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review of emerging approaches in
machine learning for de novo PROTAC design

Yossra Gharbi and Roćıo Mercado *

Targeted protein degradation (TPD) is a rapidly growing field in modern drug discovery that aims to regulate the

intracellular levels of proteins by harnessing the cell's innate degradation pathways to selectively target and

degrade disease-related proteins. This strategy creates new opportunities for therapeutic intervention in cases

where occupancy-based inhibitors have not been successful. Proteolysis-targeting chimeras (PROTACs) are at

the heart of TPD strategies, which leverage the ubiquitin–proteasome system for the selective targeting and

proteasomal degradation of pathogenic proteins. This unique mechanism can be particularly useful for dealing

with proteins that were once deemed “undruggable” using conventional small-molecule drugs. PROTACs are

hetero-bifunctional molecules consisting of two ligands, connected by a chemical linker. As the field evolves,

it becomes increasingly apparent that traditional methodologies for designing such complex molecules have

limitations. This has led to the use of machine learning (ML) and generative modeling to improve and

accelerate the development process. In this review, we aim to provide a thorough exploration of the impact

of ML on de novo PROTAC design – an aspect of molecular design that has not been comprehensively

reviewed despite its significance. Initially, we delve into the distinct characteristics of PROTAC linker design,

underscoring the complexities required to create effective bifunctional molecules capable of TPD. We then

examine how ML in the context of fragment-based drug design (FBDD), honed in the realm of small-

molecule drug discovery, is paving the way for PROTAC linker design. Our review provides a critical evaluation

of the limitations inherent in applying this method to the complex field of PROTAC development. Moreover,

we review existing ML works applied to PROTAC design, highlighting pioneering efforts and, importantly, the

limitations these studies face. By offering insights into the current state of PROTAC development and the

integral role of ML in PROTAC design, we aim to provide valuable perspectives for biologists, chemists, and

ML practitioners alike in their pursuit of better design strategies for this new modality.
ossra Gharbi is a PhD student
n the Data Science and AI divi-
ion in the AI Laboratory for
olecular Engineering at
halmers University of Tech-
ology. There, she focuses on the
evelopment of generative
odels to engineer proteolysis-
argeting chimeras (PROTACs)
or drug discovery. Her research
xplores the application of
achine learning to streamline
he design process of new drugs,
nd accelerate the development
f next-generation therapeutics.
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1 Introduction

Targeted protein degradation (TPD) is a novel therapeutic
approach with attractive potential to eliminate disease-causing
proteins from within cells.1–4 Traditional drug development
strategies have focused on inhibiting the activity of such
proteins, but TPD goes a step further by removing or reducing
protein levels from the cell. This is particularly useful for tar-
geting proteins that are difficult to inhibit with small molecules
or biologics, oen due to the absence of well-dened binding
sites; these are frequently referred to as “undruggable” targets,
and they can be challenging to target due to their structure,
location, and/or function.5,6 Proteolysis-targeting chimeras
(PROTACs) are hetero-bifunctional molecules engineered to
bind simultaneously to an E3 ligase, a key enzyme involved in
the process of tagging proteins for degradation,7 and the
protein of interest (POI) that is targeted for degradation
(Fig. 1a).8–10 A PROTAC molecule brings the E3 ligase and the
POI into close proximity, facilitating the formation of a ternary
complex consisting of the E3 ligase system, the PROTAC, and
the POI to induce POI ubiquitination and its subsequent
degradation by the proteasome (Fig. 1b).11
Fig. 1 (a) A PROTAC is a hetero-bifunctional molecule, consisting of a liga
circle) that binds to the POI, and a linker (blue curve) that connects the two
the POI and the E3 ligase, thus bringing them into close proximity and ind
with an E1–ubiquitin-activating enzyme that activates ubiquitin (Ub) in an
Ub-conjugating enzyme. Subsequently, a PROTAC simultaneously binds t
This facilitates the transfer of Ub from the E2 enzyme to the POI, catalyz
degraded by the proteasome into smaller peptides, and the PROTAC is
initiating the process again with another instance of the same POI. (c) Vis
a 2D skeletal formula of the PROTACmolecule dBET6;middle– a close-u
with CRBN and BRD4 (PDBID:6BOY), emphasizing the importance of the
right – a space filling model for the same complex, involving BRD4, CRBN
(green), CRBN (cyan), and DDB1 (dark blue).

© 2024 The Author(s). Published by the Royal Society of Chemistry
1.1 Milestone events in PROTAC technology

PROTACs were rst reported in 2001, when the rst fully
synthesized PROTAC, named Protac-1, was developed by Crews,
Deshaies, and co-workers.12 This provided an in vitro proof-of-
concept, which proved the feasibility of designing molecules
with the potential to selectively target and degrade cellular
proteins by hijacking the ubiquitin proteasome system (UPS).
Protac-1 was specically designed to target the methionyl
aminopeptidase 2 (MetAP-2) protein, which plays a role in
angiogenesis and various other pathologies, including cancer.
Protac-1 was designed to target MetAP-2, as ovalicin and
fumagillin do, but with the added mechanism of promoting its
degradation. The binding of Protac-1 to MetAP-2 led to the
tethering of MetAP-2 to beta-transducin repeat-containing
protein (b-TrCP), functioning as an E3 ubiquitin ligase
responsible for ubiquitination of MetAP-2. The effectiveness of
Protac-1 in facilitating the ubiquitination of MetAP-2 was
demonstrated using extracts from unfertilized Xenopus laevis
eggs, a common model organism in biomedical research.13

These extracts provided a controlled environment rich in
cellular machinery that mimics the conditions inside a living
cell needed for ubiquitination, protein degradation, and
nd (blue triangle) that recruits an E3 ubiquitin ligase, a warhead (orange
bindingmoieties. The PROTAC functions by simultaneously binding to
ucing the formation of a ternary complex. (b) The PROTACMoA begins
ATP-dependentmanner. This activated Ub is then transferred to an E2–
o the POI and an E3 ubiquitin ligase, bringing them into close proximity.
ed by the E3 ligase. The polyubiquitinated POI is then recognized and
released back into the cellular environment where it can be reused,
ual representations of dBET6 and its respective ternary complex: left –
p of the dBET6 degrader's three-dimensional (3D) structure in complex
PROTAC's spatial orientation in forming a good ternary complex; and
, DNA damage-binding protein 1 (DDB1), and dBET6. Color key: BRD4

Digital Discovery, 2024, 3, 2158–2176 | 2159
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observing the interaction between Protac-1 and MetAP-2.
Results showed that MetAP-2 selectively binds the angiogen-
esis inhibitor ovalicin moiety of Protac-1, and that Protac-1 can
mediate the ubiquitination of MetAP-2 by b-TrCP, leading to its
degradation.12

In 2003, the same group synthesized a PROTAC using
estradiol, a form of estrogen, as part of its structure.14 This
PROTAC was designed to target and promote the destruction of
the estrogen receptor alpha (ERa), which, when activated by
estrogen, can promote the growth of some breast cancers.15 It
has been shown that the estradiol-based PROTAC could effec-
tively enforce the ubiquitination and subsequent degradation of
the a isoform of ER in vitro.14 Similarly, they created a PROTAC
that incorporates dihydrotestosterone (DHT) to target and
degrade the androgen receptor (AR). When activated by andro-
gens like DHT, the AR can stimulate the growth of prostate
cancer cells.16 The DHT-based PROTAC has shown efficacy in
promoting the rapid ubiquitination and proteasome-dependent
degradation of AR in cellular tests.14 These PROTACs served as
proof that they are a promising modality for selectively
degrading key proteins involved in cancer, opening up potential
treatment benets by TPD in hormone-responsive cancers.17,18

While rst-generation PROTACs were capable of degrading
target proteins, they suffered from poor cell permeability and
chemical stability stemming from their high molecular
weight.19 They generally exhibited low potency using micro-
molar concentrations, which is less desirable than the nano-
molar concentrations used for more potent drugs, indicating
that higher doses are required to exhibit efficacy.1 Notably, early
PROTACs were peptide-based and commonly used b-TrCP or
Von Hippel-Lindau (VHL) as E3 ligases. One signicant draw-
back of peptide-based therapeutics is their high molecular
weight, which affects their ability to cross cell membranes. This
poor permeability is a critical limitation because it means that
even if a PROTAC is theoretically effective, its inability to enter
cells renders it ineffective in practice.1 These limitations
promoted the need to develop second-generation PROTACs,
motivating a transition from peptide-based to small-molecule
PROTACs. The use of small molecules expanded the range of
potentially targetable proteins by taking advantage of a more
extensive array of E3 ligases beyond b-TrCP and VHL, such as
mouse double minute 2 homologue (MDM2), inhibitors of
apoptosis proteins (IAPs), and cereblon (CRBN).19 In 2008, the
Crews lab developed the rst small-molecule PROTAC that
could degrade a target protein within cells, in this case, tar-
geting AR.20 This PROTAC was composed of nutlin-3A, a ligand
for MDM2, and a non-steroidal androgen receptor ligand
(SARM) for AR, connected by a polyethylene glycol (PEG)
linker.20 The SARM-nutlin PROTAC induced the degradation of
AR in a proteasome-dependent manner with enhanced cell
penetration in vitro.

