination of new science.

important decisions. We define specific categories of required
agents, including some focused on orchestrating experiments,
others on data and software, and others on scientific literature.
Although highly speculative, we hope the ideas presented
herein stimulate further research on AI agents optimized for
science, and their integration into systems that empower
human researchers.

2 Discussion

LLMs natively output streams of tokens, and are by default used
to generate text for humans to read, as in the canonical use as
chatbots. However, a narrow interpretation of LLMs would miss
their most significant capability: their outputs can be used as
decisions, allowing one to automate (simple) cognitive tasks.
Karpathy provides a provocative vision for the future of LLMs,
wherein they act as kernels (orchestration agents) of a diverse
set of capabilities (Fig. 2).***' In a conventional operating
system (OS), the kernel is a privileged software process that
manages resource distribution and inter-process communica-
tion, allowing the end-user to access software systems, files on
disk, network resources, and other services. By analogy, one can
imagine a sort of Al OS, where the orchestration abilities of the
LLM are leveraged to intelligently trigger the appropriate tool
(via APIs,**° code execution, etc.), retrieve relevant content (via
RAG,**° web browsing, etc.), and reformulate it into a form
suitable for human consumption (text, images, audio, etc.). The
crucial insight is that the LLM enables orchestration of tasks
and resources, and aggregation of data sources, in a much more
abstracted and high-level manner than is traditionally thought
of as possible for software systems.

The exocortex concept takes this idea seriously, and expands
upon it to propose that a swarm of agents could handle complex
tasks. Each agent would operate in the manner depicted in
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Fig. 2, optimized for a particular task (by tailoring the available
tools/documents, the prompting and scaffolding that dictate its
input/output behavior, etc.). The interaction of agents, each
acting as a sort of primitive cognitive module, could then lead to
emergent capabilities in the whole.

Achieving this vision will be difficult, requiring solving
a cascade of research challenges. Research is required to
determine how best to exploit LLMs to generate agentic
modules that can perform tasks autonomously (over short
timescales) by iterating on a problem. Specialization of these
agents to scientific problems will require additional consider-
ation. The software infrastructure to have agents run over
longer time periods, and inter-communicate productively, will
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Fig. 2 Diagram of a large language model (LLM) acting as a kernel
(image based on social media post by Andrej Karpathy). While LLMs
perform text generation, Karpathy has proposed to view them instead
as kernels—orchestration agents—of a new kind of operating
system.*®4! |n this paradigm, the LLM is responsible for accessing
resources (e.g. documents) or triggering actions (calculations, web
browsing, etc.), and feeding results to a desired interface (e.g. chatbot
dialog). The ability of LLMs to perform (rudimentary) decision-making
can thus be exploited to coordinate more complex activity in response
to relatively vague commands (which may come from a human or
another LLM system).

© 2024 The Author(s). Published by the Royal Society of Chemistry
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need to be developed. The correct inter-agent organizational
and communication structure will need to be identified. And,
finally, the appropriate interface between the ecosystem of Al
agents, and the human operator, will need to be developed.
Below we provide initial thoughts on these various challenges.

2.1 Al agents

Research into LLM-based AI agents is ongoing, with several
prototypes having been demonstrated.*®>~>%¢>%¢ Although the
optimal architecture remains an open question, current demos
typically add several elements to the base LLM, such as:
providing the LLM with access to various tools (software, web
browsing, etc.), the ability to store information about its
ongoing work (i.e. memory®"°), some kind of loop to iterate on
problems (inner monologue™ or chain-of-thought>**** or
internal graph search’), and prompting suggesting breaking
a problem into steps, and then working progressively on each
step. Further improvements are possible using an architecture
where task plans and status are captured in an explicit tree
structure, which provides a flexible way to organize complex
hierarchies.®® Tree structures can be efficiently searched (e.g.
Monte Carlo tree search) for reasoning and planning, yielding
improvements in many tasks including math.”””

Additional research will be required to adapt agentic LLM
approaches to scientific problems. Straightforward improve-
ments would arise from training or fine-tuning LLMs on
scientific documents, to ensure understanding of the relevant
topics. Fine-tuning on math examples can elicit latent mathe-
matical abilities.”®” Document retrieval can also easily improve
LLM performance on scientific tasks.*” Additional LLM
specializations for science should also be considered. Golkar
et al. proposed xVal, a specialized token encoding for numbers
(scaling a dedicated embedding vector) which improves LLM
handling of numerical tasks.** McLeish et al. used special
positional embeddings (relative to start of number) and
demonstrated vastly improved performance and generalization
on simple arithmetic (addition and multiplication) tasks.® Xu
et al. integrated symbolic expressions and logic rules into
a chain-of-thought prompting strategy, demonstrating
improved reasoning on logical tasks since the LLM was
invoking formal logic and symbol manipulation during the
solution.”® Trinh et al. combined a language model with
a symbolic solver to handle geometry theorems.** Vashishtha
et al. improved causal reasoning by providing axiomatic
training examples.*® These kinds of approaches appear prom-
ising, suggesting that LLMs with slight adaptations could yield
vastly improved reasoning for science and engineering tasks.

An advantage of the exocortex architecture is that it can
easily integrate more advanced Al agents as they are developed
by others. In other words, we propose to separate the design/
function of agents from their inter-communication, so that
new agents can be added to the exocortex easily (by simply
building a wrapper that supports the expected messaging
between agents). The goal is to be able to leverage the growing
ecosystem of Al modules being developed for science, including
for simulating complex systems,** optimizing differential

© 2024 The Author(s). Published by the Royal Society of Chemistry
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equations,® fluid dynamics,*® material discovery,®” crystallog-
raphy,*® 2D materials,* chemistry tools,*** protein represen-
tation®* and design,®” and pathology images.****

2.1.1 Autonomous experimentation. Autonomous experi-
mentation (AE) is an emerging paradigm for accelerating
scientific discovery, leveraging AI/ML to automate the entire
experimental loop, notably the decision-making step.’*® AE
aims not to merely quantitatively accelerate, but also to quali-
tatively improve experiment execution by having an algorithm
adaptively select optimal experiments. It seeks not to replace
the human researcher, but to liberate them to operate at
a higher level of abstraction where they can focus on scientific
meaning instead of micro-managing experimental details.”®*”
Progress in AE has grown rapidly over the last few years, tran-
sitioning from proof-of-principle to true discovery of new
science.”®'*® The AI control module may exploit reinforcement
learning,"**” though a highly popular approach is to exploit
Bayesian methods"*® (such as a Gaussian process,'*”'*° GP) since
this provides rigorous modeling of a data surrogate and asso-
ciated uncertainty. AE methods are increasing in sophistication,
including demonstration of multi-modal autonomous experi-
ments integrating multiple measurement systems."*’

Instead of treating the AE system as an autonomous loop
initiated and monitored by the human researcher, one can
envision it as a module in the exocortex, which can be activated
and monitored by other AI agents. Enabling this capability
would require relatively little change to existing AE architec-
tures. Primarily, one would need to define a simple software API
or natural-language interface for AE parameters and actions.
Doing so would increase the power of AE systems, as they could
more easily integrate physics-informed priors arising from
literature or preexisting datasets.

