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ine learning strategy for natural
products taxonomical classification and structural
insights†

Qisong Xu, a Alan K. X. Tan, a Liangfeng Guo,a Yee Hwee Lim, ab

Dillon W. P. Tay *a and Shi Jun Ang *acd

Taxonomical classification of natural products (NPs) can assist in genomic and phylogenetic analysis of

source organisms and facilitate streamlining of bioprospecting efforts. Here, a composite machine

learning strategy marrying graph convolutional neural networks (GCNNs) and eXteme Gradient boosting

(XGB) is proposed and validated for taxonomical classification of NPs in five kingdoms (Animalia, Bacteria,

Chromista, Fungi, and Plantae). Our composite model, trained on 133 092 NPs from the LOTUS

database, achieved five-fold cross-validated classification accuracy of 97.4%. When employed to classify

out-of-sample NPs from the NP Atlas database, accuracies of 82.8% for bacteria and 86.6% for fungi

were obtained. Dimensionality-reduced representations of the molecular embeddings from our

composite model revealed distinct clusters of NPs that suggest a basis for enhanced classification

performance. The top critical substructures from the NPs of each kingdom were also identified and

compared to provide insights on structure–taxonomy relationships. Overall, this study showcases the

potential of composite machine learning models for robust taxonomical classification of NPs, which can

streamline discovery of NPs.
1 Introduction

Natural products (NPs) are synthesized by biological organisms1

in response to environmental stimuli for their adaptation,
interaction, and use in chemical warfare throughout nature.2–4

Due to their rich bioactivity, NPs have been employed as agro-
chemicals,5 food preservatives,6,7 cosmetics,8 and most notably,
as pharmaceuticals9 where approximately 80% of antibiotics are
NP-derived.10 Recent developments in articial intelligence (AI)
offer unprecedented opportunities to investigate, classify, and
characterize NPs.11 Some examples of these include: (1) differ-
entiating between NP and non-NP compounds,12 (2) classifying
terrestrial and marine NPs,13 (3) visualizing NP chemical space
via generative topographic maps,14 and (4) taxonomically
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classifying NPs.15,16 In particular, taxonomical classication of
NPs can facilitate bioprospecting efforts by providing insights
on taxonomic groups producing natural products with inter-
esting bioactivity, thus narrowing investigations to those
organisms with shared evolutionary histories.17 Some examples
include: identifying taxonomic groups that produce drug-like
molecular scaffolds18 to guide search efforts for new thera-
peutic compounds or facilitating the search for natural pesti-
cides19 and herbicides20 by focusing on plant or microbial
species with similar defensive mechanisms. However, current
capabilities21 only cover three kingdoms (Plantae, Bacteria, and
Fungi) which limits the utility of such classications. Expand-
ing to include more kingdoms would enable more precise and
efficient bioprospecting with greater coverage. The convergence
of two factors – new advancements in machine learning algo-
rithms22 capable of more effectively tackling this challenge, and
the availability of larger curated datasets,23 makes it an oppor-
tune time to undertake this work. Here, we demonstrate
a composite machine learning strategy to expand taxonomical
classication of NPs to encompass the ve kingdoms of Plantae,
Bacteria, Fungi, Animalia, and Chromista24 (Fig. 1).

Graph convolutional neural networks (GCNNs)22,27,28 are rst
employed to effectively extract key structural features of NPs as
molecular ngerprints that are then used as the input for
traditional machine learning algorithms29 like Support Vector
Machines (SVMs)30 or eXtreme Gradient Boosting (XGB).31 The
combination of molecular ngerprints generated by GCNNs
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Previous studies12,13,21,25,26 have focused on substructure and
atom-pair information to predict up to three natural product (NP)
kingdoms. In this work, composite machine learning models are
developed taxonomical classification of NPs in up to five different
kingdoms.
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View Article Online
and XGB yielded the most robust classication models (97.4%
balanced accuracy), providing improvements of ∼15% in
balanced accuracy over incumbent model architectures.21 Our
composite models could also be used to characterize complex
molecular targets32 or molecules craed through generative
chemistry.33
Fig. 3 Distribution of non-isomeric SMILES in the LOTUS database. (A)
Distribution of non-isomeric SMILES by number of kingdoms and (B)
kingdom distribution of non-isomeric SMILES belonging to only
a single kingdom.
2 Materials and methods
2.1 Dataset preparation