Since the rst PROTAC was reported in the literature, the eld
of PROTACs has experienced remarkable growth3,21 and has led to
the design of compounds with improved drug-like properties,
demonstrating effectiveness both in vitro and in vivo.22–25 In 2013,
the rst in vivo success of PROTACs occurred with the develop-
ment of phosphoPROTACs. PhosphoPROTACs are a particular
2160 | Digital Discovery, 2024, 3, 2158–2176
form of PROTACs that exploit phosphorylation-dependent
binding interactions.26 This modication was made to improve
the selective targeting of proteins involved in signaling pathways.
These compounds were able to inhibit tumor growth in mouse
models. This was a major breakthrough, as it proved that PRO-
TACs could be used not only in cell-based assays but also in living
organisms to exert therapeutic effects.

In 2019, the rst PROTACs to enter clinical trials were ARV-
110 (ref. 27 and 28) and ARV-471,29 which target AR and ER,
respectively. ARV-110 was tested in a heavily pre-treated pop-
ulation with metastatic castration-resistant prostate cancer
(mCRPC). Results from a phase I trial showed that ARV-110
could reduce the levels of AR in cancer cells by at least 95%,
which is a signicant reduction that hampers the cancer cell's
ability to grow and survive. Notably, its effectiveness in ENZ-
resistant models offers a potential treatment option for
patients who no longer respond to ENZ, addressing a critical
gap in prostate cancer therapy. ARV-110 advanced to phase II
clinical trials in 2020 based on initial phase I data that
demonstrated the drug's good oral availability, safety, and
tolerability in patients.30 On the other hand, ARV-471 is
designed for oral administration in patients with hormone
receptor-positive (HR+) and HER2-negative metastatic breast
cancer. In a phase I clinical study involving breast cancer
patients who had undergone multiple prior treatments, ARV-
471 signicantly reduced the expression level of ER in tumor
tissues of patients. It was also reported that ARV-471 is well
tolerated across all tested doses (30–700 mg), and maintained
a high level of ER degradation (89%).10 ARV-471 advanced to
phase III clinical trials for breast cancer in 2024.

Following the lead of ARV-110, PROTAC technology has
advanced signicantly. Approximately 29 PROTAC drugs have
entered clinical trials, which marks their successful translation
into the clinic.26 Notably, this rapid expansion includes treat-
ments targeting previously undruggable proteins, such as
transcription factors and RNA-binding proteins. Additionally,
these trials primarily focus on oncology, targeting cancers with
poor prognoses, including metastatic prostate cancer, breast
cancer, and solid tumors.

In some of the latest generations of PROTACs, additional
elements have been introduced to give another dimension of
control over PROTAC activity.31,32 These classes of controllable
PROTACs aim to address off-tissue effects by controlling PRO-
TAC action in a spatiotemporal manner.32 Some are designed to
be activated or deactivated by specic wavelengths of light,
allowing for controlled degradation processes in target cells,
with potentially reduced side effects and enhanced therapeutic
index. These PROTACs include phospho-dependent PROTACs
that degrade targets with activated kinase-signaling clues, and
light-controllable PROTACs that use light as an external clue to
trigger target degradation. Notable light-controllable PROTACs,
also commonly referred to as PHOTACs, include photo-caged
and photo-switchable PROTACs.33 Photo-caged PROTACs are
designed to be inactive in their initial form and activated by
light exposure, which removes the photo-cage group and
enables the degradation of the POI. Photo-switchable PROTACs,
on the other hand, are designed to reversibly control the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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degradation process via the incorporation of photoswitchable
groups such as azobenzene, which can switch between active
and inactive states under different wavelengths of light. In-cell
click-formed proteolysis-targeting chimeras (CLIPTACs) share
similar ambitions to PHOTACs and have been used to degrade
two key oncology targets successfully.34 The reader is referred to
these excellent reviews for a more detailed analysis of mile-
stones in PROTAC development.1,19,26,32,35
1.2 The ubiquitin–proteasome pathway

PROTACs work by ingeniously harnessing the ubiquitin–pro-
teasome system (UPS), an important cellular pathway, which
naturally degrades over 80% of cellular proteins to regulate
protein levels and turnover.36 The UPS selectively targets mis-
folded and damaged proteins within the cell for degradation,
maintaining proper protein homeostasis.37 However, if this
system falters such that old, damaged, or surplus proteins are
not promptly degraded, they can form aggregates resistant to
degradation. These aggregates can interfere with cellular func-
tions and are the hallmark of several neurodegenerative
diseases such as Alzheimer's, Parkinson's, and Huntington's
diseases.38–41 Moreover, a recent multi-omics study of >9000
human tumors and 33 cancer types found that >19% of all
cancer driver genes impact UPS function.42 The UPS operates by
tagging target proteins for degradation through the attachment
of ubiquitin (Ub) protein chains. These Ub tags mark the
protein for degradation by the proteasome, a protein complex
responsible for protein degradation via proteolysis.43 The
process of Ub conjugation involves an enzyme cascade, starting
with E1 activating enzymes, proceeding to E2 conjugating
enzymes, and culminating with E3 ligases.44 Initially, Ub is
activated by an E1 enzyme, a reaction that requires adenosine
triphosphate and results in an E1–Ub conjugate. The activated
Ub is then transferred to an E2 enzyme through a trans-
thioesterication reaction, forming an E2–Ub complex. The
most crucial step is mediated by the E3 ubiquitin ligase, which
confers specicity to the ubiquitination process.45

E3 ubiquitin ligases are categorized into two main types
based on their mechanism of action (MoA) for transferring Ub's
to their target proteins: HECT-domain and RING-type E3
ligases. HECT-domain E3 ligases rst form a thioester bond
with Ub. This means that Ub is temporarily attached to the E3
ligase itself. Subsequently, the E3 ligase transfers the Ub from
itself directly onto the substrate protein that is to be tagged for
degradation.46 Unlike HECT-domain ligases, RING E3 ligases do
not form a direct bond with Ub. Instead, they facilitate the
transfer of Ub directly from an E2 enzyme (which is conjugated
with Ub) to the substrate protein.47 In essence, RING-type E3
ligases act as mediators that bring the E2–Ub conjugate close to
the substrate, enabling the direct transfer of Ub. This ubiq-
uitination cycle repeats, leading to the transfer of multiple Ub's
and the polyubiquitination of the substrate. Once a protein is
polyubiquitinated, it is tagged for degradation. The proteasome
recognizes the tagged protein, binds to it, unfolds it, and breaks
it down into smaller peptides.48 The PROTAC is then recycled
for additional ubiquitination rounds of additional substrates.49
© 2024 The Author(s). Published by the Royal Society of Chemistry
1.3 PROTAC structure design

The UPS's sophisticated mechanism forms the basis for PRO-
TAC structure design. PROTACs are bifunctional molecules,
designed to harness the UPS for TPD. Each PROTAC comprises
three key components: a ligand that binds to the POI, also
frequently referred to as the “warhead”; a ligand that recruits an
E3 ubiquitin ligase; and an organic linker that connects these
two ligands. This dual engagement enables PROTACs to bring
the POI and E3 ligase into proximity, forming a ternary complex
that facilitates the transfer of Ub from the E3 ligase to the target
protein.11,50,51 Notably, the linker connecting these moieties is
not merely a passive scaffold; it has been shown to play a vital
role in determining the overall efficacy and specicity of the
PROTAC molecule.52–56 It ensures efficient ubiquitination by
correctly positioning the two ligands. This can be achieved by
carefully designing the linker length and composition to
maintain the required distance, exibility (or rigidity), and
spatial orientation between the POI and the E3 ligase.10,57,58

Additionally, linker modication can affect properties like
hydrogen bond donors (HBDs) and acceptors (HBAs), lip-
ophilicity, molecular weight, rotatable bonds, and polar surface
area, which are all critical factors in absorption, distribution,
metabolism, and excretion (ADME).59 Improving these proper-
ties can make PROTACs function better as drugs. A study on
BET degraders provides a notable example,60 where researchers
replaced an amide bond in BET degraders MZ1 and ARV-771
with an ester group. This change removed one HBD and
increased the lipophilicity for each molecule, leading to
increased cell membrane permeability. This was reected in
improvements in parallel articial membrane permeability
assay (PAMPA) and A Log P values, among other measurements.
Besides being able to enter cells more easily, each molecule's
degradation activity also improved aer this otherwise “small”
change to the linker.
1.4 Advantages of PROTACs over small-molecule drugs

While small-molecule drugs (SMDs) have demonstrated success
in treating various diseases,61–63 PROTACs can target and
degrade proteins regardless of their function by hijacking the
cell's natural disposal mechanism – the ubiquitin–proteasome
pathway.64 This approach circumvents the inherent limitations
of standard SMDs, which must occupy specic binding sites on
target proteins.3 Notably, ∼85% of the human proteome has
been deemed undruggable by SMDs;64–67 these proteins typically
lack well-dened binding pockets, offering limited opportuni-
ties for ligand interaction or binding.3,68 For instance, 63% of
the known 600 cancer-related proteins are classied as
undruggable, including transcription factors, scaffold proteins,
and membrane-bound proteins.69 While SMDs are constrained
to a limited pool of proteins that can be effectively targeted,
PROTACs don't necessarily require binding to a specic well-
dened pocket on a POI to trigger degradation; in theory, they
can bind to any reachable region on a POI's surface that facili-
tates induced proximity between the POI and an E3 ligase, even
in the case of low binding affinities with the POI.1,70 This exi-
bility in target engagement expands the scope of the proteome
Digital Discovery, 2024, 3, 2158–2176 | 2161
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that can be drugged with this modality, and is a mechanism
that can be particularly pertinent in cancer treatments, where
target proteins oen develop resistance to SMDs through
mechanisms like genetic mutations, overexpression, or altered
signaling pathways. PROTACs offer a potential alternative
capable of overcoming these resistance barriers.71–75