2.1.2 Experimental assistant. A highly consequential type
of Al agent for science is one that negotiates control of some
experimental tool on behalf of the researcher. Building such an
agent requires the experimental system to already be highly
automated, such that the agent can trigger operations
(synthesis, measurement, etc.) and retrieve generated data.
However, as more and more platforms naturally shift towards
higher levels of automation, the prospects for AI control
improve. Many high-end measurement tools provide highly
software-driven  interfaces, including electron micro-
scopes,'*®1? scanning probe instruments,'*®***** and synchro-
tron"'*'** or free electron laser (FEL)'***** beamlines. Recent
work has also demonstrated automated workflows"***”3° or
modular platforms for lab experiments. The rapidly
advancing capabilities of AI robotic control****° suggest that
broader ranges of manual laboratory tasks will soon be
amenable to automation.

The next step is thus to design Al agents that can access the
capabilities of these automated systems. Preliminary work has
already demonstrated the viability of LLM-based agents for
controlling scientific instruments.®******* AI experimental
assistants can allow the human to phrase commands in natural-
language, whereupon the LLM can convert this into action
through API calls or code generation.® The assistant can help to
integrate experimental and data analysis steps, making it easier
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to see the consequences of measurements and to iterate more
quickly on the problem being studied. Experimental assistants
can also act as tutors, e.g. generating initial control code for
a user unfamiliar with a particular instrument. The approach is
flexible, and can easily be adapted to changing instrument
conditions by updating documentation that is added to the
LLM's context during operation.

2.1.3 Data exploration. Scientific discovery involves col-
lecting, processing, and analyzing datasets of many types. In
answering a scientific problem, researchers will integrate a wide
variety of data sources, including lab notes, instrument outputs
(images, spectra, etc.), simulation results, and a succession of
derivative data products created through analysis. Tracking,
organizing, and visualizing these datasets is extremely chal-
lenging. An acute challenge for a modern researcher is the
interdisciplinary nature of many frontier topics, which corre-
spondingly means dealing with a heterogeneity of datasets
coming from different sources, and following different
conventions for formatting and meta-data.

Al assistants could play an important role in alleviating this
burden, by automating many routine tasks in data triage and
reformatting, and by automatically triggering the required
pipeline for automated data processing. The heterogeneity of
data can possibly be handled using foundation models.®
Whereas in the past, application of machine-learning to science
required training bespoke models on carefully-labelled datasets
specific that science topic, foundation models trained on vast
quantities of unlabelled data should be able to learn generic
representations that are useful. For instance, it was found that
the Contrastive Language-Image Pre-training (CLIP) model***
trained on generic Internet image data could be used to assess
similarity for scanning electron microscopy and X-ray scattering
datasets, without any retraining or fine-tuning.*”

Many scientific datasets are images, or can be converted into
images. Thus a powerful approach for AI data assistants is to
exploit multi-modal language/vision models.*******" Indeed,
humans generally consume data as images, in the form of
graphs and plots; this visual formulation of the data has the
advantage of being ready-to-deploy, human-readable, and
already well-represented in existing training sources (publica-
tions). Exploiting multi-modal models as data assistants is still
in its infancy, but early systems®'*'%> show promise.

2.1.4 Knowledge mapping. A grand challenge in data
science is to integrate data from disparate sources into a single
model. Human scientists excel at this task, as they integrate
insights provided from experimental data, calculations, litera-
ture they recall, and intuitions informed by years of scientific
practice. When thinking about or discussing a complex topic,
human scientists will naturally jump between different levels of
abstraction and thus different scientific models. This combi-
nation of models (some highly quantitative, others heuristic)
allows human scientists to compensate for the deficiencies in
one model/reasoning by leveraging another. Approximating this
efficient behavior in a synthetic knowledge system is chal-
lenging. Al analogs of human synthesis would make knowledge
integration explicit and documented, and provide integrated
models for other software systems to leverage.

1936 | Digital Discovery, 2024, 3, 1933-1957
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A core challenge is to align disparate observations of the
same physical signal; that is, to account for the unknown
disparity between models arising from systematic errors,
different underlying assumptions, mismatched definitions, etc.
Consider a simple signal for a material system (e.g. crystalline
grain size) as a function of a physical parameter (e.g. tempera-
ture). Despite the independent/dependent variables being well-
defined within one model (observation), matching between
models may not be trivial. For instance, a physical measure-
ment might use absolute real-world temperature (in kelvin
units) while an associated coarse-grained simulation might rely
on a unitless abstracted temperature variable. (Obviously the
two quantities are closely related; but the mapping function
between them is typically not known.) The measurement of
grain size by different techniques may not match owing to
different definitions (e.g. volumetric vs. aerial averaging).**
Thus, it can be challenging to merge datasets relevant to the
same physical problem, even when they are individually trust-
worthy and robust. The problem becomes harder still as input
data sources become more heterogeneous and ill-defined
(heuristic classifications, text descriptions, scientist intuitions,
etc.).

The simplest approach to this problem might be to exploit
contrastive learning. For instance, the CLIP*** model uses two
encoder pathways: one for text and one for images. The method
also computes a similarity matrix between the two latent spaces
(cosine similarity for text/image pairs), where part of the
training loss seeks to maximize the diagonal and minimize the
off-diagonal elements. In this way, the text and image latent
spaces align, allowing cross-modal learning and applications.
In principle, a similar approach could be used for scientific
data. Datasets and their associated text descriptions could be
used as training pairs, or different observations of the same
physical phenomenon (e.g. experimental measurements and
corresponding simulations) could be combined if some pair-
wise associations were manually identified. Recent work
increasing the number of modalities appears promising.'**'**
Nevertheless, it may be challenging to scale this approach to
handle the heterogeneity, complexity, and sparsity of realistic
laboratory datasets.