An open-source and well-annotated database of natural prod-
ucts from the LOTUS initiative was utilized.23 This involved an
original dataset (LOTUS version from February 2021) consisting
of 276 518 NPs retrieved from the official LOTUS website
(https://lotus.naturalproducts.net/download). The SMILES
(Simplied Molecular Input Line Entry System)34 of NPs were
rst canonicalized, giving rise to 276 499 unique isomeric
Fig. 2 Distribution of isomeric SMILES in the LOTUS database. (A)
Distribution of isomeric SMILES by number of kingdoms, and (B)
kingdom distribution of isomeric SMILES belonging to only a single
kingdom.

© 2024 The Author(s). Published by the Royal Society of Chemistry
SMILES that illustrate the diversity of NPs with varying
stereochemistry. Seven kingdoms were identied from the
annotations of the original LOTUS dataset: Animalia, Archaea,
Bacteria, Chromista, Fungi, Plantae, and Protozoa. 266 663
isomeric SMILES (96.44% of the original 276 499 isomeric
SMILES) only held a single kingdom label (Fig. 2A). A detailed
breakdown of the 266 663 single kingdom isomeric SMILES
showed that the largest population of characterized NPs
originated from Plantae, followed by Fungi, Bacteria, and
Animalia kingdoms (Fig. 2B).

Removing isomeric information from the 266 663 single
kingdom isomeric SMILES reduced them to 133 876 unique
non-isomeric SMILES (Fig. 3A) of which 133 233 (99.52% out of
133 876) hold single-kingdom labels. This suggests that despite
the presence of stereochemistry, different stereoisomers of the
same non-isomeric SMILES originate mostly from the same
kingdom. Similarly, the kingdom distribution for the 133 233
non-isomeric SMILES is also dominated by NPs from the
Plantae kingdom (Fig. 3B). The nal curated dataset for multi-
class classication and structural analysis comprised of SMILES
from the top ve kingdoms (Animalia, Bacteria, Chromista,
Fungi, and Plantae), totalling 133 092 unique non-isomeric
entries, as the kingdoms of Protozoa and Archaea each
contributed less than 1% to the dataset.

Subsequent machine learning models were trained on these
133 092 unique, single kingdom label, non-isomeric SMILES for
multiclass classication to ve kingdoms (Animalia, Bacteria,
Chromista, Fungi, and Plantae). It is important to note the limi-
tation thatmodels trained on this non-isomeric SMILES dataset do
not consider chirality information when performing taxonomical
classication. Addressing this limitation and incorporating
Digital Discovery, 2024, 3, 2192–2200 | 2193
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View Article Online
chirality and multiple kingdom labels into future models repre-
sents a possible avenue for further research, potentially further
enhancing the accuracy of NP taxonomical classication.
2.2 Multiclass classication

A two-step composite method of machine learning algorithms
was considered for multiclass classication. First, a GCNN
approach employing directed message-passing neural networks
(D-MPNN) and feed-forward neural network (FFNN) where non-
isomeric NP SMILES were utilized as inputs (Fig. 4).28 The D-
MPNN consists of a message passing phase that transmits
atomic and bond features to construct the molecular embed-
ding of an NP, followed by a readout phase of the molecular
embedding via FFNN to predict its kingdom category.22 Addi-
tionally, the use of seven different machine learning (ML)
classiers were also investigated using three types of nger-
prints, namely, MAP4 ngerprints,25 MPN ngerprints (from D-
MPNN) and last_FFN ngerprints (from the last layer of the
FFNN) to develop composite ML models. MPN and last_FFN
ngerprints were derived from a GCNN model trained on the
entire curated dataset (133 092 non-isomeric SMILES). The
dimension of the MAP4 ngerprints was 1,024, while both MPN
and last_FFN ngerprints have dimensions of 1,100, which is
the default in Chemprop. The seven ML classier algorithms
explored include Gaussian Naive Bayes (NB), K-Nearest Neigh-
bors (KNN), Quadratic Discriminant Analysis (QDA), Random
Forest (RF), Light Gradient Boosting Machine (LGBM), eXtreme
Gradient Boosting (XGB), and Support Vector Machine (SVM)
with linear kernel. The hyperparameters of the GCNN models
were optimized and the molecular ngerprints calculated using
the respective chemprop.hyperparameter_optimization and
chemprop.ngerprint objects from the Chemprop package.28

