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Taxonomical classification of natural products (NPs) can assist in genomic and phylogenetic analysis of
source organisms and facilitate streamlining of bioprospecting efforts. Here, a composite machine
learning strategy marrying graph convolutional neural networks (GCNNs) and eXteme Gradient boosting
(XGB) is proposed and validated for taxonomical classification of NPs in five kingdoms (Animalia, Bacteria,
Chromista, Fungi, and Plantae). Our composite model, trained on 133092 NPs from the LOTUS
database, achieved five-fold cross-validated classification accuracy of 97.4%. When employed to classify
out-of-sample NPs from the NP Atlas database, accuracies of 82.8% for bacteria and 86.6% for fungi
were obtained. Dimensionality-reduced representations of the molecular embeddings from our

composite model revealed distinct clusters of NPs that suggest a basis for enhanced classification
Received 14th June 2024 f The top critical substructures from the NPs of each kingd lso identified and
Accepted 23rd September 2024 performance. The top critical substructures from the NPs of each kingdom were also identified an
compared to provide insights on structure—taxonomy relationships. Overall, this study showcases the

DOI: 10.1038/d4dd00155a potential of composite machine learning models for robust taxonomical classification of NPs, which can
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1 Introduction

Natural products (NPs) are synthesized by biological organisms*
in response to environmental stimuli for their adaptation,
interaction, and use in chemical warfare throughout nature.>**
Due to their rich bioactivity, NPs have been employed as agro-
chemicals,® food preservatives,*” cosmetics,® and most notably,
as pharmaceuticals® where approximately 80% of antibiotics are
NP-derived.'® Recent developments in artificial intelligence (AI)
offer unprecedented opportunities to investigate, classify, and
characterize NPs."* Some examples of these include: (1) differ-
entiating between NP and non-NP compounds,'* (2) classifying
terrestrial and marine NPs,* (3) visualizing NP chemical space
via generative topographic maps,” and (4) taxonomically
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classifying NPs.'>'® In particular, taxonomical classification of
NPs can facilitate bioprospecting efforts by providing insights
on taxonomic groups producing natural products with inter-
esting bioactivity, thus narrowing investigations to those
organisms with shared evolutionary histories."” Some examples
include: identifying taxonomic groups that produce drug-like
molecular scaffolds™ to guide search efforts for new thera-
peutic compounds or facilitating the search for natural pesti-
cides™ and herbicides* by focusing on plant or microbial
species with similar defensive mechanisms. However, current
capabilities®* only cover three kingdoms (Plantae, Bacteria, and
Fungi) which limits the utility of such classifications. Expand-
ing to include more kingdoms would enable more precise and
efficient bioprospecting with greater coverage. The convergence
of two factors — new advancements in machine learning algo-
rithms?? capable of more effectively tackling this challenge, and
the availability of larger curated datasets,> makes it an oppor-
tune time to undertake this work. Here, we demonstrate
a composite machine learning strategy to expand taxonomical
classification of NPs to encompass the five kingdoms of Plantae,
Bacteria, Fungi, Animalia, and Chromista* (Fig. 1).

Graph convolutional neural networks (GCNNs)**?”?® are first
employed to effectively extract key structural features of NPs as
molecular fingerprints that are then used as the input for
traditional machine learning algorithms® like Support Vector
Machines (SVMs)* or eXtreme Gradient Boosting (XGB).** The
combination of molecular fingerprints generated by GCNNs

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Previous studies!***?2526 have focused on substructure and
atom-pair information to predict up to three natural product (NP)
kingdoms. In this work, composite machine learning models are
developed taxonomical classification of NPs in up to five different
kingdomes.

and XGB yielded the most robust classification models (97.4%
balanced accuracy), providing improvements of ~15% in
balanced accuracy over incumbent model architectures.* Our
composite models could also be used to characterize complex
molecular targets®* or molecules crafted through generative
chemistry.*