A more sophisticated approach to this problem is to train
multi-modal foundation models on scientific datasets.® The
Polymathic AI effort is proposing to train AI models for science
on a breadth of data,"® which can then be specialized for any
particular application by exploiting the latent representations
or via problem-specific fine-tuning. Cranmer argues that doing
otherwise (e.g. training an ML model for science using random
initialization) is inefficient as it ignores the wealth of well-
understood scientific priors.'” Initial results for this approach
are promising,**®*** with (e.g.) multi-physics pretraining on
system dynamics improving subsequent predictions on new
systems. The approach involves projecting the fields for
different kinds of physical systems into a shared embedding
space. The central generative model (based on transformers)
thus learns meaningful physics, while the dataset-specific
embedding/normalization schemes capture the differences
between the physical systems.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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A closely-related approach would be to train multi-modal
foundation models on science data, so that these models
could be queried to explore trends in the data. Recent work'®®
has shown that an LLM trained on (x, y) pairs can articulate the
function f{x) that underlies the transformation (can define it in
code, can invert it, etc.). If this result generalizes, it implies that
LLMs trained on raw science data could coherently describe the
data, make predictions based on the underlying functions, and
SO on.

A different way to formulate this task (Fig. 3) is to focus on
integrated modeling of all the signals defined in physical
parameter spaces for a given problem (e.g. class of materials).
For a given signal, a variety of different observations might be
available (from experiments, simulation, theory, etc.), with
tradeoffs between signals (in terms of sampling density, error
bars, validity in different parts of parameter space, etc.). Signals
could be combined into a merged model by learning a non-
linear transformation that maps them into a common space
and maximizes their overlap (using, e.g., variants of the
methods described above). The combined datasets could be
interpolated using a Gaussian process or other nonparametric
method,'””"*® leveraging physics-informed constraints to
further improve the model (e.g. via tailored kernel design*****)
and acceleration methods to reduce computation cost.**>'** The
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set of models could also be cross-correlated, to identify
connections and scientific trends between signals (or estab-
lishing lack thereof). GP modeling of correlated signals would
also allow interpolation of signals into parts of spaces where
they were not explicitly measured (effectively using a correlated
measurement as a sort of proxy signal). Conceptually, the set of
signals (and covariance matrix between them) represents a final
rich multi-modal model of full system behavior. This unified
model could be used for predictions, searching for trends and
novel physics, or as a guide for future discovery (identifying
under-sampled regions, suggesting high-performing materials,
etc.).

An even more speculative approach would be to attempt to
adapt methods of generative world synthesis to scientific data.
There has been enormous progress in generative synthesis of
images (2D data),™** objects (3D),"**"”* and video (3D)."”**”°
Neural radiance fields'® and Gaussian splatting'®* have
emerged as efficient methods for reconstructing and repre-
senting 3D scenes (where input images act as projective
constraints). These methods have been extended to
capture*®>*** or synthesize'®** changes over time (4D). These
methods are efficient,'*** scalable,'**> and amenable to in/out-
painting.***** In addition to obvious applications in content
generation, these methods are seeing adoption for autonomous
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Fig. 3 Knowledge mapping is an attempt to align and aggregate a variety of data sources about a particular scientific problem into a single
model. One architecture for accomplishing this is shown. Available data is organized into signals of interest (such as physical measurables,
material properties, or functional metrics). One typically has a variety of estimates or observations for a given signal, arising from different
experiments, calculations, or theories. In principle these observations already map into a common space; in practice there are complex and often
unknown disparities between the observations, owing to measurement errors, disparate definitions, or different assumptions. Thus, some non-
linear transformation (e.g. accomplished using neural networks) is required to combine them into a single predictive model. Models for distinct
signals can be cross-correlated to identify inter-relations; this can effectively combine the models into a single multi-modal model.
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driving*®
ment suggests neural synthesis of virtual world,
immersive 3D environments are generated and animated/
evolved, using real-world reconstructions and/or user text
commands as inputs. We suggest that this approach could be
applied, in higher-dimensional spaces, to scientific datasets.
The partial measurements made in scientific experiments can
act as constraints (conceptually a projective view of the full
higher-dimensional space), where the objective is to reconstruct
a consolidated model consistent with all the data (i.e. merge
datasets and modalities) and to generatively fill unmeasured
parts of the space using an informed model (i.e. interpolate and
extrapolate in a physics-aware manner). Considerable work
would be required to recast existing methods to handle the
dimensionality and different constraints of scientific data in
physical parameter spaces; but the efficient representations
being developed for simulating the real world may well hold
useful insights for representing other kinds of coherent data-
spaces.

2.1.5 Literature discovery. The scale of the research litera-
ture is continually growing, making it increasingly difficult for
researchers to maintain awareness of important trends or
singular results. Conversely, this enormous scientific corpus is
a trove of insights that should be more fully leveraged. Litera-
ture Based Discovery (LBD)***>* has a long history of increas-
ingly sophisticated methods and software being developed for
mining the literature, identifying connections across domains,
and otherwise streamlining literature research. AI methods,
and LLMs in particular, are well-positioned to greatly accelerate
these processes, automating knowledge extraction from
publications.?**

An obvious use-case is to systematically search through
a corpus in order to extract and tabulate values for quantities of
interest.>** Here, the flexibility of LLMs can enable extraction
that handles the heterogeneity arising from synonyms, different
definitions or units of measure, and so on.

LLMs can be combined with document retrieval (RAG) to
allow users to rapidly identify relevant documents (or sub-
sections thereof) and immediately incorporate them into
reasoning or question-answering. RAG LLMs have been used to
build domain-specific chatbots for science,*” and to provide an
interface to vast materials data that can be distilled as requested
by the user.”*® More generally, the Al model can be exploited as
a co-pilot to help the user access specialized knowledge or tools,
as has been demonstrated for catalyst research,*” chemistry
experiments,* and chemistry tools.*® A valid concern is that the
reasoning of LLMs—being well below human scientists—would
be insufficient to be useful. However, when designed as a co-
pilot, such systems can offer substantial value. LLMs can
exploit the systematic compositionality of language (and thus
ideas), which enables them to generalize in useful ways.>*
Evidence shows that dialoging with LLMs can indeed help
researchers.>**

LLMs can also be exploited to automate tedious tasks. For
instance, they can be used for ranking,*****'* evaluating,* or
classifying®” scientific documents. This opens up a new possi-
bility for researcher engagement with the literature, beyond the

and robotics."®*"*® The trajectory of these develop-
79 wherein
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conventional activities of periodically searching for articles of
interest and keeping a watch for relevant articles through
networks (peers or automated). LLMs could be used to search,
organize, rank, triage, and summarize papers, and thereby
identify the most pertinent publications for human
consideration.