Furthermore, a key advantage of PROTACs lies in their
substoichiometric catalytic activity, which operates on an event-
driven basis.76 This means that PROTACs do not need to fully
occupy their target proteins to be effective, in contrast to
traditional inhibitors that function in an occupancy-driven
manner.77 In SMDs, the effectiveness of the drug is oen
dependent on stoichiometrically occupying the target binding
site.78 This means that a signicant portion of a target protein
must be bound by an inhibitor molecule for the desired thera-
peutic effect to be observed. This oen requires relatively high
concentrations of the drug to achieve sufficient occupancy,
since the effects are proportional to the extent of binding.78

PROTACs operate differently: they bind transiently to their
targets and, aer facilitating ubiquitination, dissociate. This
allows them to cycle through multiple rounds of activity,
repeatedly initiating the degradation of additional instances of
the same POI.1 In contrast to SMDs that act in a dose-dependent
manner, this catalytic feature allows PROTACs to achieve potent
effects at possibly lower doses, offering potential advantages in
terms of efficacy, safety, negative side effects, and off-target
effects.79

One nal advantageous characteristic of PROTACs worth
mentioning is that they are able to selectively target and induce
the degradation of specic protein isoforms. These are distinct
forms of the same protein arising from a single gene. The ability
to selectively target them is signicant because it implies that
PROTACs can be used to differentiate between closely related
forms of a protein and target only the isoform(s) associated with
a disease without affecting others that may have essential
functions in normal cellular processes.6,69,76
1.5 PROTACs as probes for target identication

PROTACs have been used as tools not only for therapeutic
applications but also for target deconvolution, known as PRO-
TAC probes.26 Target deconvolution is the process of identifying
the exact biological target that a drug or compound interacts
with to produce its therapeutic effect. In drug discovery,
researchers oen do not know exactly which protein(s)
a particular compound is affecting, especially with natural
products or new drug candidates. When PROTACs are used as
tools for target deconvolution, the goal is to identify or conrm
the biological targets that a drug or compound is acting upon.
In this case, PROTACs are used as research tools rather than
drugs. Yan et al.26 describe how PROTAC technology has been
used in target deconvolution, particularly in the context of
natural products like artemisinin and lathyrane diterpenoids.
These natural products have therapeutic potential, but their
exact targets were not fully understood. Notably, lathyrane
diterpenoids were found to have anti-inammatory properties,
but their precise molecular targets were not initially known. To
2162 | Digital Discovery, 2024, 3, 2158–2176
uncover the biological target, researchers used a PROTAC probe
based on the lathyrane diterpenoid ZCY-001. This PROTAC was
designed to degrade proteins that the compound might interact
with. Using this approach, the protein MAFF was identied as
the target responsible for the anti-inammatory effects. MAFF is
a transcription factor involved in regulating stress response
pathways, and its degradation helped reduce inammation.
Researchers were able to identify the proteins responsible for
the therapeutic effects (e.g., MAFF for lathyrane diterpenoids
and PCLAF for artemisinin derivatives) by using PROTAC
probes designed to degrade the proteins they interact with.

These attractive characteristics make PROTACs a prime
focus of drug design endeavors. To maximize the potential of
this innovative class of compounds, researchers are increas-
ingly turning to data-driven approaches for design strategies.
Machine learning (ML) has thus demonstrably advanced drug
discovery and development by enhancing target identication,
small-molecule design, predictive biomarker discovery, and the
prediction of clinical trial success.80,81 ML methods can help
researchers analyze large amounts of data to identify potential
drug targets, optimize compound properties, and predict how
patients will respond to treatments. This makes drug develop-
ment more efficient and increases the likelihood of success in
vitro.80,81 Given the complexity of designing PROTACs due to the
large chemical space they span and their multivalent nature,
leveraging ML will likely be crucial in making the development
of this new modality more feasible. Despite numerous reviews
on PROTACs, there is a notable gap in the literature: an in-depth
review that delves into the use of ML for PROTAC design is still
lacking. In this comprehensive literature review, we explore the
impact of ML on de novo PROTAC design to date. First, we delve
into the distinct characteristics of PROTAC linker design,
underscoring the features required to create effective bifunc-
tional molecules capable of TPD. We then examine how ML in
the context of fragment-based drug discovery (FBDD; Fig. 2a),
honed for small-molecule drug discovery, is paving the way for
PROTAC linker design. Our review provides a critical assess-
ment of the obstacles inherent in the application of these
methods to PROTAC development. This assessment seeks to
shed light on the pressing need for specialized algorithms,
enhanced data quality, and the adaptation of ML models to
address the multifaceted nature of PROTAC engineering.
Moreover, we review existing ML works that have been tailored
to PROTAC design, highlighting pioneering efforts as well as the
limitations associated with these existing approaches. We also
offer perspectives on potential avenues for future ML research
in this eld.
2 Machine learning in PROTAC linker
design
2.1 The peculiarities of PROTAC linker design

The role the linker plays in PROTAC function is both unique
and complex, offering the broadest scope in terms of where
structural modications can be made when designing a PRO-
TAC (Fig. 2b).52–56,82 Unlike the linker, the structures of the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a) An overview of fragment-based drug design (FBDD). The initial step involves fragment screening to identify potential fragments that
can bind to the pocket of the target protein. These fragments are then linked and optimized to improve their binding properties. The result is
a strongly-bound ligand that fits precisely within the target protein's pocket. (b) Left – The linker in a PROTAC isn't just a passive bridge. It's an
important component that enhances the interaction dynamics between the POI and the E3. Right – The linker also contributes to the PROTAC's
overall PK profile, including cell permeability. Center – Because its MoA relies on transient ternary complex formation, the PROTAC is eventually
released, meaning it is catalytic and can go on to be reused for other processes inside the cell. (c) The large and multivalent nature of PROTACs
means they require amore complex design approach than FBDDmethods developed for small molecules. The linkermust be long and/or flexible
enough to allow the warhead and E3 ligase ligand to adopt the necessary conformations for effective ternary complex formation, but not too
flexible that the PROTAC cannot maintain the correct spatial orientation of the warhead and E3 ligase ligand. The linker may also need to
incorporate specific chemical groups to enhance the overall potency of the PROTAC.
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ligands that bind the POI and E3 ligase are generally more
restricted. These restrictions stem from the need to maintain
specic structure–activity relationships (SAR) and effective
target binding, limiting the options for modifying the warhead
and E3 ligase ligand according to their functional require-
ments.82 Consequently, the linker becomes a primary focus for
design optimization in PROTACs. Modications to the linker,
such as altering its length, tuning its exibility or rigidity, and
incorporating different chemical groups, can inuence the
pharmacokinetic (PK) and pharmacodynamic (PD) proles of
PROTACs, as well as their degradation activity and overall
efficacy.82–84 Notably, the geometry (conformation) of the ternary
complex is heavily inuenced by the nature of the linker.50,85

Evidently, the linker not only dictates the spatial arrangement
necessary for successful TPD in a given system but also the
efficiency with which the PROTAC can facilitate the degradation
of the POI.84,86 This is oen quantied by metrics like the DC50,
the concentration at which half-maximal degradation is
observed, and Dmax, the maximum level of degradation achiev-
able. This implies that PROTAC linker design requires a multi-
faceted approach that balances several key properties to ensure
the successful degradation of a POI while maintaining a desir-
able drug-like prole. In this section, we present example case
© 2024 The Author(s). Published by the Royal Society of Chemistry
studies that highlight the unique aspects of linker design in
PROTACs.

2.1.1 Linker length. The conformation of the ternary
complex is heavily dependent on the linker length within PRO-
TACs. A long linker can lead to the formation of no functional
complex since the ubiquitination of the POI might not occur. A
short linker might result in what's called a binary complex where
the PROTAC is only effectively linked to either the POI or the E3
ligase, but not both.87 Similar results were observed by Qin et al.,88

where the potency of PROTACs targeting BET proteins to inhibit
cell growth was highly dependent on the linker length. This was
demonstrated via a series of ve PROTACs with progressively
longer linkers. Notably, the authors observed an optimal linker
length; further extending the linker beyond this optimal length
did not enhance the potency. This shows that a very long linker
might not provide additional benets, and could inadvertently
introduce steric constraints leading to decreased binding affinity.
Themost effective PROTAC from this study, QCA570, was tested in
xenogra mouse models of leukemia, where it induced complete
and durable tumor regression at low picomolar concentrations.

Furthermore, the length of the linker affects the range of
spatial congurations accessible to potential ternary complexes
during formation, restricting which protein interfaces are
accessible for interaction. Smith et al.55 demonstrated how
Digital Discovery, 2024, 3, 2158–2176 | 2163
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differences in linker lengths and attachment points enable
selective degradation of closely related kinase isoforms using
PROTACs. The study developed isoform-selective PROTACs for
the p38 mitogen-activated protein kinase (MAPK) family using
the same warhead and E3 ligase but varying the linker features
(linker attachment points and lengths). Two different linker
attachment points (an amide and phenyl series) and varying
linker lengths (10, 11, 12, and 13 atoms) were used to create
distinct PROTACs that differentially recruit VHL. This selective
recruitment controls the degradation of either the p38a or p38d
isoforms. For instance, PROTACs with 12- and 13-atom linkers
in the amide series became highly selective for p38a degrada-
tion, showing much higher degradation efficacy compared to
degraders with shorter linkers, which were also less selective.
Conversely, a 10-atom linker in the phenyl series led to selective
degradation of p38d, with very minimal impact on other iso-
forms. This selective degradation ability is attributed to how
variations in linker lengths and attachment points inuence the
formation of the ternary complex. By ne-tuning the linkers,
PROTACs can achieve selective degradation proles – in this
particular study, shorter linkers may bring the E3 ligase into
a position that is optimal for ubiquitinating p38d but not p38a.