During the optimization of the GCNN models, a total of 200
epochs with batch size of 50 were found to be sufficient. On the
other hand, the seven ML models were trained using the scikit-
learn package.29 For all learning algorithms, a ve-fold cross
validation via stratied sampling of the ve kingdoms was
implemented to evaluate the multiclass classication perfor-
mance of the training and validation set. The performance of all
multiclass classication models were evaluated by balanced
accuracy, Matthews correlation coefficient (MCC), and F1 score.
The mean and standard errors of the metrics from ve-fold
cross validation were also used to compare the classication
performance. The classication metrics were calculated based
on the counts of true positive (TP), false positive (FP), true
negative (TN), false negative (FN), as follows:
Fig. 4 Using the molecular structure of 6-methoxyisatin as an
example, the generated MAP4, MPN and last_FFN fingerprints are
illustrated.22,25

2194 | Digital Discovery, 2024, 3, 2192–2200
Balanced accuracy ¼
TP

TPþ FP
þ TN

TNþ FN
2

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN

Matthews correlation coefficientðMCCÞ

¼ TP� TN� FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞp

Precision ¼ TP

TPþ FP

Recall ¼ TP

TPþ FN

F1 score ¼ 2� ðPrecision�RecallÞ
ðPrecisionþRecallÞ

2.3 Structural analysis

In addition to optimizing multiclass classication models, the
molecular embeddings were also analyzed to verify the validity of
the trained models. Aer ve-fold cross validation of all models,
a nal GCNN model was trained using the full dataset of 133 092
non-isomeric SMILES. Through t-distributed stochastic neighbor
embedding (t-SNE), the high-dimensional MAP4 ngerprints as
well as MPN and last_FFN ngerprints from the nal GCNN
model were dimensionally reduced and elucidated. A series of four
different perplexity parameters [102, 103, 104 and 105] were
explored to ensure impartiality when visualizing the two-
dimensional (2D) projection clustering of NPs from different
kingdoms. To evaluate the performance of t-SNE for different
perplexity values, the Kullback–Leibler (KL) divergence between
the original and tted distribution of molecular ngerprints was
assessed while the separation among clusters was quantied by
Davies–Bouldin (DB) score. Molecular embeddings and their
evaluation were performed using the t-SNE and DB_score objects
in scikit-learn package.29

Finally, we analyzed the substructures of the NPmolecules to
identify critical structural fragments and their combinations
that are characteristic of their kingdom source. The Monte
Carlo Tree Search was employed to determine critical
substructures using the chemprop.interpret object in Chemprop
package.28 By analyzing the Bemis-Murcko scaffolds of NPs,35

the top critical scaffolds from each kingdom were identied.36

3 Results and discussion

A GCNN model was trained on the curated 133 092 non-
isomeric SMILES dataset to perform taxonomical classica-
tion of NPs from their structures. Subsequently, different ML
models andmolecular ngerprints were investigated to evaluate
© 2024 The Author(s). Published by the Royal Society of Chemistry
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View Article Online
their inuence on multiclass classication performance. To
assess the transferability of the developed classication models,
the best models were applied to NP taxonomical classication
beyond the training set. Finally, we structurally analyzed NPs
through dimensionally reduced molecular embeddings to
identify and compare critical substructures of NPs in each
kingdom.
3.1 Multiclass classication

3.1.1 Overall classication performance. The overall clas-
sication performance of the different algorithms is compared
in terms of balanced accuracy and MCC (see Table S1† for
training results and Table 1 for validation results). The GCNN
model trained to classify NPs into ve different kingdoms gave
a balanced accuracy of 85.6% and MCC of 87.3% on the vali-
dation set. Comparatively, the literature SVM model architec-
ture using MAP4 ngerprints trained on the 133 092 non-
isomeric SMILES dataset gave a slightly poorer balanced accu-
racy of 82.2% and MCC of 87.0% for the validation set.21

Pursuing further improvement, we explored additional ML
models to supplement the prediction capabilities of simple
GCNN models for more accurate taxonomical classication.