LBD has a strong history of exploiting network analysis to
understand the science corpus, including using predictive
knowledge networks.*>*'* An interesting possibility would be to
exploit modern foundation models as another form of network
analysis. The semantic embedding provided by these models
could offer a rich means of identifying connections (or lack
thereof) in the literature. For instance, clusters of publications
that are semantically similar but not cross-citing one other
could represent inefficiency (duplicative efforts unaware of each
other), while clusters that are highly correlated in a subset of
embedding dimensions (but divergent in others) could repre-
sent opportunities for collaboration.

Another use for Al agents is to aid researchers in drafting
scientific manuscripts. LLMs are fundamentally text-generation
systems, and their role in productively generating long-form
textual content is being extensively studied.**™ As often
observed with LLMs, the quality of output can be improved
through iteration, including using the LLM to generate an
outline, self-critique output, and so on. There are additional
challenges in using LLMs to generate scientific text, as consis-
tency and correctness must not be compromised. Here too,
there has been progress in using LLMs to automatically
generate full-length technical documents.***>** The use of Al to
generate text for inclusion in the scientific literature could be
deleterious to science if the texts contain too many errors
(compared to the human baseline). The exocortex design
emphasizes the central role of the human researcher in
assessing correctness and validating decisions/generations. We
propose that the human researcher maintain the important role
of validation, and thereby maintain responsibility for the
quality of publications to which they attach their name.

2.1.6 Autonomous ideation. A novel use for LLMs would be
to help automate the task of generating and evaluating scientific
ideas, including research plans, testable hypotheses, experi-
mental plans, and predictive theories. These cognitive tasks are
among the most high-level performed by human scientists, and
as such least likely to be fully automated by LLMs in the fore-
seeable future. On the other hand, the process of human idea-
tion involves many secondary cognitive activities that could be
automated.”” Thus, autonomous ideation seeks to generate
loops of machine-driven brainstorming and evaluation,
bringing high-value ideas to the human's attention for further
consideration.

Existing work in LBD has begun to tackle the question of how
to use natural language processing and LLMs for hypothesis
generation or other scientific ideation tasks. A central question
is whether LLMs can be creative at all. LLMs are trained
statistically on a large document corpus, and can be viewed as
generating novel text that are interpolations in a semantic
space. Such generations can be factual (correctly composing
ideas in the training data) or erroneous “hallucinations” (or

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00178h

Open Access Article. Published on 19 August 2024. Downloaded on 1/20/2026 5:38:09 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Perspective

confabulations). Hallucinations can be partially mitigated by
detecting them through generation uncertainty, or by
grounding responses using RAG.**** Although hallucinations
are generally undesirable, their existence is intrinsic*** and
there is a tradeoff between hallucinations and creativity.** In
other words, some amount of hallucination is desirable, to
enhance creativity and communication.”” More broadly, eval-
uations of LLM creativity suggest that they can generate outputs
that are non-trivially novel and wuseful to humans.?**>%
Language models have demonstrated utility for hypothesis
generation,*"** or as generators for novel ideas.?*!>3323¢

The most direct way to use LLMs for ideation is as a chatbot
assistant to a human researcher. A more automated design
would leverage agentic Al operating in loops, so that a group of
LLMs propose and critique ideas, and then rank*”** these ideas
in order to identify the most promising. A more structured (but
speculative) approach is to treat the task of autonomous idea-
tion as being analogous to autonomous experimentation,®®
wherein an ML decision-making algorithm selects points in
a physical parameter space for measurement. In autonomous
ideation, one could analogously select points in the semantic
“space of ideas” for exploration (Fig. 4). More specifically, the
search space is defined using a semantic vector (e.g. text
embedding) and the target signal in that space is defined using
LLM ranking of the ideas. On each loop, a new region is selected
for exploration, using a modeling process that can consider
both idea ranking (bias towards high-quality regions), and
uncertainty (explore under-sampled or high-error regions). This
modeling can exploit Gaussian process methods to naturally
capture uncertainty and learn hyper-parameters that describe
the semantics being explored. Once a point is selected, an LLM
generates new ideas at that position by (e.g.) sampling a local

LLM
generates
new ideas

Quality of idea

Space of ideas

selects

region for
exploratiol

Fig. 4 Autonomous ideation aims for the Al agent to develop new
scientific ideas (novel research directions, testable hypotheses,
actionable research plans). One possible system design is to treat the
task similar to an autonomous experimentation loop, wherein one is
exploring a multi-dimensional parameter space. In ideation, one can
define the space of ideas using embedding vectors to position each
idea. Each idea can be scored using an LLM ranking procedure. The
loop consists of selecting a region for exploration (e.g. based on some
combination of local sparsity, model error, and quality-maximization),
generating ideas in that region (e.g. using an LLM provided with
documents/ideas from the local neighborhood), and ranking the
resultant ideas. As the loop proceeds, the space becomes populated
with ideas. The top generations can eventually be presented to the
human for consideration.
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neighborhood* of ideas or documents in order to generate new
content. This generation is ranked to quantify it as a signal,
which is fed back into the loop. As this procedure continues, it
will naturally fill the semantic space of ideas, balancing between
exploration and exploitation, and providing a surrogate model
for idea quality in the subspace selected for search. It is an open
question whether Bayesian modeling can meaningfully be
applied to the inherently vague space and signals associated
with ideation. But the AE framework provides a robust starting
point for rigorously testing various idea exploration schemes.

A different ideation design would be to leverage ongoing work
in visualizing and interpreting the internal state of the LLM.
While neural networks are often described as inscrutable black
boxes, there has been enormous progress in interpreting their
structure and the latent spaces in which they operate. In vision
models, the role of neurons and circuits can be interpreted by
visualizing strong activation patterns.” In language models,
tasks learned in-context can be understood as a simple function
vector that capture the relevant input-output behavior.>***” A
particular direction in the model's internal state can be associated
with specific behavior, such as refusal to respond*>* (allowing that
behavior to be selectively amplified or weakened). Identifying
internal circuits associated with particular concepts allows one to
build “circuit breakers” to suppress undesired output.**’ Natural
hierarchies of concepts—which occur throughout natural
language and especially in scientific ontologies—are represented
in the model's internal vectorial space as polytopes that can be
decomposed into simplexes of mutually-exclusive categories.>**>**
Model activations can be interpreted using human concepts, if
they are projected into a higher-dimensional space to disentangle
them.”**?* These interpretability insights are often exploited for
alignment,*® to elicit safe and desirable model behavior.
However, they could also be used to directly explore the landscape
of ideas. For instance, visualizing the internal ontology for
a scientific sub-space might allow researchers to identify regions
of unexplored concepts, or to see fruitful cross-connections
between ideas that are typically considered unrelated. Searching
the structure of this space for common patterns could further
reveal new connections or universal motifs. Being able to directly
alter the activation or geometry of the semantic space, and
observing LLM output, provides another avenue for generating
novel ideas in a highly directed way. This research thrust would
require researchers building new intuitions about how to under-
stand and navigate the complex spaces internal to LLMs.