� Linker length is an important factor in determining the
spatial conguration necessary for effective ternary complex
formation. Adequate length ensures optimal potency. Both too-
long and too-short linkers can negatively impact the potency of
PROTACs.

� Small changes in linker length can shi the degradation
selectivity between closely related protein isoforms.

2.1.2 Linker composition. The linker composition has an
impact on the physicochemical properties of PROTACs, such as
solubility and membrane permeability, among other factors.59

For instance, the substitution of amide bonds with ester bonds
in BET degraders MZ1 and ARV-771 results in improvements to
their permeability and cellular activity.60 The ester-linked
versions, OMZ1 and OARV-771, demonstrated a 10- and 1.5-
fold increase in PAMPA permeability, respectively. This
improved permeability contributes to their enhanced ability to
degrade target proteins, with OMZ1 achieving a 1.5- to 2-fold
increase in degradation potency, while OARV-771 achieved
a 5.5-fold increase. Despite concerns about the stability of esters
compared to amides, both OMZ1 and OARV-771 maintained
stability in plasma, indicating that their increased permeability
does not compromise their overall stability. Additionally, an
optimal lipophilicity range (A Log P between 3 and 5) was
established for these ester-linked PROTACs, balancing effective
membrane crossing with adequate aqueous solubility and
minimal efflux. Klein et al.60 conclude that amide-to-ester
substitution can benet the optimization of PROTACs, and
potentially other compounds, falling beyond the Rule of 5.

The composition of the linker can also improve the PK
properties of PROTACs, such as metabolic stability, and bio-
distribution.82 These properties inuence how the drug is
adsorbed, distributed, and eventually metabolized inside the
body. However, the majority of linkers in PROTACs have been
based on a limited set of chemical motifs, with PEG and alkyl
chains being the most common. Approximately 55% of linkers
2164 | Digital Discovery, 2024, 3, 2158–2176
utilize PEG, while about 30% use alkyl chains of various
lengths.57 These motifs are favored due to their versatility, ease
of synthesis, and ability to modulate the solubility and perme-
ability of PROTAC molecules. Around 65% of published PRO-
TAC structures incorporate both alkyl and PEG segments within
their linkers. This combination aims to leverage the benecial
properties of both motifs, such as the exibility and hydrophi-
licity provided by PEG, and the structural simplicity and
modiability of alkyl chains. A further 15% of linkers involve
modications to the basic glycol units in PEG, such as adding
methylene groups.57 Such modications are typically done to
explore different chain lengths and thus inuence the potential
structural congurations accessible to PROTACs.

� Amide-to-ester substitution can benet the optimization of
PROTACs, and potentially other compounds, falling beyond the
Rule of Five.

� Modications in PROTAC linker composition, such as
altering chemical groups and combining different motifs,
directly inuence the physicochemical properties of PROTACs.

2.1.3 Linker exibility. The exibility of the linker can allow
a PROTAC to more easily adapt to different spatial congura-
tions, though too much exibility may also lead to less
predictable interactions.54,89 A certain degree of rigidity can thus
confer stability during ternary complex formation, leading to
more consistent degradation activity. A 2018 study on PROTACs
for ANK-binding kinase 1 (TBK1) degradation underscores the
role linker exibility plays in PROTAC activity.89 Flexibility was
imparted via long alkyl and ether chains to achieve potent
compounds due to the inherent exibility of these chemical
units. A systematic exploration of linker length was thus con-
ducted, and the degradation activity of each PROTAC variant
was measured, focusing on those with sub-mM potency to
identify effective linker lengths and compositions. The study
found that PROTACs with linkers shorter than 12 atoms showed
no appreciable degradation activity. In contrast, longer linkers,
despite their higher polar surface area and challenges in
cellular penetration, were generally well-tolerated and effective
in degrading TBK1. The very exible nature of the linker allowed
long linkers to orient the ligands in a way that facilitated the
association of TBK1 and VHL into suitable ternary complexes.

Another study describes how the ability of PROTACs to
induce selective protein degradation is enhanced by the plastic
nature of the binding interactions between CRBN and BRD4
bromodomains.54 Plasticity here means that the proteins can
adopt multiple conformations at the binding interface
depending on the linker length, composition, and linkage
position. It was shown that different linkers can promote
different binding conformations between the CRBN and BRD4.
This plasticity allows the PROTAC to effectively bring the
proteins into proximity in orientations that are conducive to
ubiquitination. Using X-ray crystallography and molecular
docking, the authors shed light on how different linker
congurations lead to distinct low-energy binding conforma-
tions between CRBN and BRD4. The varying conformations
accessible to PROTACs in this study illustrate how linker-
induced exibility directly impacts biological outcomes.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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� The exibility of a PROTAC's linker can be tuned by
adjusting, for instance, the length and chemical composition of
the linker.

� Flexibility can allow for conformational adaptability and
access to multiple binding orientations.

2.1.4 Bottom line. There are no denitive guidelines that
guarantee the design of an effective PROTAC for any given E3
ligase–POI pair.57 This means that developing a potent degrader
generally requires trial and error, with a reliance on empirical
metrics to identify effective linker features that establish the
optimal SAR. The large combinatorial space makes linker
design ideally suited to data-driven approaches, which provide
a valuable complement to traditional, labor-intensive experi-
mental methods. Computational models can furthermore
simulate how ternary complexes form and behave at a level of
detail generally inaccessible in most experiments. Used wisely,
computational tools can aid in tricky tasks such as linker opti-
mization without the need to synthesize and test numerous
variants experimentally, potentially speeding up their develop-
ment and reducing the costs associated with the synthesis and
empirical testing of unpromising compounds.

One recent study that nicely illustrates these points used
a combination of crystallographic data and mathematical
modeling to explore the conformational dynamics of protein–
protein interactions induced by PROTACs, to understand how
these dynamics inuence ubiquitination and eventual protein
degradation.90 Interestingly, the authors found that the stability of
the ternary complex did not necessarily correlate with increased
protein degradation efficiency, suggesting that excessive stability
might inhibit degradation efficiency. Notably, the spatial
arrangement and kinetic properties of the ternary complex were
crucial in this context: effective PROTACs brought lysine residues
on the POI close to the active site of the E2 enzyme, facilitated by
the E3 ligase within the complex. Lysine residues are the most
common sites for ubiquitination in proteins. The authors also
conrmed that the kinetics of the ternary complex, especially its
dissociation rate, also play a role in determining the degradation
efficiency. Salt bridges and the hydrophobicity of the interactions
within the ternary complex were found to contribute positively
both to the cooperativity and to the half-life of the interaction.
These ndings suggest prioritizing compounds that can induce
the necessary conformational dynamics without overly stabilizing
the ternary complex, highlighting how valuable insights can be
gained using computational tools.
2.2 PROTAC linker design goes beyond fragment linking

While PROTAC design shares similarities with traditional
small-molecule drug design, it is fundamentally distinct,
notably in linker optimization (Fig. 2c). For instance, the
approach to optimizing PROTAC linkers differs signicantly
from the concept of “fragment linking” used in fragment-based
drug design (FBDD). In essence, FBDD is a strategy used in drug
discovery where small, low-complexity molecules, i.e., frag-
ments, are screened for binding to a specic pocket on the
target protein. First, a library of small chemical fragments is
created. These fragments are typically smaller than traditional
© 2024 The Author(s). Published by the Royal Society of Chemistry
drug-like molecules, with a molecular weight of less than
300 Da. The fragment library is then screened against the target
protein to identify fragments that bind to the protein. This can
be done using various techniques such as nuclear magnetic
resonance (NMR) spectroscopy, X-ray crystallography, surface
plasmon resonance (SPR), and thermal shi assays. Fragments
that show binding affinity to the target protein are identied as
“hits”. These hits oen bind with low affinity but serve as
a starting point for further optimization. Subsequently, the
identied fragments are optimized to improve their binding
affinity and drug-like properties. This can involve growing the
fragment by adding more atoms, merging fragments that bind
to adjacent sites, or linking fragments that bind to different
parts of the target protein. Finally, the optimized fragments are
developed into lead compounds, which have improved phar-
macological properties and can be further tested in biological
assays and in vivo studies.91,92

Fragments can be an ideal starting point for drug design,
with fragment growing and linking strategies allowing for the
optimization of their potency and physicochemical properties.
Fragment linking in particular gives the possibility for signi-
cant potency gains by ensuring that the linked molecule
maintains the interactions of the original fragments,
a phenomenon known as super-additivity.93 However, achieving
this is in practice very challenging, as a bad linker can instead
lead to the disruption of fragment binding poses.