2 Materials and methods
2.1 Dataset preparation

An open-source and well-annotated database of natural prod-
ucts from the LOTUS initiative was utilized.?® This involved an
original dataset (LOTUS version from February 2021) consisting
of 276518 NPs retrieved from the official LOTUS website
(https://lotus.naturalproducts.net/download). The SMILES
(Simplified Molecular Input Line Entry System)** of NPs were
first canonicalized, giving rise to 276499 unique isomeric
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Fig. 2 Distribution of isomeric SMILES in the LOTUS database. (A)
Distribution of isomeric SMILES by number of kingdoms, and (B)
kingdom distribution of isomeric SMILES belonging to only a single
kingdom.
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Fig. 3 Distribution of non-isomeric SMILES in the LOTUS database. (A)
Distribution of non-isomeric SMILES by number of kingdoms and (B)
kingdom distribution of non-isomeric SMILES belonging to only
a single kingdom.

SMILES that illustrate the diversity of NPs with varying
stereochemistry. Seven kingdoms were identified from the
annotations of the original LOTUS dataset: Animalia, Archaea,
Bacteria, Chromista, Fungi, Plantae, and Protozoa. 266 663
isomeric SMILES (96.44% of the original 276499 isomeric
SMILES) only held a single kingdom label (Fig. 2A). A detailed
breakdown of the 266 663 single kingdom isomeric SMILES
showed that the largest population of characterized NPs
originated from Plantae, followed by Fungi, Bacteria, and
Animalia kingdoms (Fig. 2B).

Removing isomeric information from the 266 663 single
kingdom isomeric SMILES reduced them to 133 876 unique
non-isomeric SMILES (Fig. 3A) of which 133 233 (99.52% out of
133 876) hold single-kingdom labels. This suggests that despite
the presence of stereochemistry, different stereoisomers of the
same non-isomeric SMILES originate mostly from the same
kingdom. Similarly, the kingdom distribution for the 133 233
non-isomeric SMILES is also dominated by NPs from the
Plantae kingdom (Fig. 3B). The final curated dataset for multi-
class classification and structural analysis comprised of SMILES
from the top five kingdoms (Animalia, Bacteria, Chromista,
Fungi, and Plantae), totalling 133 092 unique non-isomeric
entries, as the kingdoms of Protozoa and Archaea each
contributed less than 1% to the dataset.

Subsequent machine learning models were trained on these
133 092 unique, single kingdom label, non-isomeric SMILES for
multiclass classification to five kingdoms (Animalia, Bacteria,
Chromista, Fungi, and Plantae). It is important to note the limi-
tation that models trained on this non-isomeric SMILES dataset do
not consider chirality information when performing taxonomical
classification. Addressing this limitation and incorporating

Digital Discovery, 2024, 3, 2192-2200 | 2193
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chirality and multiple kingdom labels into future models repre-
sents a possible avenue for further research, potentially further
enhancing the accuracy of NP taxonomical classification.

2.2 Multiclass classification

A two-step composite method of machine learning algorithms
was considered for multiclass classification. First, a GCNN
approach employing directed message-passing neural networks
(D-MPNN) and feed-forward neural network (FFNN) where non-
isomeric NP SMILES were utilized as inputs (Fig. 4).>® The D-
MPNN consists of a message passing phase that transmits
atomic and bond features to construct the molecular embed-
ding of an NP, followed by a readout phase of the molecular
embedding via FFNN to predict its kingdom category.”” Addi-
tionally, the use of seven different machine learning (ML)
classifiers were also investigated using three types of finger-
prints, namely, MAP4 fingerprints,* MPN fingerprints (from D-
MPNN) and last_FFN fingerprints (from the last layer of the
FFNN) to develop composite ML models. MPN and last FFN
fingerprints were derived from a GCNN model trained on the
entire curated dataset (133 092 non-isomeric SMILES). The
dimension of the MAP4 fingerprints was 1,024, while both MPN
and last_FFN fingerprints have dimensions of 1,100, which is
the default in Chemprop. The seven ML classifier algorithms
explored include Gaussian Naive Bayes (NB), K-Nearest Neigh-
bors (KNN), Quadratic Discriminant Analysis (QDA), Random
Forest (RF), Light Gradient Boosting Machine (LGBM), eXtreme
Gradient Boosting (XGB), and Support Vector Machine (SVM)
with linear kernel. The hyperparameters of the GCNN models
were optimized and the molecular fingerprints calculated using
the respective chemprop.hyperparameter_optimization and
chemprop.fingerprint objects from the Chemprop package.”®
During the optimization of the GCNN models, a total of 200
epochs with batch size of 50 were found to be sufficient. On the
other hand, the seven ML models were trained using the scikit-
learn package.” For all learning algorithms, a five-fold cross
validation via stratified sampling of the five kingdoms was
implemented to evaluate the multiclass classification perfor-
mance of the training and validation set. The performance of all
multiclass classification models were evaluated by balanced
accuracy, Matthews correlation coefficient (MCC), and F1 score.
The mean and standard errors of the metrics from five-fold
cross validation were also used to compare the classification
performance. The classification metrics were calculated based
on the counts of true positive (TP), false positive (FP), true
negative (TN), false negative (FN), as follows:

Substructures and
Atom-pairs

Graph Convolutional Neural Network

Taxonomical
classification

SMILES MPN

MAP4 | last_FFN

Fig. 4 Using the molecular structure of 6-methoxyisatin as an
example, the generated MAP4, MPN and last_FFN fingerprints are
illustrated.?22>
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TP N TN
Balanced accuracy = IP + FP 5 IN+FN
Accuracy — TP + TN
Y = TP TN+ FP+ FN

Matthews correlation coefficient(MCC)
TP x TN — FP x FN
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Precision = TP
" TP+FP
TP
Recall = ——
A= TPTFEN

(Precision x Recall)

F1 =2
score X (Precision + Recall)

2.3 Structural analysis

In addition to optimizing multiclass classification models, the
molecular embeddings were also analyzed to verify the validity of
the trained models. After five-fold cross validation of all models,
a final GCNN model was trained using the full dataset of 133 092
non-isomeric SMILES. Through ¢-distributed stochastic neighbor
embedding (t-SNE), the high-dimensional MAP4 fingerprints as
well as MPN and last FFN fingerprints from the final GCNN
model were dimensionally reduced and elucidated. A series of four
different perplexity parameters [10%, 10°, 10" and 10°] were
explored to ensure impartiality when visualizing the two-
dimensional (2D) projection clustering of NPs from different
kingdoms. To evaluate the performance of ¢-SNE for different
perplexity values, the Kullback-Leibler (KL) divergence between
the original and fitted distribution of molecular fingerprints was
assessed while the separation among clusters was quantified by
Davies-Bouldin (DB) score. Molecular embeddings and their
evaluation were performed using the ¢-SNE and DB_score objects
in scikit-learn package.”

Finally, we analyzed the substructures of the NP molecules to
identify critical structural fragments and their combinations
that are characteristic of their kingdom source. The Monte
Carlo Tree Search was employed to determine critical
substructures using the chemprop.interpret object in Chemprop
package.’® By analyzing the Bemis-Murcko scaffolds of NPs,*
the top critical scaffolds from each kingdom were identified.*

3 Results and discussion

A GCNN model was trained on the curated 133 092 non-
isomeric SMILES dataset to perform taxonomical classifica-
tion of NPs from their structures. Subsequently, different ML
models and molecular fingerprints were investigated to evaluate

© 2024 The Author(s). Published by the Royal Society of Chemistry
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their influence on multiclass classification performance. To
assess the transferability of the developed classification models,
the best models were applied to NP taxonomical classification
beyond the training set. Finally, we structurally analyzed NPs
through dimensionally reduced molecular embeddings to
identify and compare critical substructures of NPs in each
kingdom.