More generally, strategies originally intended for model
tuning or alignment could all be co-opted for ideation. For
instance, one could block off exploration of ideas known to be
fruitless, or conversely emphasize desired modes-of-thought.
Viable strategies include fine-tuning,>**>** RLHF**
(including Al-assisted®), constitutional adherence,**® prefer-

ence ranking,*’ i 5! principle-driven

instruction backtranslation,
self-alignment,*? or eliciting latent knowledge.***%

2.2 Exocortex system

The proposed exocortex design will behave as a system of
interconnected Al agents, some of which can also communicate
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directly with the human researcher. The correct design for this
system is an open research and engineering challenge. Never-
theless, we can begin to propose and test designs. One of the
simplest implementations would be for each researcher to build
a personalized network by selecting among pre-existing Al
agents, and defining connections between them based on
desired workflows. Communication between agents could thus
be managed with point-to-point message queues. This
approach is not very scalable, however. An alternative would be
to establish a central database where inter-agent messages are
accumulated, and build code that manages communications,
using user-defined heuristics to decide when incoming
messages require returning to the same agent for revision,
launching a new agent, passing to a running agent, or bringing
to the human's attention. Likely there are yet better designs
possible if one treats the agent-interaction problem as a large
machine-learning task. By selecting a flexible design (e.g. based
on graph neural networks), an automated optimization process
could create/eliminate connections in order to build dynamic
workflows. Much of the work on within-agent iteration and
looping can be exploited to improve inter-agent workflows.

In all these schemes, signals between agents can take the
form of plaintext messages. This has the advantage of being
highly legible to the human operators,*® allowing them to
understand commands, make improvements, and even extract
scientific value from intermediate products. As the number of
agent types increases, the diversity of possible inter-agent
cooperations increases quadratically, while the space of
possible workflows grows exponentially. Example messages that
might be sent between agents are shown in Table 1. Legible
inter-agent messages will allow the human operator to inspect,
at will, operation of the system, including editing an agent's
message before it is executed by another agent.

The complexity of interconnected agents, and the non-
standardized (text-based) messaging between them poses
a problem for automated monitoring, analysis, and optimiza-
tion of these systems. On the other hand, it is possible that
existing approaches for systems engineering can be recast to the
context of AI swarms. For instance, machine-learning has
benefiting enormously from gradient backpropagation,>”
which has essentially automated the process of optimizing
complex neural network and AI models. By analogy, Yuksek-
gonul et al. proposed TextGrad as a text-based “differentiation”
of AI systems.?®® Natural language feedback (e.g. criticism) of
system outputs can be used as scores (analogous to loss), the
variation in score as a function of changes in prompt can be
used as a gradient, and gradients can be propagated across the
system with knowledge of architecture. This allows automated
optimization of LLM-interaction networks. Zhou et al. demon-
strate how symbolic learning can be applied to optimizing LLM
frameworks.”* Further developing techniques such as these
may be crucial to properly optimizing exocortex-like systems.

The proposed exocortex architecture would treat agents as
modules, allowing them to be swapped or for new agents to be
added. Connecting agents to each other should enable
progressively more complex automated workflows. However,
a crucial open question is whether multi-agent workflows can
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scale to complex problems. For instance, even with a low per-
step error rate, long task sequences could easily accumulate
intolerable total error rates. The acceptable error-rate will be
quite different for different parts of a workflow. For instance,
imperfect ideas generated during ideation have low risk, as they
will be identified and filtered out by the human easily (in
human ideation there is value in initially considering erroneous
ideas, as this can improve creativity). On the other hand, errors
introduced by a data-analysis agent could be subtle and difficult
to detect; yet errors in this stage would contaminate down-
stream analysis and thus invalidate the science. Errors in the
experimental stage could waste valuable resources (time,
experimental material, etc.) but are likely to be caught by human
oversight. Al agent workflows can also be difficult to debug
(owing to stochastic response) and brittle to maintain (changes
in cloud models, changes in input data distribution, etc.). Thus,
the scalability of multi-agent workflows is a crucial open ques-
tion, requiring research and development. Frontier work in this
area suggests that well-designed multi-step AI workflows may be
able to generate coherent outputs.**®

The goal of the exocortex is to augment a human scientist's
intelligence. This objective is predicated on the assumption of
emergence at two levels: one, that the swarm of AI agents will,
through coordination, exhibit intelligence greater than the
naive summation of their respective abilities; and two, that the
combination of exocortex agents and human thinking will
enable greater effective intelligence. To succeed, the exocortex
architecture must thus enable this outcome. The correct design
remains an open research question. However, we propose that
analogies to human cognition can aid in the design.

2.2.1 AI-AI interactions. LLMs generate ideas and deci-
sions, but they are quite primitive in the sense that the ideas are
reflexive rather than resulting from deep introspection.>*® The
repeated waves of processing that occur within an LLM as it
proceeds through tokens provides an opportunity to build-up
more complex assessments, with the current understanding
represented as updates to the residual stream. Improved
behavior can thus be elicited by inducing the model to explicitly
output reasoning steps.****** Interestingly, introducing even
meaningless filler tokens into the output provides improved
performance,*** presumably owing to the additional computa-
tion cycles that are invoked. And yet, LLMs implement a rela-
tively primitive and unidirectional method of thinking, as they
are unable to revise the serialized output. Multiple research
efforts aim to improve this by introducing a sort of deliberation
cycle, such as by triggering self-critique of output,*** or
generating chains of thought through iterative self-
prompting.**® Exploiting tree search (e.g. Monte Carlo) can
further improve quality, especially on math problems.””® For
scientific applications, versions of these methods that explicitly
invoke formal logic are especially attractive.**** One can also
provide pre-designed thought-templates to improve reasoning
on selected tasks;** building a catalog of templates for scientific
tasks would be beneficial.