Seven ML algorithms (NB, QDA, KNN, RF, LGBM, XGB, and
SVM) based on three different types of ngerprints (MAP4,
MPN, and last_FFN) were further explored as a composite
strategy to supplement GCNN classication capability (Tables 1
and S1†). Classication models developed from MPN and
last_FFN ngerprints provided better classication perfor-
mance than those constructed from MAP4 ngerprints. This is
evident from the high balanced accuracy and MCC in training
and validation for all algorithms using MPN and last_FFN
ngerprints. Unlike MAP4 ngerprints that comprise of circular
substructure and atom-pair information,25 both MPN and
last_FFN ngerprints are based on more detailed, information-
rich graph representations of NPs suitable for accurate classi-
cation (Fig. 4). Furthermore, ML models based on last_FFN
ngerprints offer the best classication performance that could
potentially be attributed to its feed-forward neural network that
Table 1 Comparison of Balanced Accuracy (BA) and MCC of simple GC
malia, Bacteria, Chromista, Fungi, and Plantae) using different molecul
validation set results from stratified 5-fold cross validationa

Algorithm

MAP4 GCNN

BA MCC BA

GCNN — — —
NB 20.0 � 0.0 0.0 � 0.0 30.8 �
QDA 29.4 � 0.1 12.8 � 0.4 63.1 �
KNN 54.5 � 4.5 59.8 � 4.4 82.5 �
RF 58.1 � 0.9 67.6 � 0.2 84.8 �
LGBM 68.3 � 0.8 72.5 � 0.3 90.2 �
XGB 72.1 � 0.9 76.7 � 0.3 91.1 �
SVM 82.2 � 0.5 87.0 � 0.3 90.9 �
a BA = Balanced Accuracy. MCC = Matthews Correlation Coefficient. G
Bayesian. QDA = Quadratic Discriminant Analysis. RF = Random Fores
Machine. XGB = eXtreme Gradient Boosting. Error of 1 standard deviatio

© 2024 The Author(s). Published by the Royal Society of Chemistry
facilitates additional learning drawn from MPN molecular
embeddings.22

The classication performance of NPs also depended on the
nature of the ML algorithm. For all three types of ngerprints,
classication models based on NB and QDA generally performed
poorly, as observed from their low accuracies and MCC scores
(Tables S1† and 1). This may be due to the probabilistic nature of
NB and QDA, which is sensitive to the kingdom populations and
skew higher probabilities toward the major class.37,38 For KNN,
the balanced accuracy and MCC improved for all three nger-
prints, together with comparable classication performance for
both training and validation sets. RF and SVM are two high-
performing models that provided signicant improvements in
both classication accuracy and precision. This is because RF
combines results from multiple trees to describe complex deci-
sion boundaries,39 while SVM is resilient to outliers by identi-
fying optimal hyperplanes that maximize class separation.30

Finally, ensemble learning strategies involving tree-based
models such as LGBM40 and XGB31 demonstrated good perfor-
mance, in-line with their ability to handle imbalanced classes
well and prevent overtting with regularization. To this end, the
prediction performance of the GCNN-XGB composite model
developed based on last_FFN ngerprints signicantly out-
performed those from simple GCNN models and the MAP4-SVM
model from previous studies (Fig. 5).21

3.1.2 Classication performance for each kingdom.
Balanced accuracies and F1 scores from the GCNNmodel ranged
between 80%-90% for each kingdom (Fig. S4†). This performance
was comparable to those of previous studies for bacteria (89%),
fungi (89%) and plants (94%).21 It is also noteworthy that the
variation in classication performance for each kingdom gener-
ally increases from Chromista to Plantae, mirroring the order of
increasing NP populations from chromists to plants present in
the curated dataset. This trend reinforces the importance of data
quantity to enhance machine learning model performance to
provide more accurate assignments of kingdom origins.