Despite its success in drug discovery, FBDD may fall short
when applied to PROTAC linker design. PROTACs are
substantially larger andmore complex than the small fragments
typically dealt with in FBDD. The linker in a PROTAC must
connect two distinct binding moieties, facilitating the forma-
tion of a stable ternary complex, and does not simply focus on
improving the binding affinity. To reiterate, the linker in
a PROTAC must be exible enough to allow the formation of
a ternary complex but rigid enough to maintain the correct
spatial arrangement of the ligands. This balance is difficult to
tackle using traditional FBDD approaches, which focus on
optimizing single-binding interactions rather than complex
multi-protein assemblies. The unique challenges posed by the
size, complexity, and spatial requirements of PROTACs neces-
sitate more advanced methodologies. While direct application
of typical fragment-linking strategies used in FBDD is not
generally feasible in PROTAC design, a modular approach can
certainly be benecial. As we show in the next section,
researchers are already taking inspiration and lessons learned
from FBDD and applying them to PROTAC design.
2.3 FBDD and ML pave the way for PROTAC development

The advent of ML in drug discovery has transformed the way
researchers approach the design and optimization of thera-
peutics. ML algorithms streamline labor-intensive design-
make-test-analyze (DMTA) cycles by automating the identica-
tion of promising compounds and enabling researchers to
avoid synthesizing and testing ineffective compounds, thereby
reducing both time and costs.80,81 Before the widespread use of
ML in drug discovery seen today, computational tools for linker
Digital Discovery, 2024, 3, 2158–2176 | 2165
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design typically involved searching a database, limiting
proposed linkers to those already documented in the data-
base.93 While such approaches have been successful, ML-based
solutions can give models an advantage by allowing them to
better explore the possible chemical space. Generative models,
in particular, are used to create new molecules from scratch,
designing possible structures with enhanced or desirable
property proles based on patterns learned from data.94,95

However, generative models trained for FBDD are optimized for
designing linkers between small fragments. These models
might not account for the larger size and higher complexity of
PROTAC structures, potentially leading to inaccurate linker
design. Presented below is a detailed overview of generative
models used in de novo linker design within the framework of
FBDD.

2.3.1 2D generative models in linker design. SyntaLinker96

is a method that employs syntactic pattern recognition with
molecular string representations via deep conditional trans-
former neural networks.96 It uses molecular representations
based on the simplied molecular-input line-entry system
(SMILES), one of the most popular methods for representing 2D
molecular graphs as strings. SyntaLinker allows for the auto-
matic linking of molecular fragments by learning from patterns
in drug-like compounds in ChEMBL.97 This enables the gener-
ation of new molecular structures starting from pairs of frag-
ments in a conditional way; possible constraints include the
shortest-linker bond distance (SLBD), HBDs, number of rotat-
able bonds, and number of rings. The constraints are incorpo-
rated as control codes. For example, “[L_4]” denotes a linker
with a bond distance of four, which acts as a guiding prex in
the sequence. ChEMBL data was ltered using Lipinski's “Rule
of Five,” PAINS substructures, and synthetic accessibility
(SAscore) to ensure lead-like and synthesizable molecules were
used to construct the training data. The dataset was constructed
using matched-molecular pairs (MMPs) to build molecules into
fragment molecule triplets (fragment 1, linker, fragment 2).
SyntaLinker consists of multiple encoder–decoder stacks where
each encoder layer has a multi-head self-attention sub-layer and
a feedforward network sub-layer. The model was trained using
the prepared dataset, with SLBD and the aforementioned
constraints to learn the implicit rules of fragment linking. The
generated molecules were evaluated using several metrics,
including validity (97.2%), uniqueness (88.1%), recovery
(84.7%), and novelty (91.8%).

Link-INVENT93 is an extension to the existing de novo
molecular design platform REINVENT; it uses policy-based
reinforcement learning (RL) for multi-parameter optimization,
and can be applied to both fragment linking and scaffold
hopping given a desired property prole. Via RL, the Link-
INVENT agent learns to generate linkers connecting molecular
fragments while satisfying diverse objectives, facilitating the
practical application of the model for real-world drug discovery
projects. In the original study, Link-INVENT used the drug-like
compound SMILES extracted from ChEMBL for training.
Lenient criteria were applied to ensure the dataset's effective-
ness for PROTAC applications (e.g., larger warheads). ChEMBL
compounds were sliced using reaction SMIRKS to create triplets
2166 | Digital Discovery, 2024, 3, 2158–2176
(linker, warheads, full molecule). Unrealistic data points were
removed, and datasets were augmented via SMILES randomi-
zation for improved generalizability. Link-INVENT is trained
based on the conditional probabilities of observing a linker
given both molecular subunits, similar to SyntaLinker. The
agent is initialized with the same parameters as the prior and is
updated via RL to generate linkers that increasingly satisfy the
desired multi-parameter optimization (MPO) objectives. The
scoring function combines various components (physico-
chemical properties, structural features, predictive models, and
binding energy approximations) to evaluate the desirability of
generated linkers. Link-INVENT was tested in various experi-
ments, demonstrating its capability to generate linkers that
meet specic criteria. Notably, Link-INVENT has also been
demonstrated to be effective in PROTAC linker design,
successfully optimizing the properties of generated linkers,
including effective length, the presence of rings, and exibility.

Due partly to the surprising effectiveness of 2D representa-
tions like SMILES, the majority of molecular generative models
used for de novomolecular design and FBDD have made limited
use of 3D structural information, including SyntaLinker and
Link-INVENT. Nevertheless, the PROTAC MoA suggests that
incorporating 3D information may come to play an important
role in designing PROTAC structures, which lead to favorable
ternary complexes. In the next subsection, we cover ML models
that seek to incorporate structural information into their
molecular design workows.

2.3.2 3D generative models in linker design. DeLinker98 is
a graph-based deep generative model that incorporates 3D
structural information for designing molecules using a multi-
modal encoder–decoder. Training data was derived from
a 250k molecule subset of ZINC, better known as ZINC-250k.99

The dataset was further processed to create fragment–molecule
pairs using standard transformations from MMP analysis. 3D
conformers were generated using RDKit, and the lowest-energy
conformation was used as the reference structure. Molecules
are represented as graphs, where atoms are nodes and bonds
are edges. The model builds new molecules iteratively, bond by
bond, from a pool of atoms that can be initialized with partial
structures. The model uses a gated graph neural network
(GGNN) for encoding and a single-layer neural network for edge
prediction and labeling. This setup allows the model to use
local, global, and 3D structural information for molecule
generation, encoding multi-modal molecular information in
a low-dimensional latent space. The model is trained under the
VAE framework to reconstruct known linkers from fragment
pairs and the linked molecule. The latent vector is derived from
the embedding of the linked molecule, and the model is regu-
larized to follow a standard normal distribution. The training
objective includes a reconstruction loss and a Kullback–Leibler
(KL) regularization term, which together ensure that generated
molecules are valid and structurally sound. DeLinker can
generate novel molecular structures, including those with
longer linkers of at least ve atoms. It was applied to the design
of PROTACs targeting SMARCA2 and SMARCA4 subunits, where
it generated linkers maintaining the geometry observed in
a ternary complex with VHL. Imrie et al.100 further improves
© 2024 The Author(s). Published by the Royal Society of Chemistry
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DeLinker in their more recent DEVELOP framework by intro-
ducing a convolutional neural network (CNN), which operates
on the 3D structure of the starting fragments. DEVELOP not
only improves the proportion of generated molecules with high
3D similarity to the reference molecule, but also recovers 10×
more of the original molecules compared to DeLinker.

3DLinker101 is a conditional generative model for designing
molecular linkers using 3D spatial information and is capable
of generating linker graphs along with their 3D structures and
anchor atoms. This is achieved through an E(3)-equivariant
graph VAE, addressing challenges such as the conditional
generation of linkers based on two input ligands and the
requirement for 3D structural awareness to avoid atom clashes.
It predicts both the graph (2D) structure of the linker and its 3D
coordinates while ensuring the model's outputs are equivariant
with respect to E(3) group symmetries (i.e., rotation, translation,
and reection). The training data was derived from the ZINC
database,102 from which 3D conformers were generated for each
molecule using RDKit and the lowest-energy conformation
chosen as the reference structure. The nal curated dataset
contains ∼366k (fragment, linker, coordinate) triplets and was
roughly divided into 99.8%/0.1%/0.1% training/validation/
testing splits. Using this generous training split, the model
outperforms other baselines, including DeLinker and other 2D
graph generative models (coupled with ConfVAE103 for 3D
structure generation), in recovering molecular graphs and
accurately predicting the 3D coordinates of atoms. Neverthe-
less, it is unclear if the reported metrics are for the training,
validation, or test set. While 3DLinker demonstrates improved
performance in generating 3D molecular structures with accu-
rate geometry, precise connection of molecular fragments, and
higher recovery rates, the authors observed that this comes with
the trade-off of lower uniqueness and novelty in sampled
molecules compared to the benchmarked approaches.

DiffLinker104 is an E(3)-equivariant 3D-conditional diffusion
model for the design of molecular linkers. This approach
uniquely generates molecular linkers for a set of input frag-
ments represented as 3D atomic point clouds, overcoming the
limitations of previous methods by not being restricted to
linking pairs of fragments. DiffLinker automatically determines
the number of atoms in the linker and its attachment points to
the input fragments. As the previous approaches, DiffLinker
was trained and evaluated on a dataset derived from ZINC-250k,
but the authors also took things a step further by benchmarking
on two additional datasets: one derived from CASF-2016, and
another derived from GEOM.105 The molecules derived from
GEOM can be decomposed into three or more fragments with
one or two linkers connecting them, creating a more chal-
lenging benchmark that better approximates real-world usage.
DiffLinker demonstrates an ability to generate diverse and
synthetically accessible molecules with minimal clashes, espe-
cially when conditioned on target protein pockets. It represents
a signicant advancement in FBDD, providing a powerful tool
for the generation of chemically relevant molecules in a exible
and efficient manner. Nevertheless, the authors did not apply
their fragment-linking approach to PROTAC design.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Building upon the success of SyntaLinker, DRlinker106 is
a similar approach that incorporates RL, and, indirectly, 3D
information, for the generation of linkers with specic 2D and
3D attributes. It was trained and evaluated for FBDD on datasets
derived not only from ChEMBL, but also from CASF-2016.107 On
tasks like optimizing bioactivity, it achieves a 91.0% and 93.9%
success rate in generating compounds with desired linker
length and Log P, respectively. Despite being based on 2D
SMILES representation, DRlinker can also perform scaffold-
hopping in a way that generates molecules with high 3D simi-
larity but low 2D similarity to lead inhibitors. Two years later,
the same team followed up with another model for FBDD,
which aims to better incorporate 3D information. GRELinker108

combines a gated-graph neural network (GGNN109) with RL and
curriculum learning (CL) to design linkers with desirable
property proles. Its architecture is very similar to that of
GraphINVENT.110 It outperforms DRlinker in tasks such as
controlling Log P, optimizing synthesizability and bioactivity,
and generating molecules with high 3D similarity but low 2D
similarity to lead compounds. It has also been evaluated in
scenarios representative of real-world use-cases, where the aim
is to optimize for molecular affinity using docking scores. The
authors found that the use of CL improved its efficiency in
generating complex linkers.