3.1 Multiclass classification

3.1.1 Overall classification performance. The overall clas-
sification performance of the different algorithms is compared
in terms of balanced accuracy and MCC (see Table S1} for
training results and Table 1 for validation results). The GCNN
model trained to classify NPs into five different kingdoms gave
a balanced accuracy of 85.6% and MCC of 87.3% on the vali-
dation set. Comparatively, the literature SVM model architec-
ture using MAP4 fingerprints trained on the 133 092 non-
isomeric SMILES dataset gave a slightly poorer balanced accu-
racy of 82.2% and MCC of 87.0% for the validation set.*
Pursuing further improvement, we explored additional ML
models to supplement the prediction capabilities of simple
GCNN models for more accurate taxonomical classification.

Seven ML algorithms (NB, QDA, KNN, RF, LGBM, XGB, and
SVM) based on three different types of fingerprints (MAP4,
MPN, and last_FFN) were further explored as a composite
strategy to supplement GCNN classification capability (Tables 1
and S17). Classification models developed from MPN and
last_FFN fingerprints provided better classification perfor-
mance than those constructed from MAP4 fingerprints. This is
evident from the high balanced accuracy and MCC in training
and validation for all algorithms using MPN and last FFN
fingerprints. Unlike MAP4 fingerprints that comprise of circular
substructure and atom-pair information,” both MPN and
last_FFN fingerprints are based on more detailed, information-
rich graph representations of NPs suitable for accurate classi-
fication (Fig. 4). Furthermore, ML models based on last FFN
fingerprints offer the best classification performance that could
potentially be attributed to its feed-forward neural network that
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facilitates additional learning drawn from MPN molecular
embeddings.*

The classification performance of NPs also depended on the
nature of the ML algorithm. For all three types of fingerprints,
classification models based on NB and QDA generally performed
poorly, as observed from their low accuracies and MCC scores
(Tables S11 and 1). This may be due to the probabilistic nature of
NB and QDA, which is sensitive to the kingdom populations and
skew higher probabilities toward the major class.’”*® For KNN,
the balanced accuracy and MCC improved for all three finger-
prints, together with comparable classification performance for
both training and validation sets. RF and SVM are two high-
performing models that provided significant improvements in
both classification accuracy and precision. This is because RF
combines results from multiple trees to describe complex deci-
sion boundaries,* while SVM is resilient to outliers by identi-
fying optimal hyperplanes that maximize class separation.®
Finally, ensemble learning strategies involving tree-based
models such as LGBM* and XGB*' demonstrated good perfor-
mance, in-line with their ability to handle imbalanced classes
well and prevent overfitting with regularization. To this end, the
prediction performance of the GCNN-XGB composite model
developed based on last FFN fingerprints significantly out-
performed those from simple GCNN models and the MAP4-SVM
model from previous studies (Fig. 5).>*

3.1.2 Classification performance for each kingdom.
Balanced accuracies and F1 scores from the GCNN model ranged
between 80%-90% for each kingdom (Fig. S47). This performance
was comparable to those of previous studies for bacteria (89%),
fungi (89%) and plants (94%).>* It is also noteworthy that the
variation in classification performance for each kingdom gener-
ally increases from Chromista to Plantae, mirroring the order of
increasing NP populations from chromists to plants present in
the curated dataset. This trend reinforces the importance of data
quantity to enhance machine learning model performance to
provide more accurate assignments of kingdom origins.

In addition, the influence of traditional ML algorithms and
molecular fingerprints on individual classification performance

Table 1 Comparison of Balanced Accuracy (BA) and MCC of simple GCNN versus composite models to predict five different kingdoms (Ani-
malia, Bacteria, Chromista, Fungi, and Plantae) using different molecular fingerprints and machine learning algorithms. Values reported are