In addition, the inuence of traditional ML algorithms and
molecular ngerprints on individual classication performance
NN versus composite models to predict five different kingdoms (Ani-
ar fingerprints and machine learning algorithms. Values reported are

-MPN GCNN-last_FFN

MCC BA MCC

— 85.6 � 0.8 87.3 � 0.5
0.4 39.0 � 0.7 67.5 � 0.8 83.9 � 0.5
0.3 79.6 � 0.4 96.5 � 0.4 96.5 � 0.1
0.9 87.0 � 0.6 93.9 � 0.6 96.8 � 0.1
0.9 91.5 � 0.3 96.8 � 0.5 97.8 � 0.1
0.8 93.5 � 0.2 97.2 � 0.3 97.9 � 0.1
0.6 93.8 � 0.1 97.4 � 0.2 97.9 � 0.1
0.5 92.4 � 0.2 97.1 � 0.3 97.9 � 0.1

CNN = Graph Convolutional Neural Network. NB = Gaussian Näıve
t. SVM = Support Vector Machine. LGBM = Light Gradient-Boosting
n shown.

Digital Discovery, 2024, 3, 2192–2200 | 2195
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Fig. 5 Comparison of overall performance of SVM classification
model using MAP4 fingerprints from Capecchi and Reymond21 and
current work (GCNN and GCNN-SVM developed using last_FFN
fingerprints).
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for each kingdom is reported in detail (Fig. S5–S10†). High
accuracies and F1 scores were observed for each kingdom when
ML models were constructed with MPN and last_FFN nger-
prints, demonstrating the advantages of MPN and last_FFN
ngerprints over MAP4 ngerprints. In terms of ML algorithms,
NB and QDA models performed poorly in classication (low
accuracy and F1 score) for most kingdoms. The classication
accuracies and F1 scores decrease from Plantae to Chromista,
again mirroring their population sizes in the dataset. On the
other hand, SVM30 classied accurately for each kingdom
despite the differences in kingdom populations. This is because
SVMs providemultiple class separation despite the difference in
occurrences. RF39 demonstrated excellent training classication
performance across different kingdoms due to its ability to
handle complex, high-dimensional data. Finally, ensemble
learning strategies involving tree-based models such as LGBM40

and XGB31 also performed well due to their leaf-wise growth
strategy focusing on the most signicant splits and in-built
regularization respectively. Overall, the composite strategy of
layering XGB on top of last_FFN ngerprints provided the best
classication model for the accurate taxonomical classication
of NPs.

3.1.3 Database screening. To evaluate the transferability of
trained models, we further employed the pre-trained GCNN,
SVM, and composite models to screen the NP Atlas database
Table 2 Comparison of classification performance for 13 136 NP Atlas t

Model Molecular ngerprint

SVM MAP4
GCNN last_FFN
GCNN-SVM MPN
GCNN-SVM last_FFN
GCNN-LGBM MPN
GCNN-LGBM last_FFN
GCNN-XGB MPN
GCNN-XGB last_FFN

2196 | Digital Discovery, 2024, 3, 2192–2200
(NP Atlas v2023_06 from https://www.npatlas.org/download).41

The NP Atlas database consists of NPs that originate from the
kingdoms of Bacteria and Fungi. Out of the 33 372 NPs
present, 13 136 NPs (7446 from Bacteria and 5690 from Fungi)
are not found in the LOTUS database used for training our
models. GCNN-SVM, GCNN-LGBM, and GCNN-XGB composite
models with comparable performance were evaluated on the NP
Atlas test set.