Despite the successes of the aforementioned works in FBDD,
and, in particular, of DeLinker and Link-INVENT in PROTAC
linker design, the methods reviewed above all face a key limi-
tation – they were all trained and optimized on small-molecule
binders rather than on an actual PROTAC dataset. Although
careful ltering was done to make the datasets more general-
izable beyond small-molecule binders, due to the fact that
warheads can be much larger than the typical fragments used in
FBDD, we argue that the training of these models may not fully
capture the unique features and complexities of larger, multi-
valent molecules like PROTACs, nor their unique chemistry. As
previously discussed, PROTACs not only have larger sizes but
also exhibit different biophysical and chemical properties
compared to the small molecules typically found in drug
discovery databases (Fig. 3). This training limitation can affect
the applicability of these methods for designing effective PRO-
TAC linkers, as the chemical space and design strategies for
PROTACs diverge signicantly from those of small molecules.
This underscores the necessity for specialized tools for PROTAC
linker design that can accommodate their unique size,
complexity, and 3D structural requirements. The next section
reviews ML models specically tailored for PROTAC design.
2.4 Previous work in PROTAC linker design

In this section, we focus on prior ML studies that have been
designed to advance the optimization of PROTAC linkers. By
highlighting how computational models have been intention-
ally developed to rene PROTAC linker design, we hope to
illustrate how the application of these technologies has evolved
from traditional drug design to TPD. As ML techniques
continue to evolve, they are expected to play an increasingly
central role in PROTAC development. Notable ML-driven works
Digital Discovery, 2024, 3, 2158–2176 | 2167
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Fig. 3 The distributions of various molecular descriptors in PROTACs versus small molecules. PROTACs were downloaded from PROTAC-DB
and PROTACpedia, while small molecules were randomly sampled from ZINC-250k,102 a popular database used in drug discovery containing
commercially-available compounds for virtual screening (e.g., drug-like compounds). This comparative analysis of their chemical and physical
properties highlights the differences between both classes of molecules. The descriptors include molecular weight, partition coefficient (Log P),
number of rotatable bonds, number of hydrogen bond donors (HBDs) and acceptors (HBAs), and normalized atom counts for carbon.
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such as AIMLinker111 and PROTAC-RL112 shed light on the
complex nature of PROTAC linker design, though they are not
the only recent works to tackle this problem.

PROTAC-RL is a deep generative model combining an
augmented transformer architecture with memory-assisted RL
capable of generating PROTACs with favorable PK properties,
including solubility, stability, and bioavailability.112Notably, the
authors experimentally validated their model by testing the
synthetic feasibility of six of their designs. To address the
challenge of limited training data, the model was pre-trained
using a large dataset of PROTAC-like structures, termed quasi-
PROTACs, followed by ne-tuning on actual PROTAC data.
Given a pair of E3 ligand and warhead SMILES, the model
generates optimized linkers, which aim to optimize the PK
attributes of the returned PROTACs. PROTAC-RL achieved
a recovery rate of 43.0%, much higher than the recovery rates of
the baseline models, DeLinker and SyntaLinker, even aer
these were retrained using the PROTAC training datasets. Aer
retraining, Delinker and SyntaLinker achieved recovery rates of
4.8% and 10.4%, respectively. This stark contrast in recovery
rates between PROTAC-RL and the benchmarked models aer
retraining further strengthens the argument that models
designed and trained for small molecular fragments cannot
adequately capture the unique aspects of PROTACs, as the
design strategies and principles for these two classes of mole-
cules are fundamentally different. Because the RL component
2168 | Digital Discovery, 2024, 3, 2158–2176
allows for the conditional generation of PROTACs with specic
properties, such as a desired protein target, the authors applied
PROTAC-RL to the design of BRD4-targeting PROTACs. To this
end, they generated 5k compounds, which they then ltered
through a combination of ML classiers and molecular simu-
lations to identify candidates with favorable PK properties and
synthetic accessibility. Of the six candidate PROTACs, which
were synthesized and experimentally tested, three showed
inhibitory activity against BRD4 in cell-based assays. One lead
candidate demonstrated high anti-proliferative potency and
a favorable PK prole in mice.

AIMLinker is a GGNN109 model for autoregressive PROTAC
linker generation at the atomic/bond level.111 Like GRELinker, it
seeks to improve upon previously-developed graph-based deep
generative models like DeLinker, CGVAE,113 and Graph-
INVENT110 via the incorporation of 3D information. AIMLinker
was trained on a dataset combining molecules from ZINC and
PROTAC-DB.114 The training focused on predicting viable 2D
linker structures from fragment–molecule pairs. Generated
molecules were then validated via molecular docking and
simulations to verify binding to the target proteins via binding
affinity and conformational predictions. AIMLinker was used to
successfully generate a diverse library of novel PROTACs. The
model demonstrated superiority over other fragment-linking
methods (DeLinker and DiffLinker) in generating molecules
with favorable PK properties and high binding affinities, with
© 2024 The Author(s). Published by the Royal Society of Chemistry
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a few designed PROTACs even outperforming the reference
compound dBET6 in binding affinity and structural alignment
(Fig. 1c). Despite a promising performance in PROTAC linker
design, AIMLinker does have two current limitations, namely
the focus on a single PROTAC target (BRD4) and the reliance on
docking predictions, which are known to be inaccurate.115

Finally, ShapeLinker116 is a model based on Link-INVENT, but
with an important shape alignment contribution to the scoring
function, and less signicant but still important contributions
from the ratio of rotatable bonds and the linker length ratio. The
authors train on PROTAC-DB114 data, as well as on ten well-
known ternary complexes from the Protein Data Bank (PDB):
5T35, 7ZNT, 6BN7, 6BOY, 6HAY, 6HAX, 7S4E, 7JTP, 7Q2J, and
7JTO. All of these complexes have binding PROTACs that were
optimized in individual structure-based drug studies and cover
a diverse range of PROTAC (and linker) “shapes”. These are
included in the training of the shape alignment model. Never-
theless, it is not clear whether these additions indeed improve
the performance of ShapeLinker over that of the base Link-
INVENT. The results suggest that perhaps larger changes to the
model architecture are required for step-changes in performance.
3 Machine learning in de novo
PROTAC design: going beyond linker
optimization
3.1 Comprehensive PROTAC design strategies

The design of a PROTAC involves more than the design of the
linker; it also includes the optimization of the ligands that bind
to the target protein and the E3 ligase. The challenge lies in
designing a molecule where these components work in
harmony to achieve ubiquitination and subsequent degrada-
tion of the target protein. The design process begins with the
selection of a ligand, if known, that can selectively bind to the
POI. This step is crucial because the efficacy of a PROTAC largely
depends on the ability of this warhead to recognize and attach
to the intended POI.18 When numerous known binders exist for
a protein, the binding affinity, physicochemical properties, and
synthetic feasibility of these binders are crucial factors to
consider. Approved drugs, drug candidates in clinical trials, or
highly active inhibitors may be preferred starting points due to
their optimized PK and PD properties, for example.117

Equally important is the choice of an E3 ligase and a corre-
sponding ligand. The selection of the E3 ligase oen involves
considering a range of factors, such as the ubiquitination effi-
ciency, the specicity of the ligase, and its expression levels
within the relevant cells or tissues. For instance, if a PROTAC is
being developed for cancer therapy, the chosen E3 ligase should
be highly expressed in cancer cells and less so in healthy cells to
minimize off-target effects.118 Furthermore, different E3 ligases
can induce varying degrees of degradation even with the same
POI ligands and linkers. The selection of an effective E3 ligase
and ligand is thus a critical aspect of PROTAC design, and
structural knowledge of the E3 ligase–POI interaction can
signicantly aid this process. Interestingly, neither the binding
© 2024 The Author(s). Published by the Royal Society of Chemistry
affinity of the warhead nor of the E3 ligase ligand seems to
directly inuence the degradation efficiency of the PROTAC.117

Once the individual ligands have been selected, the next
challenge is to design a molecule where these components work
in concert. This harmony is essential for the formation of an
effective ternary complex between the PROTAC, the target
protein, and the E3 ligase. The spatial and temporal dynamics
of this complex formation are critical. It's not just about
bringing these entities into proximity; it's also about ensuring
that they interact in a manner that facilitates the transfer of
ubiquitin from the E3 ligase to the target protein. For instance,
the spatial arrangement in a potential ternary complex needs to
allow the POI's ubiquitination site to be accessible to the E3
ligase once the complex is formed. This may involve tweaking
the linker length, rigidity, or chemical composition to achieve
the optimal orientation.