validation set results from stratified 5-fold cross validation®

MAP4 GCNN-MPN GCNN-last_FFN

Algorithm BA MCC BA MCC BA MCC

GCNN — — — — 85.6 +£ 0.8 87.3 £ 0.5
NB 20.0 + 0.0 0.0 + 0.0 30.8 £ 0.4 39.0 £ 0.7 67.5 £ 0.8 83.9 £ 0.5
QDA 29.4 £+ 0.1 12.8 + 0.4 63.1 £ 0.3 79.6 £ 0.4 96.5 = 0.4 96.5 £+ 0.1
KNN 54.5 + 4.5 59.8 + 4.4 82.5 + 0.9 87.0 £ 0.6 93.9 + 0.6 96.8 + 0.1
RF 58.1 £ 0.9 67.6 £ 0.2 84.8 £ 0.9 91.5 £ 0.3 96.8 £ 0.5 97.8 £ 0.1
LGBM 68.3 £ 0.8 72.5 £ 0.3 90.2 + 0.8 93.5 £ 0.2 97.2 + 0.3 97.9 + 0.1
XGB 72.1 £ 0.9 76.7 £ 0.3 91.1 £ 0.6 93.8 £ 0.1 97.4 £ 0.2 97.9 £ 0.1
SVM 82.2 £ 0.5 87.0 £ 0.3 90.9 + 0.5 92.4 +£ 0.2 97.1 £ 0.3 97.9 + 0.1

“ BA = Balanced Accuracy. MCC = Matthews Correlation Coefficient. GCNN = Graph Convolutional Neural Network. NB = Gaussian Naive
Bayesian. QDA = Quadratic Discriminant Analysis. RF = Random Forest. SVWM = Support Vector Machine. LGBM = Light Gradient-Boosting
Machine. XGB = eXtreme Gradient Boosting. Error of 1 standard deviation shown.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Comparison of overall performance of SVM classification
model using MAP4 fingerprints from Capecchi and Reymond® and
current work (GCNN and GCNN-SVM developed using last_FFN
fingerprints).

for each kingdom is reported in detail (Fig. S5-510%). High
accuracies and F1 scores were observed for each kingdom when
ML models were constructed with MPN and last_FFN finger-
prints, demonstrating the advantages of MPN and last FFN
fingerprints over MAP4 fingerprints. In terms of ML algorithms,
NB and QDA models performed poorly in classification (low
accuracy and F1 score) for most kingdoms. The classification
accuracies and F1 scores decrease from Plantae to Chromista,
again mirroring their population sizes in the dataset. On the
other hand, SVM* classified accurately for each kingdom
despite the differences in kingdom populations. This is because
SVMs provide multiple class separation despite the difference in
occurrences. RF** demonstrated excellent training classification
performance across different kingdoms due to its ability to
handle complex, high-dimensional data. Finally, ensemble
learning strategies involving tree-based models such as LGBM*®
and XGB* also performed well due to their leaf-wise growth
strategy focusing on the most significant splits and in-built
regularization respectively. Overall, the composite strategy of
layering XGB on top of last_FFN fingerprints provided the best
classification model for the accurate taxonomical classification
of NPs.

3.1.3 Database screening. To evaluate the transferability of
trained models, we further employed the pre-trained GCNN,
SVM, and composite models to screen the NP Atlas database
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(NP Atlas v2023_06 from https://www.npatlas.org/download).**
The NP Atlas database consists of NPs that originate from the
kingdoms of Bacteria and Fungi. Out of the 33372 NPs
present, 13 136 NPs (7446 from Bacteria and 5690 from Fungi)
are not found in the LOTUS database used for training our
models. GCNN-SVM, GCNN-LGBM, and GCNN-XGB composite
models with comparable performance were evaluated on the NP
Atlas test set.

The composite GCNN-XGB model performed markedly
better at classification compared to simple GCNN and
composite GCNN-MPN models (Table 2). However, it trades
bacterial NP classification accuracy for fungal NP accuracy when
compared to the literature benchmark SVM model using MAP4
molecular fingerprints.