Another means of generating improved output is to
construct “societies” of semi-specialized Al agents, and allow
them to communicate and cooperate on a task. The hope is that
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Table 1 Examples of command messages that various Al agents could send to other agents. The diagonal elements (grey text) are commands

sent from an agent to another instance of the same type

Message from

Autonomous Experimental Data exploration ~ Knowledge Literature Autonomous
experimentation  assistant mapping discovery ideation
v v v v v v
Autonomous } h thi Launch new AE Incorporate this Build AE kernel Set AE Launch AE that
experimen- aked with these data as AE that conforms to ~ parameters tests this idea...
tation pa IS. parameters... prior... this model... based on this
literature...
Experimental P Queue these his su Analyze these Overlay this Create plan that  Prepare an
assistant follow-up n related model with replicates this experiment plan
experiments... datasets... current published to test this
experiment... experiment... idea...
£ Data explo- P@ Plot ongoing Retrieve and mpare/it e Overlay this Add citations to Add annotations
g, ration AE... analyze data for ith th model on dataset... to dataset...
b this dataset...
g experiment...
Knowledge > Test integration Add this Integrate this Integrate Annotate model
mapping of AE into experiment to data into literature results ~ with this
model... model... model... nodels.. into model... interpretation...
Literature P@ Is this trend Search literature  Find data values  Find mod- Fin Retrieve
discovery expected, based for the value relevant to... els/equations 1 literature

on prior work...

of..

relevant to...

1D-tOPIC

relevant to this
topic-space...

Propose theories
to explain this
model...

Launch ideation
based on these
papers...

auncn iaeation
on tI

tonie

Autonomous P(:) | Evaluate Generate Generate
ideation : progress of this hypotheses hypotheses for
ongoing AE... relevant to this dataset...
current
experiment...

specialization improves diversity and allows task-specific tar-
geting, and that the emergent quality of collective output is
higher than for any individual agent. Although this approach is
only nascent,’®?***° there are early suggestions that it can
improve task performance in contrived contexts (e.g
games**?”?) and applications (e.g. code generation®”* and
translation®”*). One can also use synthetic analogs of cultural
transmission to improve learning of AI swarms.?”>*”® Interaction
between agents can be** cooperative, debating, or competitive.
Agents can be organized into flat structures, where each agent is
equivalent (e.g. voting on answers/decisions), or hierarchically,
where top-level agents assign tasks to workers, and aggregate
outputs. Different tasks will, of course, call for different orga-
nizational structures. However, there are often clear advantages
to establishing hierarchies and workflows,**” especially where
one can draw inspiration from human organizational
structures.

Instead of emulating human social structures, an alternate
architecture is mixture-of-agents,””® which organizes AI blocks
into layers reminiscent of neural networks (where each node is
an LLM instead of a synapse). The input prompt is fed into
a layer of models that propose independent responses, an
aggregator synthesizes the responses into an improved output,
and this is fed into the next layer. Thus, response quality
progressively improves across layers, as more reconsideration is
performed. By including different LLMs within a layer, one can
improve diversity and allow for models to compensate for each
other's weaknesses. Performance can also be optimized by
correct selection of models within layers. The architecture is
rationalized and organized, and amenable to rescaling
(changing number of agents per layer, number of layers, etc.) to

© 2024 The Author(s). Published by the Royal Society of Chemistry

optimize for a particular task. This work demonstrated signifi-
cantly improved outputs, compared to single-shot use of any
underlying model, and demonstrated that a final aggregation
LLM call (rather than ranking and selecting the best output so
far) improves generation. This supports the idea that agent
interactions can lead to emergent capabilities greater than any
individual agent. The iterative processing may also make multi-
agent setups amenable to longer-horizon tasks (e.g. longer text
analysis or generation).

The optimal architecture for providing LLMs with delibera-
tive capabilities remains an open and exciting research ques-
tion.”*® Current scaling suggests that LLMs have untapped
potential that could be unlocked with appropriate designs. In
parallel with algorithmic research, we propose that scientific
researchers can make progress by simply expending compute to
compensate for architectural weaknesses. For instance,
consider tasking an agent-swarm with a problem, whereupon
the agents generate ideas, ask each other questions, generate
random permutations by combining ideas, rank all ideas, and
only present the best ideas to the human. This workflow is
highly wasteful in the sense that the majority of the generated
content is never seen and indeed low-quality. Yet this invisible
content can be viewed as the system's internal deliberation.
Even if this process is inefficient, its automated and unobtrusive
nature can make the outputs sought-after by humans. In the
context of science expenditures, the associated costs could be
small relative to the value. There are tentative reports that this
kind of extended search can yield substantial
improvements.”””>** We thus propose increasing investigation
by physical scientists of brute-force workflows, for generating
content useful to researchers.
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2.2.2 Human-AI interactions. Human thinking involves
a combination of effortless intuition and deliberative
reasoning®**>*” (often referred to as “implicit” vs. “explicit” or as
“system 1” vs. “system 2”). A cluster of low-level brain modules
generate reflexive actions, intuitive assessments, and creative
ideas. A higher-level deliberative process engages in discrimi-
nation, iterative refinement, and selection; using the low-level
generators as inputs and assessors. A synthetic exocortex can
be designed similarly. The swarm of AI agents act as low-level
generators, introducing ideas and providing reflexive assess-
ments. The human deliberative consciousness remains the
core, doing the highest-level discrimination and decision-
making, and is thus ultimately the locus of volition.

The exocortex interface should ideally make the Al-generated
inputs feel much like the human's own low-level modules.
When actively working on a task, the exocortex should provide
contextual assessments and ideas that feel like spontaneous
intuition that the human can trust (but will also verify). When
returning to a dormant task, accumulated background AI-
swarm processing should feel like the mental incubation
known to occur in humans,*®® wherein returning to a problem
after a diversion often yields new insights and perspective
owing to subconscious consideration.

Obviously, efficient coupling between reflexive and deliber-
ative processes is required in humans for effective creativity and
problem-solving.”® A legitimate concern is that traditional
peripheral-based user interfaces (using keyboards, screens, etc.)
represents too much friction for strong coupling, and brain-
computer interfaces will be required.** However, there is ample
evidence of human tool use becoming overlearned*° to the
point that the tool is considered an extension of the person's
body and volition.”** We can view the evolution of cognitive
technology as precedent for humans externalizing aspects of
their cognition, with a succession of tools (writing, calculators,
the Internet, smartphones) being exploited as external memo-
ries, processing extensions, or task-activation schemes. Thus,
we posit that fast and responsive interaction through existing
computer interfaces may be sufficient for the desired interac-
tion. Indeed, humans are known to be able to enter so-called
“flow states” (immersed and focused)****** during computer-
oriented tasks such as programming.>**

2.2.3 Human-computer interface. The purpose of the exo-
cortex is to offer the human additional cognitive power that
feels—as much as possible—as a natural extension to their own
mind. One can imagine a future where brain-computer inter-
faces are used to provide and ideal interface;* we posit that in the
short term much value can be realized by providing researchers
with AI agents through traditional computer interfaces. Research
in human use of autonomous tools suggest that the person must
ultimately feel that they are in control of processes.”” Corre-
spondingly, we propose that initial exocortex interfaces will
involve humans reviewing and verifying LLM plans before they
are executed (by other AI agents). There is evidence that humans
observing the output of LLMs debating each other helps the
human identify the best ideas.*>**® This suggests that, more
generally, providing researchers with access to exocortex inter-
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communications (critique, debate, refinement, etc.) could
provide them with valuable information. As system robustness
improves, and user confidence in the tools increases, more and
more workflows can be automated and unattended.