Nevertheless, some ML-driven methods for PROTAC design
seek to tackle the problem in a more holistic manner. Though
less common than modular approaches, which focus heavily on
PROTAC linker optimization, comprehensive PROTAC design
strategies can be advantageous for a few reasons. They allow, in
principle, for the simultaneous optimization of multiple
parameters, such as exibility, cell permeability, and degrada-
tion efficiency—factors determined not only by the linker
composition, but also by that of the warhead and E3 ligand. A
holistic approach may also better account for the complex
interactions between the different PROTAC components,
leading to the design of more effective and specic PROTACs;
nevertheless, this remains to be rigorously demonstrated. In the
next section, we examine the only study which, to our knowl-
edge, has tackled the problem of engineering PROTACs in
a holistic fashion, challenging traditional FBDD principles.
3.2 Previous work in comprehensive PROTAC design

A case study in ML-driven de novo PROTAC design is the
application of GraphINVENT, a graph-based deep generative
model, to the generation of novel PROTAC graphs predicted to
represent highly active degraders.119 The authors used policy-
gradient reinforcement learning (RL) and a surrogate model
for protein degradation activity to guide the model toward
a chemical space of more active potential degraders. The open-
source PROTAC-DB114 database was used to train the model,
which included 638 “complete” entries detailing degradation
activity in various systems. For an entry to be considered
complete, it needed to include a PROTAC SMILES, an E3 ligase,
a POI, a dened cell type, and, crucially, a DC50 value. The
authors reported that, despite their large size, GraphINVENT
did not struggle to propose novel PROTAC-like structures
starting from empty graphs; they go on to show that, following
RL ne-tuning, the model could generate diverse molecules
with not only higher predicted activity than the prior, but also
substructures found in known degraders. An analysis was con-
ducted to demonstrate that the model could be used to generate
novel compounds with high predicted activity for IRAK3
degradation, but none of the proposed structures were experi-
mentally validated.
Digital Discovery, 2024, 3, 2158–2176 | 2169
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3.3 Modeling degradation activity in PROTACs

A critical component of any generative model for PROTACs is
a reliable surrogate model for degradation activity. To this end,
a few data-driven approaches have been developed to tackle the
prediction of degradation activity in PROTACs. Nori et al.119 rst
used eXtreme Gradient Boosting (XGBoost) and Morgan
ngerprints to classify potential degraders into “active” or
“inactive” compounds. Following this work, Li et al.120 intro-
duced DeepPROTACs, a deep neural network architecture
integrating graph convolutional networks (GCNs) and bidirec-
tional long short-term memory (LSTM) layers for predicting
degradation activity in PROTACs. DeepPROTACs was trained
using data from PROTAC-DB and other public sources,
including 2832 labeled datasets split into 988 “good” degraders
and 1844 “bad” degraders based on their DC50 and Dmax values.
When tested on a dataset of 16 PROTACs targeting ER and VHL,
the model achieved a prediction accuracy of 68.75%. For other
PROTAC targets like EZH2, STAT3, eIF4E, and FLT3, the accu-
racy rates ranged from 65% to 80%. More recently, Ribes et al.121

introduced a neural network ensemble model for the classi-
cation of PROTACs into “active” and “inactive” compounds.
Here, the authors combined data from PROTAC-DB and PRO-
TACpedia,122 where only entries that had both a DC50 and Dmax

value reported were used. PROTACs were represented using
Morgan ngerprints, while target proteins, E3 ligases, and cell
types are each embedded into feature vectors using linear
layers, and normalized. The model demonstrated superior
performance to previous models for degradation activity clas-
sication, reaching a top test accuracy of 82.6% when using
a stratied data split, and a test accuracy of 61% on unseen
POIs. The authors conclude that the model will generalize well
to novel PROTAC structures so long as both the POI and E3
ligase have been seen before in training.
3.4 Innovations and emerging trends

The eld of PROTAC design is rapidly evolving along with new
ML approaches to molecular design. One common thread in
many of the aforementioned methods is the use of RL to learn
optimal policies for PROTAC design through trial and error.
Another emerging trend is the integration of 3D information
into generative approaches. This allows for a more holistic view
of the interactions between proteins and can lead to more
effective PROTAC designs. Additionally, there is a growing trend
towards the use of transfer learning, where a model developed
for one task is reused as the starting point for a model on
a second task. This is particularly useful in PROTAC design
where the limited amount of public data poses a challenge.

Although diffusion models have not yet been applied to
PROTAC design (only FBDD, as in DiffLinker104), we believe they
present a promising direction in PROTAC engineering, both for
linker-only and holistic design strategies. Firstly, diffusion
models excel at generating high-quality molecular structures by
gradually transforming simple distributions into complex data
distributions.123 Secondly, diffusion models can naturally inte-
grate 3D information, which allows for the design of PROTACs
that account for the spatial arrangement and interactions
2170 | Digital Discovery, 2024, 3, 2158–2176
between the POI, the PROTAC, and the E3 ligase. Diffusion
models are also known for their robustness in handling noisy
data,124 and they can be integrated with existing generative and
predictive frameworks in an online setting.125 These capabilities
of diffusion models make them natural choices to explore
further for generating diverse and novel PROTAC structures.

For a detailed summary of all models surveyed in this work,
please see Table 1.
3.5 Datasets

There are currently two main sources of openly-accessible,
structured PROTAC data: PROTAC-DB and PROTACpedia.

PROTAC-DB is a public database designed to support the
research and development of PROTACs.114 It offers an online
repository of structural and experimental data related to these
molecules. Data in the database is manually extracted from the
literature or calculated using specic programs. In the second
release, the number of PROTACs was expanded to 3270 and
featured ∼360 warheads, ∼1500 linkers, and ∼80 E3 ligands. As
of June 2024, PROTAC-DB contains 5388 entries. It also includes
ternary complex structures for PROTACs. PROTAC-DB covers
key aspects of PROTAC activity, including degradation capacity,
quantied by metrics like DC50 and Dmax; binding affinities
between PROTACs (or PROTAC ligands) and target proteins and
E3 ligases; cellular activities such as IC50, EC50, GI50, and GR50;
and PAMPA and Caco-2 permeability data. Nevertheless, entries
are not necessarily complete and there is a lot of missing data in
PROTAC-DB, oen because the original source does not report
all aforementioned metrics.121

PROTACpedia is a curated database focused on PROTACs,
containing detailed entries on 1190 PROTAC molecules as of
the latest update (October 2022).122 It contains high-quality data
that has been carefully curated by experts, including informa-
tion on ∼202 warheads, ∼65 E3 ligands, and ∼806 linkers. This
platform facilitates the sharing and dissemination of critical
PROTAC-related data to help expand PROTACpedia. Its collab-
orative nature encourages contributions to ensure that the
database remains an up-to-date resource for researchers
exploring PROTACs.

There is a signicant overlap in the activity distributions of
structures deposited in PROTACpedia with those in PROTAC-
DB. As of June 2024, there are 807 PROTACs present in both
databases, identied via string comparison following canon-
icalization of PROTAC SMILES from both databases. In other
words, roughly 68% of PROTACs in PROTACpedia and 25% of
PROTACs in PROTAC-DB are present in both databases. We did
not explore what fraction of the duplicate PROTAC structures
correspond to duplicate entries between the two databases, as it
is possible that a PROTACmay be present in both databases but
still contain information about different sets of experiments.

As PROTACs represent a relatively new therapeutic modality,
there is a relative scarcity in the number of publicly available
crystal structures, especially for ternary complexes. Structures
that are available in the PDB have most frequently been deter-
mined using cryogenic electron microscopy (cryo-EM), a tech-
nology that has revolutionized the eld of protein structural
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Summary of previous work on ML-guided PROTAC design. SMILES is a molecular string representation constructed from 2D graphs. RL:
reinforcement learning. LSTM: long short-term memory, a class of recurrent neural network. JT-VAE: the junction-tree variational autoen-
coder.126 CNN: convolutional neural network. GGNN: gated-graph neural network.109 CL: curriculum learning. GCNs: graph convolutional
networks. MLP: multi-layer perceptron. The annotation “(w/3D coords)” indicates that 3D information was used indirectly during structure
generation (e.g., scoring), whereas “+3D coords” indicates 3D information was directly used in structure generation

Model Year Data Type Focus

SyntaLinker96 2020 SMILES Transformers Fragment linking
PROTAC-RL112 2022 SMILES Transformers + RL Fragment linking & PROTAC linker design
Link-INVENT93 2023 SMILES LSTM + RL Fragment linking & PROTAC linker design
ShapeLinker116 2023 SMILES (w/3D coords) Link-INVENT PROTAC linker design
DRlinker106 2022 SMILES (w/3D coords) Transformers + RL Fragment linking
DeLinker98 2020 2D graphs (w/3D coords) JT-VAE Fragment linking
DEVELOP100 2021 2D graphs + 3D coords JT-VAE + CNN Fragment linking
3DLinker101 2022 2D graphs + 3D coords E(3) eq. graph VAE Fragment linking
Nori et al.119 2022 2D graphs GraphINVENT110 (GGNN + RL) Full (“holistic”) PROTAC design
AIMLinker111 2023 2D graphs (w/3D coords) GGNN PROTAC linker design
GRELinker108 2024 2D graphs (w/3D coords) GGNN + RL + CL Fragment linking
DiffLinker104 2024 2D graphs + 3D coords 2D GNN + E(3) eq. 3D diffusion Linker size prediction & fragment linking
Nori et al.119 2022 Morgan ngerprints XGBoost Degradation activity prediction
DeepPROTACs120 2022 SMILES + 3D graphs GCNs + LSTMs Degradation activity prediction
Ribes et al.121 2024 Morgan ngerprints MLP Degradation activity prediction
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biology. Nevertheless, because the PROTAC MoA is not partic-
ularly well-understood, generalizations are being made across
a range of PROTACs based on limited mechanistic data.
Researchers would be wise to exercise caution when general-
izing too far beyond the scope of their models or experiments.