3.2 Structural analysis of NPs

To verify the remarkable classification performance of the
developed GCNN and composite ML models, structural anal-
yses of MAP4, MPN and last_FFN fingerprints were performed
through the t-SNE dimensionality reduction algorithm. Kull-
back-Leibler (KL) divergence values for each of the molecular
fingerprints decrease with perplexity value (Fig. S11at). For all
explored perplexity values however, last FFN fingerprints
possessed the lowest Davies-Bouldin (DB) score amongst all
other fingerprints (Fig. S11bt) and provided the most distinct
kingdom clusters. Using the perplexity value of 10* as
a comparison, MAP4 fingerprints displayed NPs with highly
overlapping structural features (Fig. 6A), which led to the poor
classification performance observed in the previous section. On
the other hand, MPN fingerprints exhibited substantial sepa-
ration in the molecular features of NPs from different kingdoms
(Fig. 6B), as the MPN fingerprints describe the structural simi-
larity of NPs based on its chemical graph representation.
Employing FFNs to extract additional learning from MPN
fingerprints yielded last_FFN fingerprints that facilitated the
best NP taxonomical classification with well-separated clusters
of NPs belonging to their respective kingdoms (Fig. 6C).

Next, the critical substructures in NPs contributing to the
classification of kingdom origins were determined. A Monte
Carlo Tree Search (MCTS) was used to identify critical chemical
fragments in the molecular structures of NPs. The top ten crit-
ical substructures deemed by the trained GCNN model as the
most informative for NP taxonomical classification are listed for

Table 2 Comparison of classification performance for 13136 NP Atlas test set

Model Molecular fingerprint Bacterial NP accuracy (%) Fungal NP accuracy (%)
SVM MAP4 89.9 81.6
GCNN last_FFN 81.1 86.0
GCNN-SVM MPN 80.2 82.9
GCNN-SVM last FFN 83.2 86.5
GCNN-LGBM MPN 82.7 82.9
GCNN-LGBM last FFN 82.7 86.3
GCNN-XGB MPN 84.0 82.6
GCNN-XGB last_FFN 82.8 86.6
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each kingdom (Fig. 7). Critical chemical substructures were
identified as possessing a rationale score of more than 0.8,
calculated from the chemprop.interpret object in Chemprop
package.?®

Interestingly, the identified NP scaffolds also share struc-
tural similarities with essential starting fragments for drug
discovery.*” The critical substructures for NPs in Plantae, Fungi
and Chromista mainly consist of oxygen-based heterocycles
(Fig. 7A-C). For plant NPs, the critical substructures tend to be
simpler in nature, including furan-like® (A5, A9), pyran-like*
(A3, A4, A8), and lactones* (A6). In fungal NPs, molecular
systems of fused rings (B5, B8) and linked rings (B10) were
found to be critical. For chromists, the critical substructures
identified in their NPs tended toward more complex fused ring
systems (C3, C7, C8) and macrocycles (C2, C9). On the other
hand, bacterial NPs typically consist of nitrogen-based hetero-
cycles,*® including pyridine (D6), thiazole (D5), phenazine (D2)
and phenoxazine-like moieties (D10) (Fig. 7D), with a few crit-
ical lactone fragments also identified (D4, D7, D9). Nitrogen-
fused heterocycles such as pyrrole (E5) and indole (E3) were
found to be important for critical substructures in animal NPs
(Fig. 7E),*” on top of three- (E9) and four-fused (E1, E7, E9) ring
systems resembling steroids.”®* The benzene ring is a highly
common and critical substructure across all five kingdoms (A1,
B2, C1, D1 and E2). Owing to the high structural stability
conferred by resonance, the planar aromatic rings offer stable
building blocks that are ubiquitously found in nature. As frag-
ments such as benzene and furan (A9, E8) are shared between
kingdoms, individual fragments cannot inform taxonomical
classification. Instead, it is the unique combination and
connectivity of these fragments that drive differentiation
between kingdoms. This underscores the importance of
analyzing the broader structural context of NP structures via the
right molecular fingerprinting technique rather than relying
solely on the presence of individual substructures. All of the
substructures described above are critical to the synthesis of
stable NPs with differing levels of structural complexity.>*®
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Structural analyses such as these provide valuable insights
into the key fragments and potential fragment combinations
characteristic of each kingdom, supporting in silico bio-
prospecting efforts to systematically identify the biochemical
origins of novel NPs."” Furthermore, the identified relationships
between critical fragments and the corresponding kingdoms
from which the NPs originate can prompt future genomic and
phylogenetic analyses of different organisms to reveal the
fundamental biosynthesis pathways of NPs occurring in
nature.>® Overall, by leveraging on GCNNs, the structural
features of NPs are effectively captured through molecular
graphs, facilitating the formation of well-separated clusters
corresponding to the five kingdoms. Identifying these critical
substructures also enhances the explainability and interpret-
ability of our composite machine learning models, offering
a clearer understanding of how they utilize structural infor-
mation for taxonomical classification.