The composite GCNN-XGB model performed markedly
better at classication compared to simple GCNN and
composite GCNN-MPN models (Table 2). However, it trades
bacterial NP classication accuracy for fungal NP accuracy when
compared to the literature benchmark SVM model using MAP4
molecular ngerprints.
3.2 Structural analysis of NPs

To verify the remarkable classication performance of the
developed GCNN and composite ML models, structural anal-
yses of MAP4, MPN and last_FFN ngerprints were performed
through the t-SNE dimensionality reduction algorithm. Kull-
back–Leibler (KL) divergence values for each of the molecular
ngerprints decrease with perplexity value (Fig. S11a†). For all
explored perplexity values however, last_FFN ngerprints
possessed the lowest Davies–Bouldin (DB) score amongst all
other ngerprints (Fig. S11b†) and provided the most distinct
kingdom clusters. Using the perplexity value of 104 as
a comparison, MAP4 ngerprints displayed NPs with highly
overlapping structural features (Fig. 6A), which led to the poor
classication performance observed in the previous section. On
the other hand, MPN ngerprints exhibited substantial sepa-
ration in the molecular features of NPs from different kingdoms
(Fig. 6B), as the MPN ngerprints describe the structural simi-
larity of NPs based on its chemical graph representation.
Employing FFNs to extract additional learning from MPN
ngerprints yielded last_FFN ngerprints that facilitated the
best NP taxonomical classication with well-separated clusters
of NPs belonging to their respective kingdoms (Fig. 6C).

Next, the critical substructures in NPs contributing to the
classication of kingdom origins were determined. A Monte
Carlo Tree Search (MCTS) was used to identify critical chemical
fragments in the molecular structures of NPs. The top ten crit-
ical substructures deemed by the trained GCNN model as the
most informative for NP taxonomical classication are listed for
est set

Bacterial NP accuracy (%) Fungal NP accuracy (%)

89.9 81.6
81.1 86.0
80.2 82.9
83.2 86.5
82.7 82.9
82.7 86.3
84.0 82.6
82.8 86.6

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Visualization of the 2D projection using t-SNE (perplexity value of 104) using (A) MAP4, (B) MPN and (C) last_FFN fingerprints from the final
trained GCNN model.

Fig. 7 Combinations of critical substructures identified in the five
kingdoms of (A) Plantae, (B) Fungi (C) Chromista, (D) Bacteria, and (E)
Animalia.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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each kingdom (Fig. 7). Critical chemical substructures were
identied as possessing a rationale score of more than 0.8,
calculated from the chemprop.interpret object in Chemprop
package.28

Interestingly, the identied NP scaffolds also share struc-
tural similarities with essential starting fragments for drug
discovery.42 The critical substructures for NPs in Plantae, Fungi
and Chromista mainly consist of oxygen-based heterocycles
(Fig. 7A–C). For plant NPs, the critical substructures tend to be
simpler in nature, including furan-like43 (A5, A9), pyran-like44

(A3, A4, A8), and lactones45 (A6). In fungal NPs, molecular
systems of fused rings (B5, B8) and linked rings (B10) were
found to be critical. For chromists, the critical substructures
identied in their NPs tended toward more complex fused ring
systems (C3, C7, C8) and macrocycles (C2, C9). On the other
hand, bacterial NPs typically consist of nitrogen-based hetero-
cycles,46 including pyridine (D6), thiazole (D5), phenazine (D2)
and phenoxazine-like moieties (D10) (Fig. 7D), with a few crit-
ical lactone fragments also identied (D4, D7, D9). Nitrogen-
fused heterocycles such as pyrrole (E5) and indole (E3) were
found to be important for critical substructures in animal NPs
(Fig. 7E),47 on top of three- (E9) and four-fused (E1, E7, E9) ring
systems resembling steroids.48 The benzene ring is a highly
common and critical substructure across all ve kingdoms (A1,
B2, C1, D1 and E2). Owing to the high structural stability
conferred by resonance, the planar aromatic rings offer stable
building blocks that are ubiquitously found in nature. As frag-
ments such as benzene and furan (A9, E8) are shared between
kingdoms, individual fragments cannot inform taxonomical
classication. Instead, it is the unique combination and
connectivity of these fragments that drive differentiation
between kingdoms. This underscores the importance of
analyzing the broader structural context of NP structures via the
right molecular ngerprinting technique rather than relying
solely on the presence of individual substructures. All of the
substructures described above are critical to the synthesis of
stable NPs with differing levels of structural complexity.2,49
Digital Discovery, 2024, 3, 2192–2200 | 2197
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Structural analyses such as these provide valuable insights
into the key fragments and potential fragment combinations
characteristic of each kingdom, supporting in silico bio-
prospecting efforts to systematically identify the biochemical
origins of novel NPs.17 Furthermore, the identied relationships
between critical fragments and the corresponding kingdoms
from which the NPs originate can prompt future genomic and
phylogenetic analyses of different organisms to reveal the
fundamental biosynthesis pathways of NPs occurring in
nature.50 Overall, by leveraging on GCNNs, the structural
features of NPs are effectively captured through molecular
graphs, facilitating the formation of well-separated clusters
corresponding to the ve kingdoms. Identifying these critical
substructures also enhances the explainability and interpret-
ability of our composite machine learning models, offering
a clearer understanding of how they utilize structural infor-
mation for taxonomical classication.
4 Conclusion