Part of the challenge in ML-driven PROTAC engineering
stems from the limited amount of structured data available.
While public databases such as these have been greatly inu-
ential thus far in driving the development of ML tools for
PROTAC design, without more comprehensive datasets, data-
driven models will only be able to access a fraction of the vast
chemical space accessible with PROTACs. Data scarcity
becomes even more of a concern when considering factors like
bioactivity, PK properties, and 3D structure in PROTACs. Low-
data and low-resource learning can provide valuable strategies
in the current scarce data landscape,127 but, ultimately, more
high-quality, structured data will need to be systematically
generated and deposited following FAIR data-sharing principles
for researchers to truly harness the powers of ML in PROTAC
design. We hope that, just as ML has become an invaluable tool
for identifying hits and optimizing leads in small-molecule drug
discovery pipelines, it will also transform the current paradigm
of PROTAC engineering, making us wonder how we ever
managed without it.
4 Discussion

ML models trained on small-molecule datasets oen struggle
with generalization to novel chemical spaces not represented in
the training data.128,129 This can limit their predictive accuracy
for entirely new classes of compounds. PROTACs, with their
bifunctional nature and larger size, represent a signicant
departure from small molecules. PROTACs generally have larger
molecular weights and require higher degrees of conforma-
tional exibility to achieve their function. Notably, the
© 2024 The Author(s). Published by the Royal Society of Chemistry
physicochemical properties and PK proles of PROTACs are
markedly different from those of traditional small molecules. In
Fig. 3, we highlight some of the key physicochemical differences
between PROTACs and SMDs. These include differences in
molecular weight (MW), partition coefficient (Log P), number of
rotatable bonds (exibility and conformational dynamics),
number of HBDs and HBAs, and number of carbon atoms. By
analyzing these descriptors, we can gain precise insights into
the structural and physicochemical differences between PRO-
TACs and small molecules.

� Molecular weight: the small-molecule MW distribution
peaks around 250–500 Da. This is the typical range expected for
drug-like small molecules as it is considered optimal for oral
bioavailability according to Lipinski's Rule of Five. The PROTAC
distribution peaks around 750–1000 Da, highlighting how
much larger they are than traditional small molecules. The
small-molecule distribution is relatively narrow and sharply
peaked, indicating a more uniform range of MWs, while the
PROTAC distribution is broader, reecting greater variability in
the size of these complex molecules. The clear separation
between the two distributions highlights a key difference
between PROTACs and traditional small molecules: their size.

� Partition coefficient: the Log P distribution for small
molecules peaks around 2–3. This is consistent with drug-
likeness criteria, where a Log P value between 1 and 3 is typi-
cally considered favorable for oral bioavailability. The Log P
distribution for PROTACs is broader and peaks around 5.
Higher Log P values indicate that PROTACs are generally more
hydrophobic than small molecules, which can affect their
solubility and cellular permeability. The higher Log P values for
PROTACs may pose challenges for their solubility in aqueous
environments like the extracellular environment and the
cytosol, and may require formulation strategies to enhance
their solubility and bioavailability.
Digital Discovery, 2024, 3, 2158–2176 | 2171
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� Rotatable bonds: the distribution in the number of rotat-
able bonds peaks around 1–5 rotatable bonds for small mole-
cules. Fewer rotatable bonds are associated with greater rigidity.
For PROTACs, the distribution instead peaks around 15–20
rotatable bonds. The higher number of rotatable bonds can be
largely attributed to the exible linker regions in PROTACs.

� Hydrogen bonds: the HBD distribution of small molecules
peaks around 0–2. This is in line with the drug-likeness criteria
that suggest a limited number of hydrogen bond donors to
ensure good membrane permeability. On the other hand, the
HBD distribution of PROTACs peaks around 3–5. Similar trends
are observed for the HBA distributions.

� Carbon composition: both PROTACs and small molecules
have a high normalized carbon count, peaking between 0.7–0.8,
with the peak being slightly lower for PROTACs. Small mole-
cules display a slightly broader distribution in normalized
carbon atom count. No signicant differences in normalized
nitrogen, oxygen, or uorine atom composition were observed,
although small molecules do display marginally broader
distributions for all these atom types.

This comparative analysis highlights the unique challenges
and opportunities facing ML models for PROTAC design.
Furthermore, it should be evident that models trained on small
fragments will not capture the distinct features of PROTACs, as
small molecule fragments and PROTACs exist in largely non-
overlapping areas of chemical space. Extending ML models
developed for small molecules to PROTACs requires modica-
tions; this could entail small changes, like re-training on larger
molecules and/or more diverse datasets that include PROTACs,
or changes to fundamental design principles. It is well-known
in deep learning, including generative modeling, that the
predictive accuracy of a model depends heavily on the avail-
ability of high-quality datasets.130 However, in drug design,
datasets oen have various forms of inconsistencies and
missing data.131 These challenges are even more pronounced
when focusing on PROTAC design; here, experimental data on
the efficacy and specicity of PROTACmolecules is even scarcer.
The multifaceted nature of PROTACs necessitates detailed and
high-quality datasets to uncover the subtle patterns underlying
their biological activity. This is especially crucial for turning
predictive models into tools for robust PROTAC optimization
and design.

Models that fail to incorporate structural, or even dynamical,
information regarding PROTACs and their target proteins
might not effectively capture the feasibility of ternary complex
formation. We know that the specicity and activity of PROTACs
towards a specic POI are inuenced by precise 3D interactions
at the molecular level, more so than by the binding affinity.
Without detailed 3D structural data, ML models may not be
accurate enough to generalize to new PROTAC structures or
even new POIs, a concern reected in the changing landscape of
ML models for PROTAC design: while early work focused
primarily on 2D representations or simplied 3D information,
all work we surveyed from the past two years involved the
incorporation of more complex 3D data. We don't believe this
change is due solely to advances in computing hardware and
soware. Rather, models capable of handling 3D data offer
2172 | Digital Discovery, 2024, 3, 2158–2176
a superior capability to capture the interplay of molecular
shapes and complex spatial arrangements especially relevant in
PROTAC function.

Another big challenge with PROTAC design is getting them
into the cell.59 As they depend on the proteasome for degrading
their target proteins, PROTACs can only be used to target
proteins found in the cytosol or with cytosolic domains (for
membrane proteins), thus excluding as targets any proteins
found outside the cell. According to the Human Protein Atlas,
∼25% of all protein-coding human genes have been shown to
encode proteins that localize to the cytosol and its substruc-
tures,132 though this estimate does not include proteins that
transiently reside in the cytosol. How to improve cellular
permeability in PROTACs is thus an active area of research, as it
imposes hard constraints on their efficacy. Notwithstanding,
exactly which mechanism PROTACs use for entering the cell is
not fully understood and may very well vary depending on the
specic molecule and cell type, adding another layer of
complexity to the task of cell permeability prediction.

To overcome the many challenges facing de novo PROTAC
design, future ML methods must place a greater emphasis on
accurately modeling the 3D structures of PROTACs and the cor-
responding ternary complexes they form. This could involve the
development of molecular dynamics or physics-based
approaches that leverage ML to simulate important molecular
interactions and conformational changes at a coarse-grained or
even atomistic level, and it could also involve experimental
advances that allow us to better isolate and characterize these
complexes, possibly with the assistance of active learning or other
ML-driven strategies. Scientists leveraging ML have undeniably
driven many recent breakthroughs in protein structure predic-
tion133 and conditional protein structure generation.134 Perhaps
it's time to apply similar guiding principles to PROTAC engi-
neering (e.g., systematic data collection and accessibility, better
algorithms harnessing biological knowledge), and see what
breakthroughs we can achieve in this domain.

5 Conclusion

PROTACs differ fundamentally from small-molecule drugs
(SMDs) in their mechanism of action. SMDs such as inhibitors
typically function by blocking a protein's active site and thus its
activity, whereas PROTACs instead carry out a complicated
dance inside the cell, which, if performed correctly, will lead to
the degradation of the target protein. This means that rather
than simply inhibiting a protein's function, a PROTAC removes
it from the cell. Notably, it is not consumed in the process,
which means it can go on to cause the degradation of many
other copies of the target protein before it is metabolized and/or
excreted. This can be more effective in cases where simple
inhibition of activity is insufficient for a therapeutic effect, as is
the case in many diseases lacking effective rst-line treatments,
including many cancers. PROTACs offer an alternative pathway
to drugging otherwise undruggable proteins in the cytosol.

In this comprehensive review, we have highlighted the
signicant impact of ML on PROTAC design. The complexities
involved in PROTACs make traditional ML in the context of
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00177j


Review Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
Se

pt
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 2

/1
1/

20
26

 1
1:

55
:2

5 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
FBDD less effective. These complexities include the unique
mechanism of action of PROTACs, the delicate spatial cong-
uration required for effective protein degradation, and the need
for favorable PK proles for drug-like compounds, which are
not adequately captured by models designed for small molec-
ular fragments. Advanced ML techniques, such as generative
models tailored to PROTAC peculiarities offer promising solu-
tions for optimizing PROTAC design.

In the hope of spurring more research in what we view as
a hugely impactful but formidable research direction, we have
prepared this comprehensive review on ML for PROTAC design.
We hope that this review and the insights described in it serve
as a comprehensive guide to researchers looking to apply their
deep ML knowledge to the design of an exciting “new” thera-
peutic modality, or conversely, to enable biologists to venture
into the rewarding world of deep generative models. The
synergy between ML and PROTAC design holds immense
potential, and we encourage further research in this pioneering
domain.
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