With respect to human interaction with the software tools,
we can define several modalities:

e Push: where alerts are used to capture the user's attention
(operating system notifications, text messages, etc.).

e Pull: which require the user to actively check on status
(visiting web page, opening a program, etc.).

e Ambient: where information is displayed peripherally to
the user, or where contextually relevant.

Different aspects of exocortex operation might imply
a different notification mode. For instance, human-directed
dialogue is inherently pull, while operationally-critical and
time-sensitive statuses that require human resolution will be
push. However, the ambient modality is the most well-aligned
to the ethos of the exocortex, where information generated by
Al agents is contextually but unobtrusively presented, available
to subconscious consideration by the human, and thus appears
to the user as a seamless extension of their ongoing planning.

In the short term, we can envision useful interfaces being
developed by exploiting HCI best-practices for ambient infor-
mation display, and by integrating exocortex outputs into
existing visualization tools and workflows. Extended reality
(virtual reality, augmented reality) tools may be natural
peripherals for exocortex software. Leveraging improving
systems for voice transcription and voice synthesis provides
another avenue for natural interaction with these tools. We note
that as LLMs increase in capability, they are beginning to
develop a primitive theory of mind.****?***® This can be taken
advantage of by using the LLM to roughly model human
behavior, and thereby providing suggestions in ways that are
most beneficial and least disruptive.

2.3 Infrastructure

In addition to novel AI developments, the success of the exo-
cortex requires continued progress in several pragmatic infra-
structure components (left side of Fig. 1). In general, science
infrastructure must be made increasingly automated and
software-accessible, so that AI agents will be able to leverage
these systems as tools. Importantly, even if the exocortex
concept is flawed, the proposed improvements in science
infrastructure will be of great value to the community.

2.3.1 Automated instruments. As previously discussed,
scientific instruments are becoming increasingly automated.
This trend is driven by the increasing complexity of these tools
(there are too many layers of control for them all to be manually
managed), and researcher desires for speed and efficiency.
Automated tools are in principle amenable for activation by Al
agents. The primary limiting factor is the availability of an
external API for both triggering actions (synthesis or measure-
ment), and retrieving results (raw or analyzed data). We
encourage researchers and tool vendors to push aggressively
towards a world wherein every piece of laboratory equipment
has an API, and is thus amenable for Al automation. LLM
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technology may in fact be a crucial enabler for such a transition,
since their ability to handle arbitrary and heterogeneous APIs
(as long as documentation is provided) liberates researchers
and manufacturers from having to agree on and follow a single
standard for laboratory automation.

Conversely, it must be acknowledged that automation of
scientific instruments and laboratory workflows represents
a bottleneck for Al-driven science. While AI models and soft-
ware can be rapidly iterated and improved, hardware system
improvements are more capital-intensive and require longer-
timescale design and construction efforts. Vendor-provided
tools may use proprietary data formats and may not expose
software interfaces that provide complete control of the system.
These represent significant roadblocks to automation; the
community should correspondingly demand commercial solu-
tions that adhere to open data standards. Although mecha-
nizing and automating laboratory work is by no means trivial,
we argue that the value of any such effort will increase
dramatically in the coming years, as Al agent control systems
increase in sophistication.

2.3.2 Open science databases. There is growing apprecia-
tion that the data underlying scientific publications should be
open and freely available to others. Open data practices increase
the realized value of a research effort, as datasets can be used by
others in ways not originally envisioned.’®** For example,
datasets can be used for meta-analysis, to identify broader
trends, and as inputs to machine-learning training. The FAIR
data principle emphasizes that all datasets should be findable,
accessible, interoperable, and reusable.** In practice, this
means data must be retained and archived, that archives should
be open for download and indexing, and that data should be
correctly labelled and have corresponding meta-data to
contextualize and associate it (with people, groups, publica-
tions, and related datasets).

The exocortex is closely tied to open data efforts. To function
most effectively, it requires that Al agents be able to identify and
operate on vast datasets. Thus, the exocortex is empowered by
the greater availability of research data of all types. Obviously,
the exocortex also improves as more domain-specific Al
modules are trained; this will typically require aggregating
openly available domain datasets.

The exocortex concept can also potentially improve data
release. One key limiter in data release is researchers being
unable to provide sufficiently detailed meta-data, because
common tools lack meta-data features and because of the time
burden associated with manually adding human annotations to
vast datasets. Al agents can help here, as they are better able to
handle the ambiguity of sparse meta-data labelling. AI agents
may also be able to help automate the collection of meta-data
and annotation of datasets when they are first produced,
which should increase the richness of meta-data captured. The
lesson for the community to learn is that data release is valuable
even if the dataset is imperfectly organized and annotated.
Future tools will make it possible to organize and extract value
even from heterogeneous and unlabelled data.

2.3.3 Software. Software underlies an enormous amount of
scientific research, and its importance is further growing as
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more machine-learning methods are integrated into science.
LLMs can play an important role in scientific software, for code
generation® and code execution by calling APIs**° or interact-
ing with graphic user interfaces (GUIs).>****** LLMs could also
play a role in user education, since they provide a way for
scientists to learn new software systems via chatbot assistance
or LLM generation of code exemplars.

Greater integration of scientific software tools into Al agent
workflows will require these tools to be made readily available.
Fortunately, the prevailing trend in scientific software is to
release code as open source, and make it available via reposi-
tories; these make it possible for automated systems such as Al
agents to take advantage of them. Al agents may well be able to
handle some of the heterogeneity of modern software deploy-
ments; that is, they may be able to automatically download
code, set up an appropriate containerized environment,
generate wrapper code for interacting with that container, and
then activate the system. However, it may well be preferable for
the community to begin developing and adopting flexible but
standardized methods of containerizing scientific software so
that it can be more easily shared and launched. For instance,
the MLExchange effort is developing a web platform for working
with containerized ML models.**

We also note a substantial software infrastructure challenge.
Running a large number of Al agent instances, and enabling
coordination between them, is a substantial technical chal-
lenge. Integrating these resources into existing scientific soft-
ware workflows is also challenging.® The expertise of the high-
performance computing (HPC) community can be leveraged,
as existing know-how with respecting to scaling and deploy-
ment of large-scale science software systems should be trans-
ferable to AI swarm architectures.