Using a composite machine learning strategy, we optimized
a multiclass classication model for taxonomical classication
of NPs from their structures. By analyzing the LOTUS database,
we determined the kingdom-specic critical substructures of
NPs for ve kingdoms (Animalia, Bacteria, Chromista, Fungi,
and Plantae). GCNN models trained on 133 092 non-isomeric
SMILES across these ve kingdoms were found to classify
with a slightly superior performance to those of previous
studies. Notably, the classication performance within each
kingdom were found to increase with NP populations (i.e. data
quantity). Three types of molecular ngerprints (MAP4, MPN,
and last_FFN) were explored using seven different ML algo-
rithms (NB, KNN, QDA, RF, LGBM, XGB, and SVM). The
composite GCNN-XGB model merging last_FFN ngerprints
with XGB yielded the best classication performance of 97.4%
balanced accuracy on the validation set. When extended to
classifying NPs outside of the training set from the NP Atlas
database, the composite GCNN-XGB model achieved accuracies
of 82.8% for Bacteria and 86.6% for Fungi. t-SNE embeddings of
the three different molecular ngerprints revealed that
last_FFN ngerprints gave the most well-separated clusters of
NPs that resulted in remarkable classication performance.
Finally, the top critical substructures characteristic for NPs in
each kingdomwere identied and compared to provide insights
to structure–taxonomy relationships. Overall, this study
demonstrates the potential of a composite machine learning
strategy for taxonomically classifying NPs and to provide
structural insights. Adopting this approach not only accelerates
the classication of NP origins to screen for novel bioactive
candidates but can also highlight kingdom-unique structural
features of NPs to guide future efforts in virtual screening for
bioprospecting as well as genomic and phylogenetic analyses of
different organisms. Future avenues to enhance taxonomy
classication include adopting advanced strategies such as
hybrid data-based learning,51 multi-level learning,52 or meta-
learning53 to further extend the generalizability of trained
2198 | Digital Discovery, 2024, 3, 2192–2200
models across various dimensions, such as molecular size,
functional groups, and structural complexity.
Code availability

The code used to train and evaluate composite models for tax-
onomical classication of natural products is available from
GitHub at https://github.com/SIBERanalytics/NPTaxonomy.
Data availability

The dataset used in this work to develop taxonomical classi-
cation of NPs was acquired from the LOTUS initiative (https://
lotus.naturalproducts.net/download).23 Processed LOTUS
SMILES dataset,54 MPN and last_FFN ngerprints55 are
available in (.csv) format on gshare. The screening dataset
was obtained from the NP Atlas database (NP Atlas v2023_06
from https://www.npatlas.org/download).41 Processed NP Atlas
MPN ngerprints, and last_FFN ngerprints56 available in
(.csv) format on gshare. Deep learning of NPs and Monte
Carlo Tree Search were performed using the Chemprop
package in python.28 The machine learning of ngerprints,
calculation of t-distributed stochastic neighbor embedding,
Kullback–Leibler divergence and Davies–Bouldin score were
achieved using the scikit-learn package in python.29 Pre-trained
composite GCNN-SVM (MPN ngerprints)57 and GCNN-SVM
(last_FFN ngerprints)58 classication models for NP
taxonomical classication can be downloaded from gshare.
Pre-trained composite GCNN-LGBM and GCNN-XGB
classication models using both MPN and last_FFN
ngerprints are available from GitHub at https://github.com/
SIBERanalytics/NPTaxonomy.
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