4 Conclusion

Using a composite machine learning strategy, we optimized
a multiclass classification model for taxonomical classification
of NPs from their structures. By analyzing the LOTUS database,
we determined the kingdom-specific critical substructures of
NPs for five kingdoms (Animalia, Bacteria, Chromista, Fungi,
and Plantae). GCNN models trained on 133 092 non-isomeric
SMILES across these five kingdoms were found to classify
with a slightly superior performance to those of previous
studies. Notably, the classification performance within each
kingdom were found to increase with NP populations (i.e. data
quantity). Three types of molecular fingerprints (MAP4, MPN,
and last_FFN) were explored using seven different ML algo-
rithms (NB, KNN, QDA, RF, LGBM, XGB, and SVM). The
composite GCNN-XGB model merging last FFN fingerprints
with XGB yielded the best classification performance of 97.4%
balanced accuracy on the validation set. When extended to
classifying NPs outside of the training set from the NP Atlas
database, the composite GCNN-XGB model achieved accuracies
of 82.8% for Bacteria and 86.6% for Fungi. -SNE embeddings of
the three different molecular fingerprints revealed that
last_FFN fingerprints gave the most well-separated clusters of
NPs that resulted in remarkable classification performance.
Finally, the top critical substructures characteristic for NPs in
each kingdom were identified and compared to provide insights
to structure-taxonomy relationships. Overall, this study
demonstrates the potential of a composite machine learning
strategy for taxonomically classifying NPs and to provide
structural insights. Adopting this approach not only accelerates
the classification of NP origins to screen for novel bioactive
candidates but can also highlight kingdom-unique structural
features of NPs to guide future efforts in virtual screening for
bioprospecting as well as genomic and phylogenetic analyses of
different organisms. Future avenues to enhance taxonomy
classification include adopting advanced strategies such as
hybrid data-based learning,” multi-level learning,* or meta-
learning® to further extend the generalizability of trained
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models across various dimensions, such as molecular size,
functional groups, and structural complexity.

Code availability

The code used to train and evaluate composite models for tax-
onomical classification of natural products is available from
GitHub at https://github.com/SIBERanalytics/NPTaxonomy.

Data availability

The dataset used in this work to develop taxonomical classifi-
cation of NPs was acquired from the LOTUS initiative (https://
lotus.naturalproducts.net/download).”®  Processed = LOTUS
SMILES dataset,> MPN and last FFN fingerprints® are
available in (.csv) format on figshare. The screening dataset
was obtained from the NP Atlas database (NP Atlas v2023_06
from https://www.npatlas.org/download).** Processed NP Atlas
MPN fingerprints, and last FFN fingerprints®® available in
(.csv) format on figshare. Deep learning of NPs and Monte
Carlo Tree Search were performed using the Chemprop
package in python.”® The machine learning of fingerprints,
calculation of t-distributed stochastic neighbor embedding,
Kullback-Leibler divergence and Davies-Bouldin score were
achieved using the scikit-learn package in python.* Pre-trained
composite GCNN-SVM (MPN fingerprints)®”” and GCNN-SVM
(last_ FFN fingerprints)®® classification models for NP
taxonomical classification can be downloaded from figshare.
Pre-trained composite GCNN-LGBM and GCNN-XGB
classification models using both MPN and last FFN
fingerprints are available from GitHub at https://github.com/
SIBERanalytics/NPTaxonomy.
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