2.3.4 Publications. As with data, publications should
ideally be broadly open in order for an exocortex to leverage
them. It must be possible for the exocortex to identify relevant
documents, retrieve them, and read them. Currently, the vast
majority of the scientific literature is not easily available for
machine indexing, retrieval, and AI/ML training. Researchers
will generally not be able to negotiate the required licenses with
publishers in order to obtain access. Luckily, scientific practices
have been increasingly moving towards open access, where the
publication (or at least a preprint version of it) is freely avail-
able. We encourage researchers and publishers to continue
pushing in this direction, since it both benefits traditional
scientific practices, and helps enable future Al-driven
workflows.

In addition to policy questions, there are engineering tasks
required in order to make the scientific literature readily avail-
able to AI agents. In the short term, researchers may need to
manage these activities themselves, building a curated local
corpus of documents for their agents to interact with. In the
medium term, AI agents will likely be able to access publica-
tions through tools or APIs. In the long term, the community
would ideally build a common AI database on top of the existing
literature. For instance, a community database that kept track
of embeddings for every published paper (and sub-sections
thereof) would avoid the wasted cost of researchers
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recomputing embeddings when their own agent ingests publi-
cations. Such a database could also store Al-generated
secondary products associated with papers (summaries, classi-
fications, connections to other literature, proposed research
directions, etc.). Sharing such a database would allow each
researcher's exocortex to leverage the work of all other
researchers exocortices.

2.3.5 Facilities. Scientific research tools are often organized
into coherent facilities that offer multiple related capabilities,
or multiple versions of a particular measurement tool (as in the
case of electron microscopy centers, synchrotrons, FELs, etc.).
As more synthesis, processing, and measurement tools become
individually automated and collectively organized into facilities,
we can begin to imagine the impact that agentic AI will have on
them. In particular, agentic AI will enable a transition of
scientific facilities away from individual tools that are selected
and micro-managed by scientists, and into a discovery
ecosystem, wherein users can phrase their high-level scientific
goals, and rely upon a swarm of Al agents to correctly select
tools, launch experiments, and aggregate results. A possible
architecture is depicted in Fig. 5. Each researcher's exocortex,
which knows about that researcher's scientific goals and
problem-specific science constraints, can negotiate with Al
agents operated by the facilities. This allows researchers to
conceive of science goals, and leverage agents to convert this
into actionable plans. The scientific facilities design and oper-
ate Al agents responsible with providing access to a variety of
systems, and correctly coordinating between these systems. For
instance, a particular research goal might require launching
a set of measurement tools and corresponding simulations, and
then aggregating the results to compare. This coordination
could be executed by a combination of Al agents and traditional
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software infrastructure. This vision inherently requires ubiqui-
tous and reliable automation of individual systems. It also
requires novel developments in research infrastructure, to more
efficiently cross-connect between components. We postulate
that agentic AI will be an enabling technology for accomplish-
ing this interconnection, as it will bypass the need for every sub-
component to adhere to a single standard for meta-data and
communication. As long as each component provides a docu-
mented software interface, the layer of Al agents should be able
to productively access it. The productivity gain from this
architecture could be transformative, as it would allow
researchers to conduct experiments of a complexity previously
impossible.

3 Perspectives

We have presented an admittedly speculative vision for the future
of science, wherein each scientist has a personalized exocortex—
a swarm of Al agents working together to automate research and
expand researcher cognition. While this vision currently seems
far-fetched, it is now within reach owing to recent developments
in LLMs; and it becomes increasingly realistic as LLM technology
improves. Indeed, the exocortex is envisioned in such a way that
it automatically leverages improvements in the technology of Al
agents, as more powerful models can be swapped in progressively
as they become available. We propose that the science commu-
nity should work together, and aggressively pursue the creation
of systems like this.

We suggest that physical scientists focus on applications of Al
agents, and learning how best to connect agents into coherent
workflows. In fact, science is an ideal proving ground for agentic
Al, since scientists can articulate precise goals, assess rigor of

O®&O OO
Researchers @ ?
@), 4O @), 4O
QO O
Y0 30
Al agents P‘Lo @ Piq @
A p‘a PR B BA
Traditional JL L (N S I
software
Acquisition Analysis =’ S|mulat|on|’
Science oo \_, f
infrastructure EN local HPC reglstrles data  archive
Instruments Compute Storage

Fig. 5 A possible architecture for Al agents aggregating access to scientific facilities. Each researcher’s exocortex could negotiate control by
dialoging with a set of Al agents provided by the facilities. That layer of agents would be optimized to launch tasks using traditional software APIs.
The underlying resources (measurement instruments, compute resources, databases) would be triggered and queried, with the outputs inte-
grated first by the facility Al agents, and then by the researcher's exocortex.
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reasoning, and evaluate success. Thus, AI/ML researchers will
hopefully view the physical sciences as an ideal environment in
which to research agents and agent swarms.

The proposed multi-agent interactions and workflows high-
light several open research questions. It is not known whether
complex multi-step AI tasks will be sufficiently robust. The
community must measure how Al capabilities scale, as a func-
tion of task complexity and inter-agent organizational archi-
tecture. The bottlenecks for scientific discovery—especially
automated discovery workflows—must be elucidated. We
speculate that LLMs will provide high utility for ideation and
hypothesis generation, by providing the human with text
digests and ranked ideas, and by acting as a conversational
partner. However, integration with experimental tools is likely
to lag, owing to the time and cost associated with building and
testing laboratory automation systems. With respect to the
overall exocortex system, we envision the largest roadblocks
arising from managing the complexity of inter-communicating
agents, and establishing sufficient reliability.

We emphasize that the proposed work is valuable even if the
exocortex concept turns out not to be the right framing. The
proposed improvements to science infrastructure—making it
increasingly robust, automated, software-accessible, and
auditable—has value even if Al agents are not successful. The
proposed Al agents—streamlining access to publications, data,
software, and instruments—are valuable even if their inter-
connection into an exocortex proves fruitless.

The science exocortex has enormous potential impact. There
is growing evidence that generative AI methods exhibit various
forms of emergence, including world modeling,*** concept
generalization,”?**' and pattern aggregation that is more
capable than the inputs.**® The exocortex architecture would
enable and leverage additional layers of emergence. Interac-
tions between Al agents should lead to more reliable, coherent,
and capable output than single-shot generation by a lone LLM.
And, crucially, interaction between a swarm of Al agents—each
responsible for intelligently mediating access to a suite of
research capabilities—and a human researcher should lead to
the emergence of enhanced human capabilities. By expanding
the researcher’s intelligence into the exocortex, the researcher
can accomplish more, as they are able to intuitively and seam-
lessly weave myriad physical, computational, and cognititve
systems into their intellectual work.
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